Environmentally Friendly Approach for the Production of Glucose and High-Purity Xylooligosaccharides from Edible Biomass Byproducts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock
2.2. Autohydrolysis
2.3. Enzymatic Hydrolysis
2.4. Determination of the Chemical Composition
3. Results
3.1. Xylooligosaccharides Production Depending on the Changes of the Reaction Temperature
3.2. Xylooligosaccharides Production Depending on the Changes of the Reaction Time
3.3. Glucose Conversion Depending on the Reaction Temparature Changes
3.4. Glucose Conversion Depending on the Changes of the Reaction Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Amorim, C.; Silvério, S.C.; Prather, K.L.; Rodrigues, L.R. From lignocellulosic residues to market: Production and commercial potential of xylooligosaccharides. Biotechnol. Adv. 2019, 37, 107397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aachary, A.A.; Prapulla, S.G. Xylooligosaccharides (XOS) as an emerging prebiotic: Microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 2–16. [Google Scholar] [CrossRef]
- Bhatia, R.; Winters, A.; Bryant, D.N.; Bosch, M.; Clifton-Brown, J.; Leak, D.; Gallagher, J. Pilot-scale production of xylo-oligosaccharides and fermentable sugars from Miscanthus using steam explosion pretreatment. Bioresour. Technol. 2020, 296, 122285. [Google Scholar] [CrossRef] [PubMed]
- Swennen, K.; Courtin, C.M.; Delcour, J.A. Non-digestible oligosaccharides with prebiotic properties. Crit. Rev. Food Sci. Nutr. 2006, 46, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Banerjee, J.; Sasmal, S.; Muir, J.; Arora, A. High xylan recovery using two stage alkali pre-treatment process from high lignin biomass and its valorisation to xylooligosaccharides of low degree of polymerisation. Bioresour. Technol. 2018, 256, 110–117. [Google Scholar] [CrossRef]
- Xiao, X.; Bian, J.; Peng, X.-P.; Xu, H.; Xiao, B.; Sun, R.-C. Autohydrolysis of bamboo (Dendrocalamus giganteus Munro) culm for the production of xylo-oligosaccharides. Bioresour. Technol. 2013, 138, 63–70. [Google Scholar] [CrossRef]
- Xylooligosaccharides (XOS) Market Size 2020 Analysis by CAGR of 4.1%, I.S., Business Strategies, Emerging Demands, Growth Rate, Recent Trends, Opportunity, and Forecast to 2026. Available online: https://www.marketwatch.com/press-release/xylooligosaccharides-xos-market-size-2020-analysis-by-cagr-of-41-industry-share-business-strategies-emerging-demands-growth-rate-recent-trends-opportunity-and-forecast-to-2026-2020-07-12 (accessed on 20 September 2020).
- Bian, J.; Peng, F.; Peng, X.-P.; Peng, P.; Xu, F.; Sun, R.-C. Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresour. Technol. 2013, 127, 236–241. [Google Scholar] [CrossRef]
- Zhang, W.; You, Y.; Lei, F.; Li, P.; Jiang, J. Acetyl-assisted autohydrolysis of sugarcane bagasse for the production of xylo-oligosaccharides without additional chemicals. Bioresour. Technol. 2018, 265, 387–393. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Chang, X.; Chen, D.; Xue, Y.; Liu, P.; Lin, H.; Han, S. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 2017, 160, 196–206. [Google Scholar] [CrossRef]
- Qing, Q.; Li, H.; Kumar, R.; Wyman, C.E. Xylooligosaccharides production, quantification, and characterization in context of lignocellulosic biomass pretreatment. Aqueous Pretreat. Plant Biomass Biol. Chem. Convers. Fuels Chem. 2013, 391–415. [Google Scholar]
- Poletto, P.; Pereira, G.N.; Monteiro, C.R.; Pereira, M.A.F.; Bordignon, S.E.; de Oliveira, D. Xylooligosaccharides: Transforming the lignocellulosic biomasses into valuable 5-carbon sugar prebiotics. Process Biochem. 2020, 91, 352–363. [Google Scholar] [CrossRef]
- Garrote, G.; Domínguez, H.; Parajó, J.C. Mild autohydrolysis: An environmentally friendly technology for xylooligosaccharide production from wood. J. Chem. Technol. Biotechnol. 1999, 74, 1101–1109. [Google Scholar] [CrossRef]
- Lachos-Perez, D.; Martinez-Jimenez, F.; Rezende, C.; Tompsett, G.; Timko, M.; Forster-Carneiro, T. Subcritical water hydrolysis of sugarcane bagasse: An approach on solid residues characterization. J Supercrit. Fluids 2016, 108, 69–78. [Google Scholar] [CrossRef]
- Kumar, L.; Tooyserkani, Z.; Sokhansanj, S.; Saddler, J.N. Does densification influence the steam pretreatment and enzymatic hydrolysis of softwoods to sugars? Bioresour. Technol. 2012, 121, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.F.A.; Marcondes, W.F.; de Oliva Neto, P.; Pastore, G.M.; Saddler, J.N.; Arantes, V. The potential of tailoring the conditions of steam explosion to produce xylo-oligosaccharides from sugarcane bagasse. Bioresour. Technol. 2018, 250, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.M.; Pinheiro, I.O.; Souto-Maior, A.M.; Martin, C.; Gonçalves, A.R.; Rocha, G.J. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresour. Technol. 2013, 130, 168–173. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Qin, L.; Pang, F.; Jin, M.-J.; Li, B.-Z.; Kang, Y.; Dale, B.E.; Yuan, Y.-J. Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Ind. Crops Prod. 2013, 44, 176–184. [Google Scholar] [CrossRef]
- Álvarez, C.; González, A.; Negro, M.J.; Ballesteros, I.; Oliva, J.M.; Sáez, F. Optimized use of hemicellulose within a biorefinery for processing high value-added xylooligosaccharides. Ind. Crops Prod. 2017, 99, 41–48. [Google Scholar] [CrossRef]
- Menandro, L.M.S.; Cantarella, H.; Franco, H.C.J.; Kölln, O.T.; Pimenta, M.T.B.; Sanches, G.M.; Rabelo, S.C.; Carvalho, J.L.N. Comprehensive assessment of sugarcane straw: Implications for biomass and bioenergy production. Biofuel Bioprod. Bior. 2017, 11, 488–504. [Google Scholar] [CrossRef]
- Silva, T.A.L.; Zamora, H.D.Z.; Varão, L.H.R.; Prado, N.S.; Baffi, M.A.; Pasquini, D. Effect of steam explosion pretreatment catalysed by organic acid and alkali on chemical and structural properties and enzymatic hydrolysis of sugarcane bagasse. Waste Biomass Valorization 2018, 9, 2191–2201. [Google Scholar] [CrossRef]
- Reddy, B.V.; Kumar, A.A.; Ramesh, S. Sweet Sorghum: A Water Saving Bio-Energy Crop; ICRISAT: Patancheru, India, 2007. [Google Scholar]
- Erickson, J.E.; Woodard, K.R.; Sollenberger, L.E. Optimizing sweet sorghum production for biofuel in the southeastern USA through nitrogen fertilization and top removal. Bioenergy Res. 2012, 5, 86–94. [Google Scholar] [CrossRef]
- Koo, B.; Park, J.; Gonzalez, R.; Jameel, H.; Park, S. Two-stage autohydrolysis and mechanical treatment to maximize sugar recovery from sweet sorghum bagasse. Bioresour. Technol. 2019, 276, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.; Shewry, P.; Li, L.; Gibson, G.; Sanz, M.; Rastall, R. In vitro fermentation by human fecal microflora of wheat arabinoxylans. J. Agric. Food. Chem. 2007, 55, 4589–4595. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.L.; Kosik, O.; Lovegrove, A.; Charalampopoulos, D.; Rastall, R.A. In vitro fermentability of xylo-oligosaccharide and xylo-polysaccharide fractions with different molecular weights by human faecal bacteria. Carbohydr. Polym. 2018, 179, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, E.; Gullón, B.; Moura, P.; Carvalheiro, F.; Eibes, G.; Cara, C.; Castro, E. Bifidobacterial growth stimulation by oligosaccharides generated from olive tree pruning biomass. Carbohydr. Polym. 2017, 169, 149–156. [Google Scholar] [CrossRef]
- Otieno, D.O.; Ahring, B.K. A thermochemical pretreatment process to produce xylooligosaccharides (XOS), arabinooligosaccharides (AOS) and mannooligosaccharides (MOS) from lignocellulosic biomasses. Bioresour. Technol. 2012, 112, 285–292. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples. 2006. Available online: https://www.nrel.gov/docs/gen/fy08/42623.pdf (accessed on 27 October 2020).
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- Salo-väänänen, P.P.; Koivistoinen, P.E. Determination of protein in foods: Comparison of net protein and crude protein (N× 6.25) values. Food Chem. 1996, 57, 27–31. [Google Scholar] [CrossRef]
- Chen, M.-H.; Bowman, M.J.; Dien, B.S.; Rausch, K.D.; Tumbleson, M.; Singh, V. Autohydrolysis of Miscanthus x giganteus for the production of xylooligosaccharides (XOS): Kinetics, characterization and recovery. Bioresour. Technol. 2014, 155, 359–365. [Google Scholar] [CrossRef]
- Gullón, P.; Moura, P.; Esteves, M.a.P.; Girio, F.M.; Domínguez, H.; Parajó, J.C. Assessment on the fermentability of xylooligosaccharides from rice husks by probiotic bacteria. J. Agric. Food. Chem. 2008, 56, 7482–7487. [Google Scholar] [CrossRef]
- Moura, P.; Barata, R.; Carvalheiro, F.; Gírio, F.; Loureiro-Dias, M.C.; Esteves, M.P. In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT 2007, 40, 963–972. [Google Scholar] [CrossRef]
- Sun, S.; Wen, J.; Sun, S.; Sun, R.-C. Systematic evaluation of the degraded products evolved from the hydrothermal pretreatment of sweet sorghum stems. Biotechnol. Biofuels 2015, 8, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, H.T.T.; Nghiem, N.P.; Kim, T.H. Near theoretical saccharification of sweet sorghum bagasse using simulated green liquor pretreatment and enzymatic hydrolysis. Energy 2018, 157, 894–903. [Google Scholar] [CrossRef]
- Wei, H.; Chen, X.; Shekiro, J.; Kuhn, E.; Wang, W.; Ji, Y.; Kozliak, E.; Himmel, M.E.; Tucker, M.P. Kinetic modelling and experimental studies for the effects of Fe2+ ions on xylan hydrolysis with dilute-acid pretreatment and subsequent enzymatic hydrolysis. Catalysts 2018, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Surek, E.; Buyukkileci, A.O. Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohydr. Polym. 2017, 174, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Childs, C.E.; Röytiö, H.; Alhoniemi, E.; Fekete, A.A.; Forssten, S.D.; Hudjec, N.; Lim, Y.N.; Steger, C.J.; Yaqoob, P.; Tuohy, K.M. Xylo-oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: A double-blind, placebo-controlled, randomised, factorial cross-over study. Br. J. Nutr. 2014, 111, 1945–1956. [Google Scholar] [CrossRef] [Green Version]
- Carvalheiro, F.; Esteves, M.; Parajó, J.; Pereira, H.; Gırio, F. Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresour. Technol. 2004, 91, 93–100. [Google Scholar] [CrossRef]
- Garrote, G.; Falqué, E.; Domínguez, H.; Parajó, J.C. Autohydrolysis of agricultural residues: Study of reaction byproducts. Bioresour. Technol. 2007, 98, 1951–1957. [Google Scholar] [CrossRef]
- Zakaria, M.R.; Hirata, S.; Hassan, M.A. Hydrothermal pretreatment enhanced enzymatic hydrolysis and glucose production from oil palm biomass. Bioresour. Technol. 2015, 176, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Jeon, H.; Kang, K.-E.; Jeong, J.-S.; Gong, G.; Choi, J.-W.; Abimanyu, H.; Ahn, B.S.; Suh, D.-J.; Choi, G.-W. Production of anhydrous ethanol using oil palm empty fruit bunch in a pilot plant. Biomass Bioenergy 2014, 67, 99–107. [Google Scholar] [CrossRef]
- Park, J.; Jones, B.; Koo, B.; Chen, X.; Tucker, M.; Yu, J.-H.; Pschorn, T.; Venditti, R.; Park, S. Use of mechanical refining to improve the production of low-cost sugars from lignocellulosic biomass. Bioresour. Technol. 2016, 199, 59–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Composition 1 | Sweet Sorghum Bagasse (SSB) |
---|---|
Extractives | 9.3 ± 0.4 |
Carbohydrate | 67.3 |
Glucan | 37.6 ± 0.4 |
XGM 2 | 21.2 ± 0.5 |
Arabinan | 2.3 ± 0.0 |
Acetate | 6.1 ± 0.0 |
Lignin | 17.2 |
Acid-insoluble | 15.1 ± 0.1 |
Acid-soluble | 2.1 ± 0.1 |
Ash | 1.1 ± 0.0 |
Crude protein | 6.5 ± 0.0 |
Total | 101.3 |
Conditions | Sugars | Acetic Acid | Degradation Product | ||||
---|---|---|---|---|---|---|---|
Reaction Temperature (°C) | pH | Glucose | XGM 1 | Arabinose | HMF 2 | Furfural | |
160 | 4.1 | 3.2 ± 0.1 | 5.9 ± 0.9 | 2.0 ± 0.1 | 0.2 ± 0.0 | ND 3 | ND |
170 | 3.8 | 3.7 ± 0.1 | 12.2 ± 0.9 | 2.2 ± 0.1 | 0.4 ± 0.0 | ND | ND |
180 | 3.7 | 3.9 ± 0.1 | 16.9 ± 0.1 | 2.1 ± 0.1 | 0.8 ± 0.1 | ND | 0.2 ± 0.0 |
190 | 3.5 | 3.9 ± 0.0 | 17.9 ± 0.0 | 1.6 ± 0.1 | 1.5 ± 0.0 | ND | 0.8 ± 0.0 |
200 | 3.3 | 3.8 ± 0.1 | 13.9 ± 0.9 | 1.0 ± 0.1 | 2.4 ± 0.2 | 0.2 ± 0.0 | 2.3 ± 0.3 |
Conditions | Sugars | Acetic Acid | Degradation Product | ||||
---|---|---|---|---|---|---|---|
Reaction Temperature (°C) | Reaction Time (min) | Glucose | XGM 1 | Arabinose | HMF 2 | Furfural | |
180 | 5 | 3.5 ± 0.2 | 11.3 ± 1.3 | 1.5 ± 1.1 | 0.4 ± 0.0 | ND 3 | 0.1 ± 0.0 |
10 | 3.8 ± 0.1 | 13.6 ± 0.8 | 2.1 ± 0.1 | 0.6 ± 0.2 | ND | 0.1 ± 0.0 | |
15 | 3.9 ± 0.0 | 15.5 ± 0.9 | 2.1 ± 0.0 | 0.6 ± 0.1 | ND | 0.1 ± 0.0 | |
20 | 3.9 ± 0.1 | 16.9 ± 0.1 | 2.1 ± 0.1 | 0.8 ± 0.1 | ND | 0.2 ± 0.0 | |
190 | 5 | 3.8 ± 0.0 | 15.6 ± 1.2 | 2.0 ± 0.0 | 0.7 ± 0.2 | ND | 0.1 ± 0.1 |
10 | 3.8 ± 0.2 | 16.9 ± 0.7 | 1.9 ± 0.1 | 0.9 ± 0.1 | ND | 0.3 ± 0.1 | |
15 | 3.9 ± 0.0 | 18.3 ± 0.2 | 1.8 ± 0.1 | 1.2 ± 0.2 | ND | 0.5 ± 0.1 | |
20 | 3.9 ± 0.0 | 17.9 ± 0.0 | 1.6 ± 0.0 | 1.5 ± 0.0 | ND | 0.8 ± 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, S.-K.; Jung, C.-D.; Yu, J.-H.; Kim, H. Environmentally Friendly Approach for the Production of Glucose and High-Purity Xylooligosaccharides from Edible Biomass Byproducts. Appl. Sci. 2020, 10, 8119. https://doi.org/10.3390/app10228119
Jang S-K, Jung C-D, Yu J-H, Kim H. Environmentally Friendly Approach for the Production of Glucose and High-Purity Xylooligosaccharides from Edible Biomass Byproducts. Applied Sciences. 2020; 10(22):8119. https://doi.org/10.3390/app10228119
Chicago/Turabian StyleJang, Soo-Kyeong, Chan-Duck Jung, Ju-Hyun Yu, and Hoyong Kim. 2020. "Environmentally Friendly Approach for the Production of Glucose and High-Purity Xylooligosaccharides from Edible Biomass Byproducts" Applied Sciences 10, no. 22: 8119. https://doi.org/10.3390/app10228119
APA StyleJang, S. -K., Jung, C. -D., Yu, J. -H., & Kim, H. (2020). Environmentally Friendly Approach for the Production of Glucose and High-Purity Xylooligosaccharides from Edible Biomass Byproducts. Applied Sciences, 10(22), 8119. https://doi.org/10.3390/app10228119