Dual-Kernel-Based Aggregated Residual Network for Surface Defect Inspection in Injection Molding Processes
Abstract
:1. Introduction
2. Literature Review
2.1. Surface Defect Detection
2.2. ResNeXt
2.3. Deformable ConvNet
3. Dual-Kernel-Based Aggregated Residual Networks
3.1. Design of the DK-ResNeXt
3.1.1. Parallel Ensemble ResNeXt
3.1.2. Double-Frame ResNeXt
3.2. The Dataset
3.3. Training Details
3.4. Experimental Results
4. Case Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Latorella, K.A.; Prabhu, P.V. A review of human error in aviation maintenance and inspection. Int. J. Ind. Ergon. 2000, 26, 133–161. [Google Scholar] [CrossRef]
- Bruning, J.H.; Feldman, M.; Kinsel, T.S.; Sittig, E.K.; Townsend, R.L. An automated mask inspection system—AMIS. IEEE Trans. Electron Devices 1975, 22, 487–495. [Google Scholar] [CrossRef]
- Cohen, F.S.; Fan, Z.; Attali, S. Automated inspection of textile fabrics using textural models. IEEE PAMI 1991, 8, 803–808. [Google Scholar] [CrossRef]
- Malloy, R.A. Plastic Part Design for Injection Molding, 2nd ed.; Hanser Publishers: New York, NY, USA, 1994; pp. 285–294. [Google Scholar]
- Qiu, Z.; Chen, J.; Zhao, Y.; Zhu, S.; He, Y.; Zhang, C. Variety identification of single rice seed using hyperspectral imaging combined with convolutional neural network. Appl. Sci. 2018, 8, 212. [Google Scholar] [CrossRef] [Green Version]
- Polat, H.; Danaei, M.H. Classification of pulmonary CT images by using hybrid 3D-deep convolutional neural network architecture. Appl. Sci. 2019, 9, 940. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.L.; Vicnesh, J.; Ciaccio, E.J.; Yuvaraj, R.; Acharya, U.R. Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals. Appl. Sci. 2019, 9, 2870. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500. [Google Scholar]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Venice, Italy, 22 October 2017; pp. 764–773. [Google Scholar]
- Zhu, X.; Hu, H.; Lin, S.; Dai, J. Deformable convnets v2: More deformable, better results. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 9308–9316. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards realtime object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99. [Google Scholar]
- Fan, J.; Xu, W.; Wu, Y.; Gong, Y. Human tracking using convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2010, 21, 1610–1623. [Google Scholar]
- Wang, H.; Li, S.; Song, L.; Cui, L. A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals. Comput. Ind. 2019, 105, 182–190. [Google Scholar] [CrossRef]
- Wu, C.; Jiang, P.; Ding, C.; Feng, F.; Chen, T. Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network. Comput. Ind. 2019, 108, 53–61. [Google Scholar] [CrossRef]
- Xie, X. A review of recent advances in surface defect detection using texture analysis techniques. ELCVIA 2008, 7, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Cecati, C.; Ding, S.X. A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron 2015, 62, 3757–3767. [Google Scholar] [CrossRef] [Green Version]
- Boukouvalas, C.; Kittler, J.; Marik, R.; Petrou, M. Color grading of randomly textured ceramic tiles using color histograms. IEEE Trans. Ind. Electron 1999, 46, 219–226. [Google Scholar] [CrossRef]
- Pietikainen, M.; Maenpaa, T.; Viertola, J. Color texture classification with color histograms and local binary patterns. In Workshop on Texture Analysis in Machine Visio; Machine Vision Group, University of Oulu: Oulu, Finland, 2002; pp. 109–112. [Google Scholar]
- Escofet, J.; Navarro, R.; Pladellorens, M.M.J. Detection of local defects in textile webs using Gabor filters. Opt. Eng. 1998, 37, 2297–2307. [Google Scholar]
- Ren, R.; Hung, T.; Tan, K.C. A generic deep-learning-based approach for automated surface inspection. IEEE Trans. Cybern. 2017, 48, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Staar, B.; Lütjen, M.; Freitag, M. Anomaly detection with convolutional neural networks for industrial surface inspection. Proc. CIRP 2019, 79, 484–489. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Y.; Qiao, M.; Snoussi, H. A fast and robust convolutional neural network-based defect detection model in product quality control. Int. J. Adv. Manuf. Technol. 2018, 94, 3465–3471. [Google Scholar] [CrossRef]
- Tao, X.; Zhang, D.; Ma, W.; Liu, X.; Xu, D. Automatic metallic surface defect detection and recognition with convolutional neural networks. Appl. Sci. 2018, 8, 1575. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, Z.; Wang, H.; Núñez, A.; Han, Z. Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network. IEEE Trans. Instrum. Meas. 2017, 67, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Chen, Y.; Zhang, D.; Xie, J.; Zhou, Y. Classification of surface defects on steel sheet using convolutional neural networks. Mater. Technol. 2017, 51, 123–131. [Google Scholar]
- Deng, J.; Lu, Y.; Lee, V.C.S. Concrete crack detection with handwriting script interferences using faster region-based convolutional neural network. Comput. Aided Civ. Infrastruct. Eng. 2020, 35, 373–388. [Google Scholar] [CrossRef]
- Chun, P.J.; Izumi, S.; Yamane, T. Automatic detection method of cracks from concrete surface imagery using two-step light gradient boosting machine. Comput. Aided Civ. Infrastruct. Eng. 2020. [Google Scholar] [CrossRef]
- Yamane, T.; Chun, P.J. Crack Detection from a Concrete Surface Image Based on Semantic Segmentation Using Deep Learning. J. Adv. Concr. Technol. 2020, 18, 493–504. [Google Scholar] [CrossRef]
- Dung, C.V. Autonomous concrete crack detection using deep fully convolutional neural network. Automat. Constr. 2019, 99, 52–58. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Timm, F.; Barth, E. Non-parametric texture defect detection using Weibull features. In Proceedings of the Image Processing: Machine Vision Applications IV, San Francisco, CA, USA, 7 February 2011; p. 78770. [Google Scholar]
- Siebel, N.T.; Sommer, G. Learning defect classifiers for visual inspection images by neuro-evolution using weakly labelled training data. In Proceedings of the IEEE Congress on Evolutionary Computation, Hong Kong, China, 1–6 June 2008; pp. 3925–3931. [Google Scholar]
- Jiang, X.; Scott, P.; Whitehouse, D. Wavelets and their applications for surface metrology. CIRP Ann. Manuf. Technol. 2008, 57, 555–558. [Google Scholar] [CrossRef]
- Weimer, D.; Scholz-Reiter, B.; Shpitalni, M. Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Ann. Manuf. Technol. 2016, 65, 417–420. [Google Scholar] [CrossRef]
- Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Zhang, Z. Mmdetection: Open mmlab detection toolbox and benchmark. arXiv preprint 2019, arXiv:1906.07155. [Google Scholar]
- PyTorch Implementation of Deformable ConvNets v2 (Modulated Deformable Convolution). Available online: https://Github.com/4uiiurz1/pytorch-deform-conv-v2 (accessed on 19 April 2019).
Stage | Output | PE-ResNeXt-50 (32 × 4d) | PE-ResNeXt-101 (32 × 8d) |
---|---|---|---|
FKL1 | 77, 64, stride 2 | ||
FKL2 | 33 max pool, stride 2 | ||
FKL3 | |||
DKL3 | |||
FKL4 | |||
DKL4 | |||
FKL5 | |||
DKL5 | |||
FCL | Global average pooling, 1000-d, softmax | Global average pooling, 1000-d, softmax |
Stage | Output | ||
---|---|---|---|
FKL1 | , 32, stride 1, padding 1 | , 32, stride 1, padding 1 | |
FKL2 | |||
max pool, stride 2 | max pool, stride 2 | ||
DKL1 | |||
DKL2 | |||
FCL | Global average pooling, 256-d, softmax | Global average pooling, 256-d, softmax |
Model | Accuracy (%) |
---|---|
ResNeXt-50 | 98.79 |
ResNeXt-101 | 99.42 |
Deformable ConvNet V2 | 97.94 |
PE-ResNeXt-50 | 98.83 |
PE-ResNeXt-101 | 99.97 |
Output Classes | Model | Accuracy (%) |
---|---|---|
6 | Mainframe [ResNeXt-50 ] | 99.42 |
Mainframe [ResNeXt-101 ] | 100 | |
Subframe [Deformable ConvNet V2] | 100 | |
2 | Mainframe [ResNeXt-50 ] | 93.62 |
Mainframe [ResNeXt-101 ] | 93.62 | |
Subframe [Deformable ConvNet V2] | 100 | |
6/2 | DF-ResNeXt-50 | 96.14 |
DF-ResNeXt-101 | 100 |
Classes | ResNeXt- 101 (6/2 Classes) | PE-ResNeXt-101
(12 Classes) | FR-CNN [24] (6/2 Classes) | DCNN [36] (12 Classes) | SIFT/ANN [22] (12 Classes) |
---|---|---|---|---|---|
TPR | |||||
1 | 100 | 100 | 100 | 100 | 98.9 |
2 | 100 | 100 | 100 | 100 | 95.7 |
3 | 100 | 100 | 100 | 95.5 | 98.5 |
4 | 100 | 99.3 | 100 | 100 | - |
5 | 100 | 100 | 99.7 | 98.8 | 98.2 |
6 | 100 | 100 | 100 | 100 | 99.8 |
TNR | |||||
1 | 100 | 100 | 100 | 100 | 100 |
2 | 100 | 100 | 100 | 97.3 | 91.3 |
3 | 100 | 100 | 100 | 100 | 100 |
4 | 100 | 100 | 93.2 | 98.7 | - |
5 | 100 | 99.9 | 100 | 100 | 100 |
6 | 100 | 100 | 100 | 99.5 | 100 |
Average accuracy | 100 | 99.9 | 99.8 | 99.2 | 98.2 |
Criteria | Front | Back | Side | Head | Tail |
---|---|---|---|---|---|
Black spot | FB | BB | SB | HB | TB |
Short shot | FS | BS | SS | HS | TS |
Cutting | FC | BC | SC | HC | TC |
Nondefect | FN | BN | SN | HN | TN |
Criteria (%) | DF-ResNeXt- 101 | PE-ResNeXt-101 | ResNeXt-101 | Deformable ConvNet V2 |
---|---|---|---|---|
TPR | 97.4 | 96.6 | 92.3 | 85.3 |
TNR | 100 | 99.0 | 95.0 | 93.6 |
Accuracy | 98.5 | 97.8 | 94.6 | 91.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Ryu, K. Dual-Kernel-Based Aggregated Residual Network for Surface Defect Inspection in Injection Molding Processes. Appl. Sci. 2020, 10, 8171. https://doi.org/10.3390/app10228171
Lee H, Ryu K. Dual-Kernel-Based Aggregated Residual Network for Surface Defect Inspection in Injection Molding Processes. Applied Sciences. 2020; 10(22):8171. https://doi.org/10.3390/app10228171
Chicago/Turabian StyleLee, Hwaseop, and Kwangyeol Ryu. 2020. "Dual-Kernel-Based Aggregated Residual Network for Surface Defect Inspection in Injection Molding Processes" Applied Sciences 10, no. 22: 8171. https://doi.org/10.3390/app10228171
APA StyleLee, H., & Ryu, K. (2020). Dual-Kernel-Based Aggregated Residual Network for Surface Defect Inspection in Injection Molding Processes. Applied Sciences, 10(22), 8171. https://doi.org/10.3390/app10228171