Agricultural Residues of Lignocellulosic Materials in Cement Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lignocellulosic Materials
2.2. Chemical, Physical, and Morphological Characterization of the Lignocellulosic Materials
2.3. Lignocellulosic Cement Composite Production
2.4. Physical Properties of the Composites
2.5. Mechanical Properties of Composites
2.6. Accelerated Ageing
2.7. Statistical Analyses
2.8. Electron Microscopy
2.9. FreeViz
2.10. Image Supervised Classification
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lisboa, F.J.N.; Scatolino, M.V.; de Paula Protásio, T.; Júnior, J.B.G.; Marconcini, J.M.; Mendes, L.M. Lignocellulosic Materials for Production of Cement Composites: Valorization of the Alkali Treated Soybean Pod and Eucalyptus Wood Particles to Obtain Higher Value-Added Products. Waste Biomass Valorization 2020, 11, 2235–2245. [Google Scholar] [CrossRef]
- Karade, S.R. Cement-Bonded Composites from Lignocellulosic Wastes. Constr. Build. Mater. 2010, 24, 1323–1330. [Google Scholar] [CrossRef]
- Barbari, M.; Monti, M.; Rossi, G.; Simonini, S.; Guerri, F.S. Simple Methods and Tools to Determine the Mechanical Strength of Adobe in Rural Areas. J. Food Agric. Environ. 2014, 12, 904–909. [Google Scholar]
- Conti, L.; Goli, G.; Monti, M.; Pellegrini, P.; Rossi, G.; Barbari, M. Simplified Method for the Characterization of Rectangular Straw Bales (RSB) Thermal Conductivity. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245. [Google Scholar] [CrossRef]
- Cevallos, O.A.; Olivito, R.S. Effects of Fabric Parameters on the Tensile Behaviour of Sustainable Cementitious Composites. Compos. Part B Eng. 2015, 69, 256–266. [Google Scholar] [CrossRef]
- Teixeira, J.N.; Silva, D.W.; Vilela, A.P.; Savastano Junior, H.; de Siqueira Brandão Vaz, L.E.V.; Mendes, R.F. Lignocellulosic Materials for Fiber Cement Production. Waste Biomass Valorization 2020, 11, 2193–2200. [Google Scholar] [CrossRef]
- Eichhorn, S.J.; Baillie, C.A.; Zafeiropoulos, N.; Mwaikambo, L.Y.; Ansell, M.P.; Dufresne, A.; Entwistle, K.M.; Herrera-Franco, P.J.; Escamilla, G.C.; Groom, L.; et al. Current International Research into Cellulosic Fibres and Composites. J. Mater. Sci. 2001, 36, 2107–2131. [Google Scholar] [CrossRef]
- Habibi, Y.; El-Zawawy, W.K.; Ibrahim, M.M.; Dufresne, A. Processing and Characterization of Reinforced Polyethylene Composites Made with Lignocellulosic Fibers from Egyptian Agro-Industrial Residues. Compos. Sci. Technol. 2008, 68, 1877–1885. [Google Scholar] [CrossRef] [Green Version]
- Mendes, R.F.; Vilela, A.P.; Farrapo, C.L.; Mendes, J.F.; Tonoli, G.H.D.; Mendes, L.M. Lignocellulosic residues in cement-bonded panels. In Sustainable and Nonconventional Construction Materials Using Inorganic Bonded Fibre Composites, 1st ed.; Junior, H.S., Fiorelli, J., Santos, S.F., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 3–16. [Google Scholar]
- Olorunnisola, A.O. Effects of Husk Particle Size and Calcium Chloride on Strength and Sorption Properties of Coconut Husk-Cement Composites. Ind. Crops Prod. 2009, 29, 495–501. [Google Scholar] [CrossRef]
- Fan, M.; Ndikontar, M.K.; Zhou, X.; Ngamveng, J.N. Cement-Bonded Composites Made from Tropical Woods: Compatibility of Wood and Cement. Constr. Build. Mater. 2012, 36, 135–140. [Google Scholar] [CrossRef]
- Soroushian, P.; Aouadi, F.; Chowdhury, H.; Nossoni, A.; Sarwar, G. Cement-Bonded Straw Board Subjected to Accelerated Processing. Cem. Concr. Compos. 2004, 26, 797–802. [Google Scholar] [CrossRef]
- Cabral, M.; Zegan, D.; Palacios, J.H.; Godbout, S.; Fiorelli, J.; Savastano, H.; Gutierrez-Pacheco, S.; Lagacé, R. Potential Use of Agricultural Biomass for Cement Composite Materials: Aptitude Index Development and Validation. In Proceedings of the CSBE/SCGAB 2016 Annual Conference Halifax World Trade and Convention Centre, Halifax, NS, Canada, 3–6 July 2016. Paper No. CSBE16-056. [Google Scholar]
- Fonseca, C.S.; Silva, M.F.; Mendes, R.F.; Hein, P.R.G.; Zangiacomo, A.L.; Savastano, H.; Tonoli, G.H.D. Jute Fibers and Micro/Nanofibrils as Reinforcement in Extruded Fiber-Cement Composites. Constr. Build. Mater. 2019, 211, 517–527. [Google Scholar] [CrossRef]
- Mármol, G.; Savastano, H.; Monzó, J.M.; Borrachero, M.V.; Soriano, L.; Payá, J. Portland Cement, Gypsum and Fly Ash Binder Systems Characterization for Lignocellulosic Fiber-Cement. Constr. Build. Mater. 2016, 124, 208–218. [Google Scholar] [CrossRef]
- Ferraz, J.M. Production and Properties of Coir (Cocos nucifera L.) Fibre Panels Mixed with Portland Cement. Master’s Thesis, University of Brasília, Brasília, Brazil, 2011. [Google Scholar]
- Asgher, M.; Ahmad, Z.; Iqbal, H.M.N. Alkali and Enzymatic Delignification of Sugarcane Bagasse to Expose Cellulose Polymers for Saccharification and Bio-Ethanol Production. Ind. Crops Prod. 2013, 44, 488–495. [Google Scholar] [CrossRef]
- Browning, B.L. The Chemistry of Wood; Interscience: New York, NY, USA, 1963. [Google Scholar]
- Brazilian Association of Technical Standards. NBR 14853, Wood–Determination of Ethane-Toluene-Soluble Material and Dichloromethane and Acetone; Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2010. [Google Scholar]
- Brazilian Association of Technical Standards. NBR 7989, Cellulosic Pulp and Wood–Determination of Acid-Insoluble Lignin; Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2010. [Google Scholar]
- Brazilian Association of Technical Standards. NBR 13999, Paper, Paperboard, Cellulosic Pulp and Wood: Determination of Th Residue (Ash) After Incineration at 525 °C; Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Brazilian Association of Technical Standards. NBR 11941, Wood: Determination of Basic Density; Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2003. [Google Scholar]
- Souza, M.R. Durability of Cement-Bonded Particle Board Made Conventionally and Carbon Dioxide Injection. Ph.D. Thesis, University of Idaho, Moscow, ID, USA, 1994. [Google Scholar]
- American Society for Testing and Material. ASTM D1037, Standard Methods of Evaluating the Properties of Wood-Base Fibre and Particle Panel Materials; American Society for Testing and Material: West Conshohocken, PA, USA, 2016. [Google Scholar]
- American Society for Testing and Material. ASTM C948, Test Method for Dryand Wet Bulk Density. Water Absorption. and Apparent Porosity of Thin Sections of Glass-Fiber Reinforced Concrete; American Society for Testing and Material: West Conshohocken, PA, USA, 1981. [Google Scholar]
- Deutsches Institut Fur Normung. DIN 52362, Testing of Wood Chipboards. Bending Test. Determination of Bending Strength; Deutsches Institut Fur Normung: Berlin, Germany, 1982. [Google Scholar]
- Almeida, A.E.F.S.; Tonoli, G.H.D.; Santos, S.F.; Savastano, H. Improved Durability of Vegetable Fiber Reinforced Cement Composite Subject to Accelerated Carbonation at Early Age. Cem. Concr. Compos. 2013, 42, 49–58. [Google Scholar] [CrossRef]
- European Committee for Standardization. EN 494, Fibre-Cement Profiled Sheets and Fittings. Product Specification and Test Methods; European Committee for Standardization: Brussels, Belgium, 1994. [Google Scholar]
- Demsar, J.; Leban, G.; Zupan, B. FreeViz—An intelligent vizualization approach for class-labeled multidimensional data sets. In Proceedings of the Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP 2005), Aberdeen, UK, 24 July 2005; Springer: Berlin/Heidelberg, Germany; pp. 61–66. [Google Scholar]
- Demšar, J.; Leban, G.; Zupan, B. FreeViz-An Intelligent Multivariate Visualization Approach to Explorative Analysis of Biomedical Data. J. Biomed. Inform. 2007, 40, 661–671. [Google Scholar] [CrossRef] [Green Version]
- QGIS Development Team. QGIS Geographic Information System—Open Source Geospatial Foundation Project. 2017. Available online: http://www.qgis.org (accessed on 3 June 2019).
- Congedo, L. Semi-Automatic Classification Plugin Documentation. Release 4.8.0.1. 2016. Available online: https://www.researchgate.net/publication/307593091_Semi-Automatic_Classification_Plugin_Documentation_Release_6011 (accessed on 21 May 2020).
- Onuaguluchi, O.; Banthia, N. Plant-Based Natural Fibre Reinforced Cement Composites: A Review. Cem. Concr. Compos. 2016, 68, 96–108. [Google Scholar] [CrossRef]
- Fiorelli, J.; Gomide, C.A.; Lahr, F.A.R.; do Nascimento, M.F.; de Lucca Sartori, D.; Ballesteros, J.E.M.; Bueno, S.B.; Belini, U.L. Physico-Chemical and Anatomical Characterization of Residual Lignocellulosic Fibers. Cellulose 2014, 21, 3269–3277. [Google Scholar] [CrossRef]
- Miller, D.; Moslemi, A. Wood-Cement Composites: Effect of Model Compounds on Hydration Characteristics and Tensile Strength. Wood Fiber Sci. 1991, 23, 472–482. [Google Scholar]
- Fernandez, E.C.; Taja-On, V.P. The use and processing of rice straw in the manufacture of cement-bonded fibreboard. In Wood-Cement Composites in the Asia-Pacific Region, Proceedings of the 5th Pacific Rim Bio-based Composites Symposium, Canberra, Australia, 10 December 2000; Evans, P.D., Ed.; Australian Centre for International Agricultural Research: Canberra, ACT, Australia; pp. 49–54.
- Campbell, A.G. Recycling and disposing of wood ash. Tappi J. 1990, 73, 141–146. [Google Scholar]
- Anglès, M.N.; Reguant, J.; Martínez, J.M.; Farriol, X.; Montané, D.; Salvadó, J. Influence of the Ash Fraction on the Mass Balance during the Summative Analysis of High-Ash Content Lignocellulosics. Bioresour. Technol. 1997, 59, 185–193. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax Fibre and Its Composites—A Review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Bison Wood-Cement Board; Springer: New York, NY, USA, 2017; p. 10.
- Nazerian, M.; Ghalehno, M.D.; Gozali, E. Effects of Wood Species, Particle Sizes and Dimensions of Residue Obtained from Trimming of Wood-Cement Composites on Physical and Mechanical Properties of Cement-Bonded Particleboard. Wood Mater. Sci. Eng. 2011, 6, 196–206. [Google Scholar] [CrossRef]
- Rana, M.N.; Islam, M.N.; Nath, S.K.; Das, A.K.; Ashaduzzaman, M.; Shams, M.I. Properties of Low-Density Cement-Bonded Composite Panels Manufactured from Polystyrene and Jute Stick Particles. J. Wood Sci. 2019, 65, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Madsen, B.; Thygesen, A.; Lilholt, H. Plant Fibre Composites—Porosity and Volumetric Interaction. Compos. Sci. Technol. 2007, 67, 1584–1600. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Aubert, J.E.; Magniont, C.; Tribout, C.; Bertron, A. Plant Aggregates and Fibers in Earth Construction Materials: A Review. Constr. Build. Mater. 2016, 111, 719–734. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Zhang, Z.Y.; Richardson, M.O.W. Effect of Water Absorption on the Mechanical Properties of Hemp Fibre Reinforced Unsaturated Polyester Composites. Compos. Sci. Technol. 2007, 67, 1674–1683. [Google Scholar] [CrossRef]
- Nasser, R.A.; Salem, M.Z.M.; Al-Mefarrej, H.A.; Aref, I.M. Use of Tree Pruning Wastes for Manufacturing of Wood Reinforced Cement Composites. Cem. Concr. Compos. 2016, 72, 246–256. [Google Scholar] [CrossRef]
- Barbari, M.; Monti, M.; Rossi, G.; Simonini, S.; Guerri, F.S. Proposal for a Simple Method of Structural Calculation for Ordinary Earthen Buildings in Rural Areas. J. Food Agric. Environ. 2014, 12, 897–903. [Google Scholar]
- Lobão, M.S.; Della Lúcia, R.M.; Moreira, M.S.S.; Gomes, A. Caracterização Das Propriedades Físico-Mecânicas Da Madeira de Eucalipto Com Diferentes Densidades. Rev. Árvore 2004, 28, 889–894. [Google Scholar] [CrossRef]
- Rodrigues, J.; Souza, J.A.; Fujiyama, R. Polimeric composites reinforced with natural fibers from Amazon manufactured by infusion. Rev. Matéria 2015, 20, 946–960. [Google Scholar] [CrossRef] [Green Version]
- Pereira, T.G.T.; Mendes, J.F.; Oliveira, J.E.; Marconcini, J.M.; Mendes, R.F. Effect of Reinforcement Percentage of Eucalyptus Fibers on Physico-Mechanical Properties of Composite Hand Lay-up with Polyester Thermosetting Matrix. J. Nat. Fibers 2019, 16, 806–816. [Google Scholar] [CrossRef]
- Farrapo, C.L.; Fonseca, C.S.; Pereira, T.G.T.; Tonoli, G.H.D.; Junior, H.S.; Mendes, R.F. Cellulose Associated with Pet Bottle Waste in Cement Based Composites. Mater. Res. 2017, 20, 1380–1387. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Torgal, F.; Jalali, S. Cementitious Building Materials Reinforced with Vegetable Fibres: A Review. Constr. Build. Mater. 2011, 25, 575–581. [Google Scholar] [CrossRef] [Green Version]
- MacVicar, R.; Matuana, L.M.; Balatinecz, J.J. Aging Mechanisms in Cellulose Fiber Reinforced Cement Composites. Cem. Concr. Compos. 1999, 21, 189–196. [Google Scholar] [CrossRef]
- Shahzad, A. Mechanical properties of lignocellulosic fibre composites. In Lignocellulosic Fibre and Biomass-Based Composite Materials, 1st ed.; Jawaid, M., Paridah, M.T., Saba, N., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 193–223. [Google Scholar]
- Lepage, E.S. Manual de Preservação de Madeiras; Instituto de Pesquisas Tecnológicas de São Paulo: São Paulo, Brazil, 1986. [Google Scholar]
- Fiorelli, J.; Curtolo, D.D.; Barrero, N.G.; Savastano, H.; Pallone, E.M.J.A.; Johnson, R. Particulate Composite Based on Coconut Fiber and Castor Oil Polyurethane Adhesive: An Eco-Efficient Product. Ind. Crops Prod. 2012, 40, 69–75. [Google Scholar] [CrossRef]
Lignocellulosic Materials | Lignin (%) | Total Extractives (%) | Ash (%) | Holocellulose (%) |
---|---|---|---|---|
Eucalyptus | 28.00 d | 11.65 b | 1.46 b | 58.90 b |
(0.667) | (0.145) | (0.286) | (1.098) | |
Sugar cane | 17.34 b | 24.20 d | 0.84 a | 57.63 b |
(0.667) | (0.920) | (0.037) | (1.550) | |
Banana pseudostem | 11.79 a | 17.97 c | 10.68 d | 59.55 b |
(0.104) | (0.350) | (0.179) | (0.275) | |
Coconut shell | 39.07 e | 7.39 a | 3.65 c | 49.89 a |
(0.041) | (0.590) | (0.204) | (0.428) | |
Coffee husk | 21.40 c | 12.35 b | 1.41 b | 64.87 c |
(0.190) | (0.025) | (0.054) | (0.269) | |
p value | 0.0000 | 0.000 | 0.000 | 0.000 |
CV (%) | 1.84 | 3.52 | 4.95 | 1.53 |
Lignocellulosic Materials | Length (cm) | Diameter (cm) | Slimness Index | Density (g/cm3) |
---|---|---|---|---|
Eucalyptus | 0.27 c | 0.07 b | 3.81 bc | 0.341 a |
(0.07) | (0.01) | (0.96) | (0.092) | |
Sugar cane | 0.29 c | 0.05 c | 6.10 bc | 0.094 d |
(0.06) | (0.01) | (1.54) | (0.005) | |
Banana pseudostem | 1.25 a | 0.18 a | 7.41 b | 0.237 b |
(0.12) | (0.03) | (1.40) | (0.008) | |
Coconut shell | 0.64 b | 0.03 d | 21.93 a | 0.138 c |
(0.17) | (0.01) | (9.46) | (0.087) | |
Coffee husk | 0.19 c | 0.08 b | 2.50 c | 0.167 c |
(0.03) | (0.02) | (0.69) | (0.007) | |
p value | 0.0000 | 0.0000 | 0.0000 | 0.0024 |
CV (%) | 25.09 | 26.29 | 61.74 | 6.31 |
Density g/cm3 | Porosity (%) | Water Absorption 2 h (%) | Water Absorption 24 h (%) | Thickness Swelling 2 h (%) | Thickness Swelling 24 h (%) | |
---|---|---|---|---|---|---|
Eucalyptus | 1.18 bc | 74.2 bc | 15.700 bc | 16.467 ab | 2.267 b | 6.467 b |
(0.068) | (2.073) | (0.991) | (0.977) | (0.246) | (0.435) | |
Sugar cane | 1.17 abc | 78.5 bc | 5.200 a | 10.800 a | 1.067 a | 5.300 b |
(0.082) | (8.521) | (0.678) | (1.355) | (0.789) | (0.905) | |
Banana pseudostem | 1.00 ab | 87.5 c | 26.034 d | 27.834 c | 1.834 ab | 2.867 a |
(0.022) | (2.110) | (0.805) | (0.228) | (0.228) | (0.146) | |
Coconut shell | 0.98 a | 62.8 ab | 21.867 cd | 23.567 bc | 1.900 ab | 3.367 a |
(0.082) | (5.100) | (5.410) | (5.339) | (0.365) | (0.688) | |
Coffee husk | 1.27 c | 52.5 a | 12.567 ab | 13.400 a | 1.267 ab | 2.134 a |
(0.079) | (9.702) | (3.024) | (2.027) | (0.117) | (0.360) | |
p value | 0.0024 | 0.000 | 0.000 | 0.0001 | 0.034 | 0.000 |
CV (%) | 6.31 | 8.92 | 17.46 | 14.44 | 25.50 | 13.71 |
Before Accelerated Ageing | After Accelerated Ageing | |||||
---|---|---|---|---|---|---|
CS (MPa) | IB (MPa) | MOR (MPa) | MOE (MPa) | MOR (MPa) | MOE (MPa) | |
Eucalyptus | 9.33 b | 0.54 c | 6.43 bA | 1462 aα | 5.60 bA | 1090 bα |
(1.24) | (0.06) | (0.25) | (353) | (0.96) | (111) | |
Sugar cane | 2.81 a | 0.32 bc | 12.29 cA | 2070 aα | 5.56 bB | 970 bβ |
(0.80) | (0.15) | (0.25) | (371) | (1.60) | (159) | |
Banana pseudostem | 0.98 a | 0.07 a | 1.60 aA | 1528 aα | 1.16 aA | 117 aβ |
(0.23) | (0.01) | (0.87) | (345) | (0.36) | (41) | |
Coconut shell | 1.55 a | 0.30 abc | 3.47 aA | 3105 aα | 1.77 aA | 182 aβ |
(0.06) | (0.11) | (0.93) | (646) | (0.94) | (101) | |
Coffee husk | 2.23 a | 0.23 ab | 3.78 abA | 1572 aα | 0.28 aA | 53 aβ |
(0.69) | (0.05) | (1.88) | (469) | (0.16) | (9) | |
p value | 0.000 | 0.0011 | 0.000 | 0.3155 | 0.0001 | 0.0000 |
CV (%) | 21.79 | 30.87 | 18.58 | 49.51 | 33.08 | 20.60 |
Amount of Lignocellulosic Material in the Panel | ||
---|---|---|
Before AA | After AA | |
MOR before AA | 0.678 | - |
MOE before AA | 0.108 | - |
MOR after AA | - | 0.936 |
MOE after AA | - | 0.900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraz, P.F.P.; Mendes, R.F.; Marin, D.B.; Paes, J.L.; Cecchin, D.; Barbari, M. Agricultural Residues of Lignocellulosic Materials in Cement Composites. Appl. Sci. 2020, 10, 8019. https://doi.org/10.3390/app10228019
Ferraz PFP, Mendes RF, Marin DB, Paes JL, Cecchin D, Barbari M. Agricultural Residues of Lignocellulosic Materials in Cement Composites. Applied Sciences. 2020; 10(22):8019. https://doi.org/10.3390/app10228019
Chicago/Turabian StyleFerraz, Patrícia Ferreira Ponciano, Rafael Farinassi Mendes, Diego Bedin Marin, Juliana Lobo Paes, Daiane Cecchin, and Matteo Barbari. 2020. "Agricultural Residues of Lignocellulosic Materials in Cement Composites" Applied Sciences 10, no. 22: 8019. https://doi.org/10.3390/app10228019
APA StyleFerraz, P. F. P., Mendes, R. F., Marin, D. B., Paes, J. L., Cecchin, D., & Barbari, M. (2020). Agricultural Residues of Lignocellulosic Materials in Cement Composites. Applied Sciences, 10(22), 8019. https://doi.org/10.3390/app10228019