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Abstract: Plant growth is directly related to levels of photosynthetic photon flux density, Qp.
The improvement of plant-growth models therefore requires accurate estimations of the Qp parameter
that is often indirectly calculated on the basis of its relationship with solar irradiation, RS, due to
the scarcity of ground measurements of photosynthetic photon flux density. In this experimental
campaign in Burgos, Spain, between April 2019 and January 2020, an average value of the Qp/Rs ratio
is determined on the basis of measurements at ten-minute intervals. The most influential factor in the
Qp/Rs ratio, over and above any daily or seasonal pattern, is the existence of overcast sky conditions.
The CIE standard sky classification can be used to establish an unequivocal characterization of the
cloudiness conditions of homogeneous skies. In this study, the relation between the CIE standard sky
type and Qp/Rs is investigated. Its conclusions were that the Qp/Rs values, the average of which
was 1.93 ± 0.15 µmol·J−1, presented statistically significant differences for each CIE standard sky
type. The overcast sky types presented the highest values of the ratio, while the clear sky categories
presented the lowest and most dispersed values. During the experimental campaign, only two
exceptions were noted for covered and partial covered sky-type categories, respectively, sky types
5 and 9. Their values were closer to those of categories classified as clear sky according to the CIE
standard. Both categories presented high uniformity in terms of illumination.

Keywords: photosynthetic active radiation; CIE standard skies; solar irradiance

1. Introduction

The portion of the solar spectrum that plant biochemical processes use in photosynthesis for
converting light energy into biomass is a composite of wavelengths between 400 and 700 nm that are
diffused within the visible light spectrum band (380–780 nm). These wavelength limits define the
so-called photo-synthetically active radiation that covers both photon (Photosynthetic Photon Flux
Density, Qp (µmol·s−1

·m−2)) and energy (PAR, Photo-synthetically Active Radiation, W·m−2) terms [1].
Usually, Qp is recorded, and converted into energy units according to the McCree conversion factor
of 4.57 µmol·J−1

± 3% depending on climatic factors [2]. Accurate PAR estimations are needed for
modelling plant productivity and biomass production [3], natural illumination in greenhouses [4],
plant physiology studies and leaf photosynthesis [5], to measure the productivity of forests [6], and to
calculate the euphotic depth of the oceans [7]. Moreover, accurate PAR measurements have become
central to the determination of deforestation and climate-change impacts on agriculture [8].

A global routine network for measuring PAR has yet to be established. This parameter is often
indirectly calculated, due to the scarcity of PAR data, based on its relationship with global horizontal
solar irradiation, Rs. The conventional PAR/Rs ratio falls between 0.45 and 0.50 [9]. Moon [10]
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estimated the PAR/Rs ratio at between 44% and 45% at sea level with a solar zenith angle of 30◦ over the
horizon. Monteith [11] suggested that a constant ratio of 50% can be a good approximation for practical
applications regardless of atmospheric aerosol and water vapor concentrations [12]. In terms ofµmol·J−1,
empirical relations [13] established Qp/Rs ratios of between 2.1 and 2.9 µmol·J−1, depending on the
location. The monthly Qp/Rs average was calculated on a daily basis from experimental data [14]
collected in an arid climate at between 2.02 and 2.19 µmol·J−1 and the mean daily value was 2.16
µmol·J−1. In Spain, Foyo-Moreno et al. [15] estimated a mean value of 1.95 µmol·J−1 a value close to
other values from different locations [3,16]. Hu et al. [17] evaluated the Qp/Rs ratio at many locations
within China at between 1.75 µmol·J−1 and 2.30 µmol·J−1.

Several studies have been conducted to determine the relation between PAR/Rs and different
parameters. In some cases, significant relationships were found, but any dependencies on site
geography, climatic and weather factors, seasonal trends, and both day length and diurnal effects
were very slight and negligible for practical purposes [18]. Solar elevation has no significant effect on
PAR/Rs when greater than 10◦ [18,19].

The variations of this ratio with sky conditions have been studied to develop weather-dependent
functions. Most studies have concluded that the PAR/Rs ratio presents its highest values for
cloud-covered skies [20,21]. This fact is attributable to cloud-related absorption and diffusion of
solar radiation across different regions of the spectrum. The observed seasonal dependence of
broad-band solar radiation is essentially caused by changes to turbidity, precipitable water, ozone,
and clouds within the air masses at the location throughout the year [22]. The presence of water vapor
increases the absorption effects within the infrared region of the spectrum, decreasing broadband solar
irradiance levels to a greater extent than PAR. A secondary effect of the atmospheric water content is
the enhancement of aerosol-related diffusion, which affects PAR more than broadband solar irradiance,
Rs [4,23]. Some studies have proposed experimental models of PAR that include different parameters to
take into account the atmospheric water vapor content, such as vapor pressure [16,24] and/or dewpoint
temperature [4].

The definition of sky types (clear, overcast, and partly-cloudy) for this task take into account
different combinations of meteorological variables, mainly the clearness index, kt (ratio of global
solar radiation to extraterrestrial solar radiation) [14,25–28]; kt and relative sunshine, S, [29,30];
Perez’s clearness index, ε, and sky brightness, ∆, [4,31], and types and extent of cloud cover [32].
However, the conclusions of a previous work [33] suggested that the use of meteorological variables or
meteorological indices, showed limited results for sky classification. The use of meteorological indices
for sky classification depends more on their availability than on their accuracy and various authors
have used such indices (or combinations thereof) in different ways.

Sky classification is a complex problem, due in part to such abstract conceptual definitions as
clear, partial cloudy, and overcast, as well as other intermediate ranges. The study of the dependence
of any magnitude with respect to the type of sky firstly requires a standardized classification of the
skies, to specify the atmospheric characteristics and illumination levels of each of the established types.
In 2003, the International Commission on Illumination (Commission Internationale de L’Éclairage
or CIE) defined 15 standard sky types, five categorized as clear, five as partial cloudy, and five
as overcast skies. In several works, it was concluded that the CIE standard sky classification
adequately represented empirical sky conditions [34–40]. Sky types of the same category have the same
well-defined sky luminance patterns that easily yield the solar irradiance and daylight illuminance on
the surfaces of interest through simple mathematical expressions [41]. Therefore, the CIE standard
classification characterizes each type of sky in terms of energy and daylight. Figure 1 shows the main
characteristics of each CIE standard sky type. Taking into account that illuminance (400–780 nm)
and PAR (400–700 nm) share part of the spectrum of visible radiation, the use of the CIE Standard
Classification is proposed in this work as the main parameter for characterizing the dependency of the
Qp/Rs ratio on atmospheric conditions.
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Figure 1. CIE Standard sky conditions. Images of different sky types recorded with a SONA201D
All-Sky Camera—Day in Burgos, Spain.

The study is focused on the determination of the Qp/Rs ratio in Burgos, Spain and its dependency on
sky conditions. Experimental data on horizontal solar global irradiation, Rs; photon photosynthetic flux
density, Qp; and, the CIE standard classification for homogeneous skies; collected through experimental
sky scanner measurements, were available for this work. A complete statistical analysis of the results
over different temporal (ten-minute, hourly, daily, and monthly) phases was completed. The results
collected under different sky conditions were tested in a 10-month experimental test campaign.
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The paper will be structured as follows. The experimental facility and the measurement campaign
as well the quality filters applied to the experimental data will be described in Section 2. The CIE
Standard sky classification in Burgos during the experimental campaign will be introduced in Section 3.
Temporal variability of the Qp/Rs ratio over the different temporal intervals will be explained in
Section 4. A variability analysis of the Qp/Rs ratio in accordance with the CIE Standard Sky types will
be analyzed in detail in Section 5. Finally, the main results and the conclusions of the study will be
summarized in Section 6.

2. Experimental Data

The meteorological and radiometric weather station that recorded the experimental data for this study
is located on the roof of the Higher Polytechnic School building (EPS) of Burgos University (42◦21′04” N,
3◦41′20” W, 856 m above mean sea level). Figure 2 shows the location of the meteorological station on
the flat roof of the EPS building, where the climatic parameters are measured: ambient temperature,
relative humidity, atmospheric pressure, wind speed and direction, and rainfall. A complete description
of the experimental facility and its location can be found in previous papers [33,42].
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Figure 2. Location of the experimental equipment on the roof of the Higher Polytechnic School building
at the University of Burgos, Spain.

Global horizontal irradiation, Rs data were measured by a pyranometer (model SR11, Hulseflux,
Delft, The Netherlands,). An ML-020P photon meter was used to measure Qp. The sky luminance and
irradiance distribution were determined by a commercial MS-321LR sky scanner. Both instruments
were manufactured by EKO Instruments (EKO Instruments Europe B.V., Den Haag, The Netherlands).
The technical specifications of the various measurement instruments are shown in Tables 1–3.

Table 1. Sky scanner technical specifications.

Model MS-321LR Sky Scanner

Dimensions (W × D × H) 430 mm × 380 mm × 440 mm
Mass 12.5 kg
FOV 11◦

Luminance 0 to 50 kcd/m2

Radiance 0 to 300 W/m2

A/D Convertor 16 bits
Calibration Error 2%



Appl. Sci. 2020, 10, 8007 5 of 14

Table 2. Pyranometer technical specifications.

Model SR11

ISO classification first class
Spectral range 300 to 2800 nm

Irradiance range 0 to 2000 W/m2

Sensitivity 15 × 10−6 V/(Wm−2)
Calibration uncertainty <1.8%

Table 3. Photon-meter technical specifications.

Model ML-020P

Measurement Range 0–3000 µmol·s−1
·m−2

Spectral range 400 to 700 nm
Operating temperature −10 ◦C to 50 ◦C
Temperature response ±1%

Sensitivity 0.15 × 10−6 V/µmol·s−1
·m−2

Broadband solar irradiance, Rs, and photosynthetic photon flux density data, Qp, were recorded
every 10 min (recorded scans of 30 s on average). Experimental data were analyzed and then filtered
using conventional quality criteria [43]. The sky scanner was adjusted on a monthly basis for taking
measurements from sunrise to the sunset. It completed a full scan in four minutes and started a new
scan every 10 min. The first and last measurements of the day (αs ≤ 7.5◦) were discarded, as well as
measurements higher than 50 kcd·m−2 and lower than 0.1 kcd·m−2, following the specifications of the
equipment. If a data set (Rs, Qp, or sky scanner measurement) failed to pass the quality criteria, then all
the simultaneous data sets were rejected.

The experimental campaign ran between 1 April 2019 to 31 January 2020, during which time 20,631
data sets were collected, 18% of which were rejected after failing the quality criteria test. Therefore,
the total data set comprised 16,937 ten-minute samples of Rs, Qp, and the CIE Standard sky classification
data sets.

3. CIE Standard Sky Classification in Burgos between 1 April 2019 and 21 January 2020

The Normalization Ratio (NR) introduced by Littlefair [44,45] in the original Standard Sky
Luminance Distribution (SSLD) method [46], detailed and described in a previous paper [42], was used to
determine the CIE standard sky types over Burgos between April 2019 and January 2020. The Frequency
of Occurrence (FOC, %) of each sky type during the period under study is shown in Figure 3. As can be
seen, all types of CIE standard skies can be found in Burgos. Sky types 11, 12, and 13, corresponding to
CIE standard clear sky categories, had FOCs of around 10% (sky type 11) and 14.5% (sky types 12 and
13), followed by sky type 14 (FOC 8.4%). FOCs of around 7% were accounted for by sky types 1, 7, 8,
and 15. The appearances of sky types 5, 9, and 10 were anecdotal in Burgos in the period under study,
with FOCs of less than 3%. When only three sky categories were considered, the sky conditions in
Burgos were predominantly clear, with FOCs of almost 62%, while the FOCs of overcast and partial
cloudy conditions were 23.96% and 22.92%, respectively, as shown in Figure 4.
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Figure 5 shows that overcast sky conditions predominated in November and January and clear
skies predominated from May to October in Burgos during the experimental campaign. Figure 6 reflects
the predominance of clear skies in all hourly intervals of the day, from sunrise to sunset, at which point
the standard CIE tends to classify the skies as partially overcast.
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4. Temporal Variability of the Qp/Rs Ratio

The seasonal characteristics of the Qp/Rs ratio were studied at differing intervals: ten-minute,
hourly, daily and monthly. Figure 7 shows the high positive correlation between Qp and Rs at ten-minute
intervals (R2 = 0.992) with a slope of 1.893± 0.001 µmol·J−1. This value is close to the mean value
1.93± 0.15 µmol·J−1, with a standard deviation of ±0.15 µmol·J−1. The Qp/Rs ratio had similar values
to those reported by other researchers [15], ranging between 1.21 and 2.84 µmol·J−1.
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Rs (W·m−2), measured in Burgos, between April 2019 and January 2020.

Figure 8 shows the box-plot of the mean hourly values of the Qp/Rs ratio, calculated from the
average of the ten-minute data, from sunrise to sunset, using the whole data base. The graph represents
the mean value, the median, the three quartiles and both the maximum and the minimum values of the
data, as well as the outlier values. Rising in the early hours of the day, Qp/Rs stabilized in the central
hours and tended to decrease at sun set. Higher dispersion of the values in the first and last hours
than in the central hours of the day may be observed, as the interquartile range shows. The standard
deviation ranged from 0.11 µmol·J−1 within the hourly interval starting at 7:00 to 0.17 µmol·J−1,
within the hourly interval starting at 14:00. The average values were higher than the median values
in all hours of the day except for the hourly interval starting at 06:00. The hourly average of the
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ratio was 1.910± 0.016 µmol·J−1, with maximum and minimum values of 1.98± 0.11 µmol·J−1 and
1.75± 0.16 µmol·J−1, respectively, at 07:00 and at 19:00 h.
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Figure 9 presents the monthly values of the Qp/Rs ratio calculated with the average of the
ten- minute data, using the whole data base. Figure 8 shows that the monthly data were almost
constant throughout the central months of the year, from May to October, with a standard deviation
between 0.11 and 0.16 µmol·J−1, and an interquartile range between 0.10 and 0.15 µmol·J−1. November
was the measurement campaign month with the highest data dispersion: the interquartile range was
0.24 µmol·J−1, with a standard deviation of 0.20 µmol·J−1. The maximum value was recorded in April
(1.98± 0.15µmol·J−1), while the minimum was reached in December (1.91± 0.17µmol·J−1). The monthly
average of Qp/Rs was 1.930± 0.025 µmol·J−1. Based on the results of the monthly average of Qp/Rs,
some authors have suggested the existence of a seasonal dependence of this term. Alados et al. [4]
recorded higher values in the summer months and lower values from November to January, in Granada,
Spain. However, in Greece, Proutsos et al. [47] recorded the highest values for autumn (September)
while the lowest averages (March) were recorded in spring, with intermediate values for summer and
winter. In Midwestern US [48], the lower values with smaller deviations were recorded in the summer
months while the winter months showed higher values of the ratio with larger deviations. In Lhasa
(Tibetan Plateau), the ratio of photosynthetically-active to broadband solar radiation increased almost
linearly from January to June and decreased until the end of the year in the same way [49]. In this
study, slightly higher values were recorded in spring and autumn. The monthly average of the Qp/Rs

ratio was always above the median and the number of outliers above the maximum value was greater
and had a higher absolute value than those below the minimum value.
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Figure 9. Box-plot of the monthly average of the photosynthetic photon flux density to broadband
solar irradiance, Qp/Rs, ratio.

A deeper analysis was conducted with the hourly values for the two months and the extreme
values of the monthly averages of Qp/Rs. Figure 10 shows the daily pattern of the hourly averages of the
Qp/Rs ratio, for April and November, including information on mean, median and variability through
the quartile range. April presented higher and constant values throughout the day, decreasing in
the last hours of the day, while November showed lower values of the ratio and more variability
throughout the day. Both months presented similar patterns, with constant values of the Qp/Rs ratio
around noon, in a trend that decreased over the last few hours of the day. Apart from the differences in
daily means, shown previously, there is also evidence of greater variability during November, mainly in
the first hours of the day.
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5. Variability of the Qp/Rs Ratio with the CIE Standard Sky Types

Figure 11 shows the average photosynthetic photon flux density to broadband solar irradiance,
Qp/Rs, ratio, calculated on a ten minutes basis, for each CIE standard sky type. Clear sky types
12, 13, 14, and 15 showed smaller standard deviations (from 0.06 to 0.11 µmol·J−1) and a smaller
interquartile range (from 0.05 to 0.09 µmol·J−1). However, the numbers of outliers were important for
all these categories. The dispersion of the data within the categories corresponding to overcast and
partial overcast skies was similar, with standard deviations between 0.15 µmol·J−1 (sky type 4) and
0.21 µmol·J−1 (sky type 9) and an interquartile range between 0.16 µmol·J−1 (sky types 3 and 4) and
0.21 µmol·J−1 (sky types 8 and 9). The highest values of the Qp/Rs ratio were under CIE standard sky
types 1, 2, 3, and 4; all categories of overcast sky conditions.
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Figure 11. Box-plot ratio of photosynthetic photon flux density to broadband solar irradiance, Qp/Rs,
for each CIE standard sky type.

The categories of clear skies (CIE standard sky types from 11 to 15) showed the smallest values
of the ratio. Sky types 5 and 9 presented an anomalous behavior. They are categorized as overcast
and partial overcast categories, but the average values of the Qp/Rs ratios for both sky types were
closer to the values of clear sky categories. Furthermore, sky type 9 showed the smallest average
value: 1.89± 0.21 µmol·J−1. The FOCs of both sky types, 5 and 9, were very scarce in the measurement
campaign: 1.65% and 0.64%, respectively. CIE standard sky type 5, described as “overcast, foggy or
cloudy, with overall uniformity”, presented high uniformity in terms of illuminance and broadband
solar irradiance, as well sky type 9, described as “partly cloudy with a shaded sun position”.

When the 15 CIE standard sky types were reduced to three, (overcast, from sky types 1 to 5, partial,
from sky type 6 to 10, and clear sky, from sky types 11 to 15), the average photosynthetic photon flux
density to broadband solar irradiance ratio, Qp/Rs, increased when sky cloudiness increased, as shown
in Figure 12.
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The average Qp/Rs ratio for clear skies and for overcast skies was 1.90 ± 0.11 µmol·J−1 and
1.98 ± 0.16 µmol·J−1, respectively. Partial cloudy skies showed the highest dispersion of the data,
with standard deviation and interquartile range values of 0.17 and 0.19 µmol·J−1, respectively. However,
the clear skies dataset had the largest number of outliers.

The Spearman correlation coefficient is a non-parametric measure of rank correlation, to determine
the strength and direction of the relationship between two variables. If two datasets X and X’ are
strongly correlated, then the Spearman coefficient will be 1 (direct correlation) or if otherwise –1
(inverse correlation). Although r(QP, CIE) = 0.56 (p-value < 0.001) and r(Rs, CIE) = 0.57 (p-value
< 0.001) both imply a moderate correlation, (QP/Rs, CIE) = −0.23 (p-value < 0.001). The p-value
determine the significance of the results in relation to the null hypothesis (the results are due to
random chance). The lower the p-value, the greater the statistical significance of the test and greater
the confirmation of the hypothesis [50]. As the p-value was lower than 0.05 in all the tests, there was
a statistically significant difference between the average Qp/Rs ratios for each type of CIE sky, at a
significance level of 5%.

When only three CIE categories were considered (clear = 3, partial = 2, and overcast = 1),
r(QP, CIEcloudiness) = 0.52 (p-value < 0.001) and r(Rs, CIEcloudiness) = 0.52 (p-value < 0.001),
and (QP/Rs, CIEcloudiness) = −0.22 (p-value < 0.001). From these results, a weak relationship can
be established between the value of the QP/Rs ratio and the CIE standard sky classification. However,
previous results were confirmed in this research, in so far as the ratio of photosynthetic photon flux
density to broadband solar irradiance, Qp/Rs, presented its highest values over cloudy conditions and
decreased with clear sky conditions, following the CIE Standard Sky classification as a reference for
defining the sky conditions.

6. Conclusions

The analysis of photosynthetic photon flux density to broadband solar radiation ratios registered
between April 2019 and January 2020 in Burgos, Spain, at ten-minute intervals, has shown a
representative dependency on the sky type conditions classified by CIE taxonomy. The higher
values of the Qp/Rs ratio were for overcast sky types, while the values were lower and more dispersed
under clear sky conditions.

Statistically significant differences have been found in the Qp/Rs ratios for each CIE standard sky
type. The overcast sky types presented the highest values of the ratio, with the clear sky categories
presenting the lowest and most dispersed values. During the experimental campaign, there were
only two exceptions to the expected behavior: sky types 5 and 9. They belonged to covered and
partial covered sky type categories, respectively, presenting values closer to the clear sky categories
according to the CIE standard. The main characteristic of both categories was a high uniformity in
terms of illumination.

The higher dispersion of data corresponding to clear skies categories could be explained by the
presence of aerosols or atmospheric turbidity, characteristics of clear sky types 13, 14 and 15, with FOC’s
15%, 8% and 7% (Figure 3).

No seasonal dependency of Qp/Rs can be established, as highlighted in this and the other studies
that were reviewed, due mainly to the different sky conditions recorded during the experimental
campaigns. As shown in Figure 5, between April 2019 to January 2020 in Burgos, Spain, clear skies
predominated in summer, while in winter the overcast conditions presented the highest frequency
of occurrence.

The analysis of the hourly values also revealed a daily pattern with higher and more stable values
of Qp/Rs in the first hours of the day that tended to stabilize around noon and to decrease around sunset.
The study of the daily pattern of the sky types (clear, overcast and partial) show that, although clear
skies are predominant at all hours of the day, the differences of the frequency of occurrence with respect
to overcast and partially overcast skies decreases towards noon, as Figure 6 showed.
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As has been demonstrated in this study and in others, the most influential factor in the Qp/Rs

value was the presence of overcast sky conditions. Although other authors used different climatological
parameters for sky classification, the CIE Standard sky classification has proven itself to offer a
good overall framework that can represent the sky conditions, covering the complete spectrum of
sky categories.
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