3D CFD Analysis of Natural Ventilation in Reduced Scale Model of Compost Bedded Pack Barn for Dairy Cows
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Wind Tunnel
2.2. Scale model—Selection of variables
2.3. Scale Model Procedure
2.4. Measurement and Instrumentation
2.5. CFD Representation of the Scale Model Geometry
2.6. Computational Modeling
2.7. Compost Dairy Barn Tests
2.8. Statistical Analysis Methods
3. Results and Discussion
3.1. Mesh Details
3.2. Validation of the Measured and Simulated Values
3.3. Computational Simulation
3.4. Evaluation of the Types of Ridge Vents and Wind Direction
3.5. Cattle Dairy Compost Barn Building Validation Tests
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Black, R.A.; Taraba, J.L.; Day, G.B.; Damasceno, F.A.; Bewley, J.M. Compost bedded pack dairy barn management, performance, and producer satisfaction. J. Dairy Sci. 2013, 96, 8060–8074. [Google Scholar] [CrossRef]
- Leso, L.; Uberti, M.; Morshed, W.; Barbari, M. A survey of Italian compost dairy barns. J. Agric. Eng. 2013, 44, 120–124. [Google Scholar]
- Leso, L.; Barbari, M.; Lopes, M.A.; Damasceno, F.A.; Galama, P.; Taraba, J.L.; Kuipers, A. Invited review: Compost-bedded pack barns for dairy cows. J. Dairy Sci. 2020, 103, 1072–1099. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, G.; Wu, W.; Bjerg, B. Model-based control of natural ventilation in dairy buildings. Comput. Electron. Agric. 2013, 94, 47–57. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Brugger, M.F.; Manuzon, R.B.; Arnold, G.; Imerman, E. Variations in Air Quality of New Ohio Dairy Facilities with Natural Ventilation Systems. Appl. Eng. Agric. 2007, 23, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Mondaca, M.R.; Cook, N.B. Modeled construction and operating costs of different ventilation systems for lactating dairy cows. J. Dairy Sci. 2019, 102, 896–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacht, H.; Bragança, L.; Almeida, M.; Caram, R. Study of natural ventilation in wind tunnels and influence of the position of ventilation modules and types of grids on a modular façade system. Energy Procedia 2016, 96, 953–964. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.E.A.; Damasceno, F.A.; Ferraz, P.F.P.; Nascimento, J.A.C.; Ferraz, G.A.S.; Barbari, M. Geostatistics applied to evaluation of thermal conditions and noise in compost dairy barns with different ventilation systems. Agron. Res. 2019, 17, 783–796. [Google Scholar]
- Janke, D.; Willink, D.; Ammon, C.; Hempel, S.; Schrade, S.; Demeyer, P.; Hartung, E.; Amon, B.; Ogink, N.; Amon, T. Calculation of ventilation rates and ammonia emissions: Comparison of sampling strategies for a naturally ventilated dairy barn. Biosyst. Eng. 2020, 198, 15–30. [Google Scholar] [CrossRef]
- Curi, T.M.R.C.; de Moura, D.J.; Massari, J.M.; Mesquita, M.; Pereira, D.F. Computational Fluid Dynamics (CFD) application for ventilation studies in broiler houses. Eng. agríc. 2017, 37, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rojano, F.; Bournet, P.; Hassouna, M.; Robin, P.; Kacira, M.; Choi, C.Y. Modelling the impact of air discharges caused by natural ventilation in a poultry house. Biosyst. Eng. 2019, 180, 168–181. [Google Scholar] [CrossRef]
- Vilela, M.O.; Gates, R.S.; Martins, M.A.; Barbari, M.; Conti, L.; Rossi, G.; Zolnier, S.; Teles, C.G.S., Jr.; Zanetoni, H.H.R.; Andrade, R.R.; et al. Computational fluids dynamics (CFD) in the spatial distribution of air velocity in prototype designed for animal experimentation in controlled environments. Agron. Res. 2019, 17, 890–899. [Google Scholar]
- Fagundes, B.; Damasceno, F.; Andrade, R.; Obando, F.; Alexander, J.; Barbari, M.; Nascimento, J. Comparison of airflow homogeneity in Compost Dairy Barns with different ventilation systems using the CFD model. Agron. Res. 2020, 18, 788–796. [Google Scholar]
- Mostafa, E.; Lee, I.B.; Song, S.H.; Known, K.S.; Seo, I.H.; Hong, S.W.; Hwang, H.S.; Biotg, J.P.; Han, H.T. Computational fluid dynamics simulation of air temperature distribution inside broiler building fitted with duct ventilation system. Biosyst. Eng. 2012, 112, 293–303. [Google Scholar] [CrossRef]
- Norton, T.; Sun, D.W.; Grant, J.; Fallon, R.; Dodd, V. Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresour. Technol. 2007, 98, 2386–2414. [Google Scholar] [CrossRef]
- Seo, I.H.; Lee, I.B.; Moon, O.K.; Kim, H.T.; Hwang, H.S.; Hong, S.W.; Bitog, J.P.; Yoo, J.I.; Kwon, K.S.; Kim, Y.H.; et al. Improvement of the ventilation system of a naturally ventilated broiler house in the cold season using computational simulations. Biosyst. Eng. 2009, 104, 106–117. [Google Scholar] [CrossRef]
- Norton, T.; Grant, J.; Fallon, R.; Sun, D.W. Optimizing the ventilation configuration of naturally ventilated livestock buildings for improved indoor environmental homogeneity. Build. Environ. 2010, 45, 983–995. [Google Scholar] [CrossRef]
- Bustamante, E.; García-Diego, F.J.; Calvet, S.; Estellés, F.; Beltrán, P.; Hopitaler, A.; Torres, A.G. Exploring ventilation efficiency in poultry buildings: The validation of computational fluid dynamics (CFD) in cross-mechanically ventilated broiler farm. Energies 2013, 6, 2605. [Google Scholar] [CrossRef] [Green Version]
- Karava, P.; Stathopoulos, T. Wind-induced internal pressures in buildings with large façade openings. J. Eng. Mech. 2011, 138, 358–370. [Google Scholar] [CrossRef]
- Sundell, J.; Levin, H.; Nazaroff, W.W.; Cain, W.S.; Fisk, W.J.; Grimsrud, D.T.; Gyntelberg, F.; Li, Y.; Persily, A.K.; Pickering, A.C.; et al. Ventilation rates and health: Multidisciplinary review of the scientific literature. Indoor Air 2011, 21, 191–204. [Google Scholar] [CrossRef]
- Rae, W.H.; Pope, A. Low-speed Wind Tunnel Testing, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Lee, I.B.; Sadanor, S.; Sung, S.H. Evaluation of CFD accuracy for the ventilation study of a naturally ventilated broiler house. Jpn. Agric. Res. Q. 2007, 41, 53–64. [Google Scholar] [CrossRef] [Green Version]
- King, M.F.; Gough, H.L.; Halios, C.; Barlow, J.F.; Robertson, A.; Hoxey, R.; Noakes, C.J. Investigating the influence of neighbouring structures on natural ventilation potential of a full-scale cubical building using time-dependent CFD. J. Wind Eng. Ind. Aerodyn. 2017, 169, 265–279. [Google Scholar] [CrossRef]
- Norton, T.; Grant, J.; Fallon, R.; Sun, D.W. Assessing the ventilation effective-ness of naturally ventilated livestock buildings under wind dominant conditions using computational fluid dynamics. Biosyst. Eng. 2009, 3, 78–99. [Google Scholar] [CrossRef]
- Lim, H.C.; Thomas, T.G.; Castro, I.P. Flow around a cube in a turbulent boundary layer: LES and experiment. J. Wind Eng. Ind. Aerodyn. 2009, 97, 96–109. [Google Scholar] [CrossRef] [Green Version]
Variable | Description | Units (S.I) | Symbols | Dimensional Symbol |
---|---|---|---|---|
1 | Building length | m | L | |
2 | Building width | m | L | |
3 | Building height | m | L | |
4 | Gravitational acceleration | m s−2 | g | L T−2 |
5 | Coefficient of heat transfer | kg s−3 K−1 | M T−3 θ−1 | |
6 | Heat | kg m2 s−2 | M L2 T−2 | |
7 | Wind velocity | m s−1 | L T−1 | |
8 | Temperature of air | K | θ | |
9 | Density of air | kg m−3 | M L−3 | |
10 | Specific heat of air | m2 s−2 K−1 | L2 T−2 θ−1 | |
11 | Heat transfer coefficient | kg s−3 K−1 | M T−3 θ−1 | |
12 | Dynamic viscosity of air | kg m−1 s−1 | M L −1 T−1 | |
13 | Thermal conductivity of air | kg m s−3 K−1 | M L T−3 θ−1 | |
14 | Coef. of thermal expansion | K−1 | βe | θ −1 |
Term nº | π-term | Term nº | π-term |
---|---|---|---|
1 | 6 | ||
2 | 7 | ||
3 | 8 | ||
4 | 9 | ||
5 | 10 |
Case | Location | Boundary Condition | Value |
---|---|---|---|
1 | Inlet | Average air speed | 0.1 m s−1 |
Air temperature | 22.0 °C | ||
Outlet | Atmospheric pressure | 101.325 kPa | |
Floor | Temperature of surface compost | 30.0 °C | |
2 | Inlet | Average air speed | 1.0 m s−1 |
Air temperature | 22.0 °C | ||
Outlet | Atmospheric pressure | 101.325 kPa | |
Floor | Temperature of surface compost | 30.0 °C |
Ridge | Equations | R2 | Equations | R2 |
---|---|---|---|---|
Air speed of 0.1 m s−1 | ||||
CLR | Vsim = 0.8598 Vmes + 0.00130 | 0.774 | Tsim = 0.9830 Tmes + 0.4310 | 0.982 |
OPR | Vsim = 1.1416 Vmes + 0.00004 | 0.794 | Tsim = 0.7181 Tmes + 6.4647 | 0.766 |
ORC | Vsim = 0.9035 Vmes + 0.00440 | 0.915 | Tsim = 0.8344 Tmes + 3.6989 | 0.729 |
ELR | Vsim = 1.0833 Vmes − 0.00110 | 0.892 | Tsim = 0.6528 Tmes + 8.1661 | 0.617 |
OVR | Vsim = 0.9332 Vmes + 0.00890 | 0.855 | Tsim = 0.7092 Tmes + 7.1421 | 0.709 |
Air speed of 1.0 m s−1 | ||||
CLR | Vsim = 0.9041 Vmes + 0.0286 | 0.909 | Tsim = 0.7194 Tmes + 6.7294 | 0.607 |
OPR | Vsim = 0.9905 Vmes − 0.0044 | 0.949 | Tsim = 0.6794 Tmes + 7.7582 | 0.704 |
ORC | Vsim = 1.0093 Vmes − 0.0093 | 0.905 | Tsim = 0.6695 Tmes + 8.0744 | 0.701 |
ELR | Vsim = 0.8159 Vmes + 0.0393 | 0.856 | Tsim = 0.4938 Tmes + 12.547 | 0.602 |
OVR | Vsim = 0.9329 Vmes − 0.0065 | 0.875 | Tsim = 0.5571 Tmes + 10.949 | 0.525 |
SV | DF | SS | MS | Fcal-Value * | Probability |
---|---|---|---|---|---|
Ridge | 4 | 1620.038 | 405.010 | 0.531 | 0.716 |
Direction | 3 | 526.051 | 175.350 | 0.230 | 0.874 |
Residual | 12 | 9155.593 | 762.966 | ||
Total | 19 | 11301.682 |
Treatments | Means Values (%) | |
---|---|---|
Type ridge design | ORC | 45.292 |
OPR | 27.512 | |
CLR | 24.462 | |
OVR | 23.497 | |
ELR | 19.457 | |
Wind direction | West to east | 32.366 |
East to west | 32.176 | |
North to south | 27.922 | |
South to north | 19.712 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damasceno, F.A.; Taraba, J.L.; Day, G.B.; A. O. Vega, F.; S. O. Rocha, K.; Black, R.A.; Bewley, J.M.; E. A. Oliveira, C.; Barbari, M. 3D CFD Analysis of Natural Ventilation in Reduced Scale Model of Compost Bedded Pack Barn for Dairy Cows. Appl. Sci. 2020, 10, 8112. https://doi.org/10.3390/app10228112
Damasceno FA, Taraba JL, Day GB, A. O. Vega F, S. O. Rocha K, Black RA, Bewley JM, E. A. Oliveira C, Barbari M. 3D CFD Analysis of Natural Ventilation in Reduced Scale Model of Compost Bedded Pack Barn for Dairy Cows. Applied Sciences. 2020; 10(22):8112. https://doi.org/10.3390/app10228112
Chicago/Turabian StyleDamasceno, Flávio A., Joseph L. Taraba, George B. Day, Felipe A. O. Vega, Keller S. O. Rocha, Randi A. Black, Jeffrey M. Bewley, Carlos E. A. Oliveira, and Matteo Barbari. 2020. "3D CFD Analysis of Natural Ventilation in Reduced Scale Model of Compost Bedded Pack Barn for Dairy Cows" Applied Sciences 10, no. 22: 8112. https://doi.org/10.3390/app10228112
APA StyleDamasceno, F. A., Taraba, J. L., Day, G. B., A. O. Vega, F., S. O. Rocha, K., Black, R. A., Bewley, J. M., E. A. Oliveira, C., & Barbari, M. (2020). 3D CFD Analysis of Natural Ventilation in Reduced Scale Model of Compost Bedded Pack Barn for Dairy Cows. Applied Sciences, 10(22), 8112. https://doi.org/10.3390/app10228112