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Abstract: An elevated mean heart rate in untreated patients of obstructive sleep apnea (OSA) may lead
to a higher risk of mortality and the development of various cardiovascular diseases. The elevation
may positively relate to the severity of OSA and present in both wakefulness and sleep. A reduction
in heart rate has been presented in reports of treating OSA patients with continuous positive airway
pressure (CPAP). However, patients with very severe OSA may refuse use of CPAP devices and
advocated surgeries, such as direct skeletal surgery or tracheostomy. It is unclear whether the
non-framework multilevel surgery we reported previously can overcome the unfavorable anatomy
and reduce mean heart rate, which serves as a risk factor of mortality. Here, we show that multilevel
surgery reduced the mean heart rate from 68.6 to 62.7 with a mean reduction of 5.9 beats/min.
The results suggest that the surgery may reduce the risk of consequences and mortality associated
with an elevated mean heart rate, such as various cardiovascular diseases. We disclose these findings,
along with the variations and possible risks to our future patients with very severe OSA who refuse
or cannot use a CPAP device or reject direct skeletal surgery.

Keywords: palatoplasty; one-stage; retropharynx; hypertension; maxillomandibular advancement;
comorbidity

1. Introduction

An elevated heart rate is a risk factor of mortality for cardiovascular diseases [1,2]. Historically,
it has been a risk factor of mortality in both the general population and in the population with
cardiovascular disease [1–8]. In terms of gender, an elevated resting heart rate is an independent
predictor of noncardiovascular mortality in both genders, and of cardiovascular mortality in men,
independent of age and hypertension [6]. In terms of age, it is a risk factor for mortality from all causes
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in younger men and in middle-aged men and women [1]. Resting heart rate is a simple measurement
with prognostic implications [7]. That is why drug-induced reductions in heart rate may be beneficial in
several clinical conditions, such as myocardial infarction [2], congestive heart failure [2], and angina [7].

An elevated heart rate may be positively related to the severity of OSA [9–11]. It is associated
with an increased risk of cardiovascular diseases, stroke, and all-cause mortality (e.g., the relative risks
were 1.79, 2.15, and 1.92, respectively, compared to normal individuals [12]). Cicek et al. showed
a higher mean heart rate in the severe OSA group than the other (mild or moderate) groups [9].
Kawano reported a positive Spearman correlation between apnea–hypopnea index (AHI) and mean
heart rate in all three (24-h, wakefulness, and sleep) sections of time [10]. Konecny et al. reported
that heart rate elevation is most easily noticeable during sleep for OSA patients with hypertrophic
cardiomyopathy [13]. This association between elevated heart rate and the severity of OSA presents
not only during the daytime but also at night-time during sleep [9,10]. An elevated heart rate seen
during sleep suggests a high chance of the presence in mean daytime or 24-h heart rates.

Patients with very severe OSA usually have a confined retroglossal space and framework. They make
up a distinct subgroup and show differences in several areas, from OSA of other severities. Their daytime
awake partial pressure of oxygen may go as low as 77 mmHg [14]. Researchers classified very severe OSA
in the literature into a general group of high AHI or respiratory disturbance index (RDI), from 40 [15,16],
50 [17–21], 60 [22–26], 70 [27], to 100 events/h [28]. These patients have minimal inspiratory movement
of the lateral pharyngeal walls and a smaller cross-sectional area [20], more comorbidity due to
hypertension [14], and associations with higher insulin resistance [29]. Patients with very severe OSA
have a narrow retroglossal space and confined framework [30]. The narrow airway is difficult enlarge
via conventional uvulopalatopharyngoplasty (UPPP) or non-framework surgeries [23,31]. They are not
necessarily obese, nor do they have a high body mass index (BMI) (e.g., see [23,25]). For those who
refuse to use or cannot benefit from continuous positive airway pressure (CPAP), the advocated surgical
procedures include direct skeletal surgery [30], bariatric surgery [32], and tracheostomy in patients
meeting the set criteria [15,33]. In this distinct subgroup, our earlier reports showed that multilevel
surgery could reduce postoperative AHI [34,35], desaturation frequency (mean desaturation index) [34],
and desaturation level (mean oxyhemoglobin saturation of pulse oximetry (SpO2) desaturation) [34]
in order to improve mean SpO2. However, it is not clear whether multilevel surgery can decrease
postoperative resting heart rate in order to lower the risk of associated consequences and mortality.

A reduction in heart rate has been presented in reports of treating OSA patients with CPAP [11,36,37].
Long-term CPAP therapy may lead to an intra-group decrease in resting heart rate [36,37] or a significant
inter-group reduction (CPAP vs. non-CPAP using patients) [38]. Efficiently treated CPAP users showed
lower incidence of cardiovascular diseases than incompletely treated cases (e.g., 6.7% vs. 56.8%
in [39]). Nevertheless, CPAP withdrawal usually results in a rapid recurrence of OSA and a rebound
in heart rate [40]. Accurate mean heart rate is easily obtained by the recording and analysis of a
polysomnography (PSG). Unlike manually interpreted or reported data such as AHI, RDI, or Epworth
Sleepiness Scale (ESS), mean heart rate can serve a clinical role as an objective predictor of mortality
or an objective measurement of surgical success. Here, in patients of very severe OSA, we replicated
studies in the literature to examine the correlation between preoperative AHI and mean heart rate
in sleep. We found that multilevel surgery, as an alternative treatment to CPAP, can reduce mean
heart rate in sleep. We tested the correlation between changes in mean heart rate and essential sleep
parameters, then compared the results to other treatments available in the literature.

2. Materials and Methods

2.1. Patient Enrollment

The patients enrolled were the same as those in our earlier work on the improvement of oxygen
saturation [34]. From Mar. 2015 to May 2020, we enrolled consecutive patients who met the criteria of:
1. 20 years old or older, 2. AHI ≥ 60 events/h, 3. refusal or unsuccessful CPAP (e.g., bad compliance or
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high on-CPAP AHI referred from a sleep medicine specialist), 4. received a multilevel surgery at the
nose, palate, and tongue base [35], 5. PSGs with AHI and mean heart rate before and after the surgery.
We had no specific exclusion criteria.

2.2. Evaluation and Surgeries

We evaluated each patient by endoscopies before and after the surgery and conducted each PSG
overnight in the level-1 sleep laboratory of our hospital with a certified technician. The nasal procedure,
routine septomeatoplasty, was carried out with oral intubation. We performed Z-palatoplasty as
illustrated in our earlier report [35]. The open tongue-base procedure was performed with transoral
robotic surgery or transoral laser microsurgery. Please see our earlier report [34] for postoperative care
and other settings.

2.3. Data Collection and Analysis

Each patient completed a PSG 6 months (193 ± 67 days) after the surgery, when the postoperative
anatomy was considered stable (as the period of 3 to 6 months was adopted in the past reports, e.g.,
see [41,42]). We measured the mean AHI reduction, as a cross-study standard recommended by Caples,
S. M. et al. [43], to compare our results with others in the literature. We examined the scatter plot to
find out whether there were outliers and computed the Pearson correlation to display the association
between preoperative AHI and mean heart rate. We compared the individual pre- and postoperative
mean heart rate in the PSGs, then calculated the mean heart rate reduction. We conducted a paired
t-test to analyze the differences in mean heart rate reduction and AHI reduction, against no difference
after the surgery. To discover the main contributors to the postoperative mean heart rate change,
we computed a Spearman correlation to display the association between proportion difference in mean
heart rate (i.e., postoperative–preoperative/preoperative fraction of mean heart rate) and proportion
difference in one of the following sleep parameters: AHI, hypopnea in AHI ratio [34], desaturation
index, and mean SpO2. Values of p < 0.05 were considered statistically significant.

We performed the statistical tests in MATLAB 9.4.0.813654 (MathWorks, Natick, Massachusetts,
United States of America).

3. Ethical Statements

The study was approved by the Institutional Review Board of Chang Gung Medical
Foundation, Taiwan.

4. Results

Twenty-seven very severe OSA patients were registered in this study. Twenty-four were male and
three were female. A male prevalence (88.9%) confirmed the earlier reports on severe OSA patients (e.g.,
see [15,28,44]). The average BMI was 28.5 with a standard deviation (SD) of 3.5 kg/m2. Their ages ranged
from 29 to 63 years (mean = 47.4 with a SD of 10.6). No patient reported a medication history of taking
beta-blockers or a past history of cardiovascular diseases. All patients underwent Z-palatoplasty (ZPP)
and partial open tongue-base glossectomy. One patient had UPPP at another hospital. Twenty-five
received septomeatoplasty. One and three patients underwent regular adenoidectomy and endoscopic
sinosurgery, respectively. Table 1 lists their results for comparisons with those of others. There was
one instance of postoperative bleeding 10 days after the surgery, causing an unexpected return to the
operation room. See our earlier reports [34,35] for other effects of the surgery such as a reduction in
desaturation and an improvement in oxygen saturation.

The surgery lowered the mean AHI from 73.8 to 33.2 events/h, p < 0.001. The SD was 10.3 and
20.4 events/h, respectively. Figure 1 illustrates the individual AHI reductions and a five-number
summary of pre- and postoperative AHIs. Figure 2 shows the scatterplot and correlation of preoperative
AHI vs. mean heart rate. The correlation for the data showed that preoperative mean heart rate was not
related to the AHI in these very severe OSA patients, r = −0.043, p = 0.83, two-tailed test. The surgery
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reduced the mean heart rate from 68.6 ± 7.3 to 62.7 ± 7.5 beats/min (p < 0.001). The mean heart rate
reduction was 5.9 beats/min, with a 95% confidence interval of 3.4 to 8.4 beats/min. Figure 3 illustrates
the individual mean heart rate reductions and a five-number summary of pre- and post-operative
mean heart rates. A Spearman correlation for the data showed that the postoperative proportion
difference in mean heart rate was not related to any of these parameters (AHI, hypopnea in AHI ratio,
desaturation index, and mean SpO2), r = (−0.1652, −0.3404, −0.1566, and −0.1447), p = (0.4103, 0.0823,
0.4353, and 0.4714), respectively (Figures 4–7).

Table 1. Results for patients receiving various surgeries. Order is numbered according to the surgery
date. a: modified Z-palatoplasty (ZPP); A: uvulopalatopharyngoplasty (UPPP); b: tongue-base
glossectomy; c: septomeatoplasty; d: bilateral endoscopic sinosurgery; e: adenoidectomy; Preop:
preoperative; Postop: postoperative; AHI: apnea–hypopnea index.

Case # Age
(years) Sex Remarks Preop

AHI(/h)
Postop

AHI(/h)

Preop Mean
Heart Rate
(Beats/min)

Postop Mean
Heart Rate
(Beats/min)

1 25 male abce 79.4 29.1 74.9 68.2
2 34 male abcd 66 0.8 79.4 74.8
7 58 male abcd 62.6 77.6 79.5 70.1

14 43 male ab 87.7 57 69.5 58.4
16 44 male ab 69.7 9.6 61.4 64
21 48 male abcd 62.9 60.8 77 64.9
22 63 male Abc 65.7 43.8 64.7 54.2
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Figure 3. Individual mean heart rate changes revealed a significant reduction after the surgery.
The surgery reduced the mean heart rate from 68.6 ± 7.3 to 62.7 ± 7.5 beats/minute (p < 0.001).
Each boxplot displays a five-number summary: the minimum, the maximum, the median, and the first
and third quartiles. There was an outlier in the postoperative mean heart rates.
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Figure 5. Scatter plot and correlation of proportion change in hypopnea/AHI (defined here as
(postoperative–preoperative)/preoperative fraction of hypopnea in AHI) vs. change in mean heart
rate (defined here as (postoperative–preoperative)/preoperative mean heart rate). This shows that the
change in mean heart rate was not related to the proportion change in hypopnea/AHI.
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preoperative mean heart rate). This shows that the change in mean heart rate was not related to the change
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5. Discussion

An elevated heart rate, serving as a risk factor of mortality and a predictive measurement for
various medical conditions such as cardiovascular diseases [1–8], presents in severe OSA patients [9–11],
and may help patients with several cardiovascular conditions if reduced [2,7]. In our results of the
subgroup of very severe OSA, the non-framework multilevel surgery reduced the mean heart rate
from 68.6 ± 7.3 to 62.7 ± 7.5 beats/min with a mean heart rate reduction of 5.9 beats/min, despite the
unfavorable anatomy of the narrow retroglossal space and confined framework. Our sample size of 27
is small and consists of patients treated by a single surgeon, limiting the generalizability of the results.
However, the results illustrate an effect size that is big enough to show significance. The heart rate
reduction of 5.9 beats/min was inferior to Lin’s 8.7 beats/min 6 months after maxillary–mandibular
advancement [45] but better than Sumi’s 4.5 beats/min after 3- to 4-day use of nasal CPAP [11], Mayer’s
3.4 beats/minute after 6 months of nasal CPAP therapy [37], de Paula Soares’s 2.4 beats/min 6 to 9 months
after lateral pharyngoplasty [46], and those reporting no change in mean heart rate after their treatments
(e.g., see [47–49], including Van der Cruyssen’s patients after maxillary–mandibular advancement [49]).
Because the lack of detailed information in the literature made statistical analysis impossible, this was
just the order of the mean heart rate reductions (so as to enable the AHI comparisons below). Care must
be taken when interpreting these comparisons due to possible different OSA severities in the databases
and the effect size of the treatment (e.g., mean AHI reduction) across studies. The mean AHI reduction
in the present study was 40.5 events/h, which was worse than Mickelson’s 42.2 events/h [44] but better
than Walker’s 38.2 events/h [50] and Vilaseca’s 14.4 events/hour [23] in patients with very severe OSA.

Mean heart rate in sleep is affected by not only the medical conditions mentioned above, but also
other controllable or uncontrollable variables. Mean heart rate in sleep may increase after short-term
heavy physical activity, such as in cyclists after a two-week period of intensified training [51]. However,
mean heart rate may drop during good-quality sleep of stages 3 and 4 (e.g., see [52]). For each person,
studies found an intrinsic night-to-night variation under controlled submaximal physical activity to
be about 5–8 beats/min [53–56]. The difficulty in controlling the intrinsic variation and individual
physical activity before each PSG is a limitation of the present study. Apart from treatment effect,
this probably contributed to the variation in the mean heart rate reduction in Figure 3.

OSA is characterized by the recurrent collapse of the upper airway in sleep, leading to chronic
intermittent hypoxia. Chronic intermittent hypoxia has been well reported to elevate circulating
epinephrine levels [57–61], which have a strong positive relationship with platelet aggregation [57–60].
Elevated serum epinephrine levels result in an elevated heart rate in OSA [57–61]. Studies showed
that treatment of OSA by nasal CPAP decreases the epinephrine level and platelet aggregability and
restores the physiological periodic pattern of platelet aggregability [57,62]. Future studies are needed to
investigate whether heart rate reduction goes through the same mechanism of decreasing epinephrine
level and platelet aggregability following multilevel surgery in very severe OSA patients.

An elevated heart rate is associated with a higher risk of developing hypertension and
atherosclerosis (e.g., see [2] for a review). The mean heart rates in patients with refractory hypertension
(uncontrolled hypertension despite the administration of at least five antihypertensive drugs [63]) rise
more [64] than those with resistant hypertension (hypertension with no identifiable cause in which
blood pressure levels remain uncontrolled despite using at least three antihypertensive drugs (including
a diuretic, if tolerated) at full doses [63]). Compared to resistant hypertension, patients with refractory
hypertension have an even greater prevalence and severity of OSA [64]. More severe OSA may have
hypertension that is more difficult to treat. This may be due to the fact that a higher sympathetic tone
in patients with very severe OSA can cause more hyperinsulinemia and insulin resistance which can
eventually promote the development of atherosclerosis [2]. Moreover, the hemodynamic disturbances
related to a higher heart rate directly affect the arterial wall, promoting further development of
atherosclerotic plaques [2]. Future long-term studies are needed to confirm whether the heart rate
reduction remains in the long run following multilevel surgery, and whether it reduces the incidence
of developing atherosclerosis, or helps to treat hypertension.
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6. Conclusions

Despite the unfavorable anatomy in very severe OSA patients, non-framework surgery reduced
the mean heart rate from 68.6 to 62.7 beats/min with a mean heart rate reduction of 5.9 beats/min.
The results suggest that this surgery may reduce the risk of consequences and mortality associated
with an elevated mean heart rate. We will disclose these findings to our future patients with very
severe OSA who refuse or cannot use a CPAP device or reject direct skeletal surgery. We will also
inform them of the thus far undetermined contributors to the reduction, variation, and potential risks.
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