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Abstract

:

Automated quality inspection has been receiving increasing attention in manufacturing processes. Since the introduction of convolutional neural networks (CNNs), many researchers have attempted to apply CNNs to classification and detection of defect images. However, injection molding processes have not received much attention in this field of research because of product diversity, difficulty in obtaining uniform-quality product images, and short cycle times. In this study, two types of dual-kernel-based aggregated residual networks are proposed by utilizing a fixed kernel and a deformable kernel to detect surface and shape defects of molded products. The aggregated residual network is selected as a backbone, and a fixed-size, deformable kernel is applied for extracting surface and geometric features simultaneously. Comparative studies are conducted by including the existing research using the Weakly Supervised Learning for Industrial Optical Inspection dataset, which is a DAGM dataset. A case study reveals that the proposed method is applicable for inspecting the quality of injection molding products with excellent performance.
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1. Introduction


Quality inspection in manufacturing industries is one of the essential processes that can reduce the risk and cost of failure of delivery to customers. Manufacturing companies conduct a total inspection when the product is a part directly used by customers and related to human safety. Most small- and medium-sized enterprises (SMEs) that produce parts with injection molding operations continue to inspect such parts manually to classify defective products. Manual inspection is subject to human error caused by fatigue in continuous repetitive work [1]. In such an environment, injection molding companies consume enormous time, effort, and cost for manual inspection. To solve this problem, automated quality inspection for detecting defects has been developed by many researchers to reduce human effort during inspection processes [2,3].



Injection molding is a crucial underlying technology that can produce a wide variety of products that differ significantly in size, complexity, and application [4]. Injection molding companies must conduct a total inspection of products directly related to customer safety to ensure the proper functionality and appearance of the products. The primary defect types in injection molding products are unformed shapes (e.g., bubbles, flash, and short shots) and poor surface appearance (e.g., burn marks, flow lines, sink marks, and jetting). As depicted in Figure 1, most defects in injection molding products can be found on the surface of the parts. Therefore, automated visual inspection using image processing techniques such as feature extraction, classification, and object detection is applicable [5,6,7].



However, the application of image processing techniques for automated visual inspection is difficult because of the characteristics of the injection molding process. First, multiple products are usually produced in one cycle in one mold. Because the mold ejects several products during one cycle time, obtaining uniform-quality image data of multiple parts in the manufacturing process is challenging. Second, the injection process has a short cycle time. According to the aforementioned characteristics, the injection molding process requires more effective and faster feature-extraction methodologies for a visual inspection system. In this study, a dual-kernel-based aggregated residual network (ResNeXt) is proposed to solve the defect detection problem for the injection molding process. ResNeXt has been modified accordingly to achieve better detection performance while decreasing network complexity; this forms the backbone of the proposed model [8]. In addition, a deformable kernel is applied for robustness in processing scaled and rotated defect images [9,10].



The remainder of this paper is organized as follows. Section 2 presents a literature review on surface defect detection, ResNeXt, and the Deformable convolution network (Deformable ConvNet), which are core concepts behind the defect-detection model proposed in this study. Section 3 describes the details of the proposed methodologies and verification experiments using the DAGM 2007 competition dataset (Weakly Supervised Learning for Industrial Optical Inspection). Here, DAGM stands for Deutsche Arbeitsgemeinschaft für Musterekennung which means that the German chapter of the International Association for Pattern Recognition. A case study of an experiment on defect inspection using real data of an injection molding product is presented in Section 4, and Section 5 presents concluding remarks.




2. Literature Review


2.1. Surface Defect Detection


Several models of defect detection for industrial products have been developed since the convolutional neural network (CNN) was developed by Lecun et al. [11]. The CNN model has led to significant breakthroughs in computer vision and is widely used in a variety of applications such as image classification [12], image segmentation [13], and object tracking [14]. Surface defect detection is a technology that detects failures in the appearance of fabric, metal, wooden, and plastic products via image processing technologies [15,16,17]. Although the targets can be different, surface defect detection is a feature-extraction problem to identify anomalies that can be distinguished from textures. Algorithms to extract features from textures for detecting surface defects can be defined into four categories: statistical, structural, filter-based, and model-based approaches [18]. Representatively, statistical and filter-based approaches have been prevalent. For example, histogram properties categorized in the statistical approach have been applied to various studies and proved to have high performance even at low cost and effort [19,20]. Among joint spatial/spatial-frequency methods categorized in filter-based approaches, Gabor transforms (using modulated Gaussian filters) are widely used because they are similar to the human visual system [21]. After the CNN was developed, a filter-kernel-based neural network was proposed, and CNN-based feature-extraction techniques have been rapidly developed in image processing and machine learning research fields. Ren et al. [22] applied a generic deep-learning approach based on the CNN model for automated surface inspection. Staar et al. [23] performed anomaly detection for industrial surface inspection by learning the deep matrix using a triplet network, which is a modified CNN model. Wang et al. [24] proposed a twofold joint detection model inspired by a CNN for classifying industrial surface inspection. Tao et al. [25] proposed a cascaded autoencoder architecture based on a CNN for segmenting and localizing multiple defects from industrial product data. In addition, many researchers have proposed various powerful CNN-based models to solve image classification problems or defect localization problems for diverse industrial surface defects [26,27]. Representatively, research on concrete crack detection using CNN-based models has been actively conducted in recent years. Deng et al. [28] applied an ad-hoc faster region-based CNN (faster R-CNN) to distinguish between handwriting scripts and crack on a concrete surface. Chun et al. [29] detected cracks on the concrete surface using a light gradient boosting machine (LightGBM) considered pixel values and geometric shapes. You only look once (YOLO), VGG Net, Inception Net, Mask R-CNN were frequently applied to detect concrete cracks in research on civil and infrastructure engineering [30,31]. However, research considering the characteristics of injection molding processes and products is yet to receive much attention. In this study, a novel defect classification model is proposed for the injection molding process by redesigning ResNeXt and Deformable ConvNet.




2.2. ResNeXt


ResNeXt is inherited from residual networks (ResNets) proposed for image recognition [32]. The ResNet using “shortcut connections” prevents gradient vanishing, exploding, or degradation, which can occur with increase in number of layers of a deep network. This methodology has proved that optimizing residual mapping is easier than optimizing the original unreferenced mapping. The ResNet has the advantage that even deeper networks can be easily optimized, and the accuracy can be significantly improved because of the increased depth in the networks without notorious problems such as gradient vanishing, exploding, and accuracy degradation.



The ResNeXt proposed by Xie et al. [8] utilizes cardinality, which is a modulated residual bottleneck block to maintain simplicity and increase the accuracy of classification performance simultaneously. Cardinality is formulated in the network-in-neuron form and performs splitting, transforming, and aggregating in the module. This is a network model that proves that it is more efficient to increase cardinality, which is the bottleneck building block, than the depth and width of a network. In addition, ResNeXt derives better performance from simple structural changes, including shortcut connections and cardinality, on the convolutional network. The numbers of hyperparameters of ResNet-50 and ResNeXt-50 with the same stacked layers are   25.5 ×   10  6    and   25.0 ×   10  6   , respectively. ResNeXt is proven to improve accuracy while maintaining the simplicity of the model complexity and number of parameters. The structural simplicity offers the possibility of applying a deformable kernel to ResNeXt.




2.3. Deformable ConvNet


CNNs are limited in defining geometric transformation because of their fixed kernel structures. There are two ways to solve geometric variation or transformation in object scale, pose, viewpoint, and part deformation. The first one is to augment datasets, but this entails a high cost of training and complex model parameters. The second one is to change fixed geometric feature maps into feature maps that allow for the adaptive determination of scales or receptive field sizes. To overcome these limitations, Deformable ConvNet, proposed by Dai et al. [9], applies a deformable convolutional layer and a deformable region-of-interest (ROI) pooling layer using a position-changeable kernel to enhance the capability of modeling geometric transformation on the CNN structure. Both deformable convolution and ROI pooling modules are ready to be applied to the structure of plain CNNs and augment the spatial sample location with additional offset. These modules learn the offset from target images by extracting features without space restrictions. Deformable ConvNet has proven to be an effective structure for feature extraction, object segmentation, and detection.



Deformable ConvNet V2, proposed by Zhu et al. [10], expanded the utilization of deformable convolution layers with offset learning capacity to control sampling over a broader range of feature levels. The modulation mechanism in deformable convolution modules is expanded not only to offset learning but also to a mechanism for learning the amplitude of features. Deformable ConvNet V2 utilizes R-CNN, ResNet, and ResNeXt as the backbone to verify better image classification ability compared to regular CNN and Deformable ConvNet. The improved model adds more convolutional layers than the previous model and improves ability of image classification by introducing the concept of R-CNN feature mimicking. In addition, this model modulates the amplitude of the feature to set a particular location to an uninterested domain, giving the freedom to adjust the spatial location. This study proved that Deformable ConvNet V2 with the backbone of ResNeXt exhibited better accuracy than regular CNN and Deformable ConvNet with ResNet in image classification and object detection [8].





3. Dual-Kernel-Based Aggregated Residual Networks


Two types of dual-kernel-based aggregated residual networks (DK-ResNeXt) are proposed herein. The first type is an ensemble model that improves defect detection accuracy through weighted voting. This model consists of identical layers using different kernel types (i.e., the fixed kernel and deformable kernel). The second type is a multimodal network composed of a mainframe and subframe. The fixed kernel network (mainframe) and deformable kernel (subframe) networks have independent output classes. This model combines the classification results of the two networks to improve defect detection accuracy.



3.1. Design of the DK-ResNeXt


3.1.1. Parallel Ensemble ResNeXt


A parallel ensemble ResNeXt (PE-ResNeXt) model, as shown in Figure 2, utilizes ResNeXt as the backbone of the network. The fixed and deformable kernel layers are structurally contrasted.



PE-ResNeXt has an input image size of 224 × 224 pixels. In Figure 2, FKL (2) indicates two fixed kernel layers, and DKL (3) indicates three deformable kernel layers. FCL (1000) is a fully connected layer composed of 1000 nodes. This network applies weighted voting for ensemble classification. Each independently trained model proposes a classification result for each class. As an ensemble model of networks, it has structural simplicity with relatively better classification accuracy compared to deep and wide CNNs. We intervene to mediate the voting weight when a specific model performs better classification results in a specific class. After two models derive the classification results, the final classification results are derived by combining the two results by weighted voting. If the results of the two models are equal, the model submits the result as it is. Otherwise, the model submits the results of the model with high prediction performance.



Detailed model information is presented in Table 1. We modified the structure based on ResNeXt-50 (  32 × 4 d  ) and 101 (  32 × 8 d  ), which are proven to have the best detection capability among ResNeXt structures. FKL1 (  7 × 7  , 64, stride 2) indicates that the   7 × 7   kernel performs convolution operations with stride 2. This layer creates 64 channels and downsizes the input image to the   112 × 112   feature maps. FKL2 (  3 × 3   max pool, stride 2) performs max-pooling using a   3 × 3   fixed kernel with a stride of 2. [C = 32] in FKL2 is 32 bottleneck blocks defined as the cardinality of ResNeXt.   [ ]   ×   3   indicates three ResNeXt modules of cardinality 32. FKL3 and DKL3 in the third layer utilize the same 56 × 56 feature maps extracted from the second FKL. This model trains the same feature maps on two independent models with different kernels from the third layer. FKL is not sufficient for extracting the geometrical features of an image compared to a deformable kernel [9,10]. However, we expect that FKL can effectively extract its distinctive features, such as different background textures. DKL has proven to be able to extract geometrical features more effectively than fixed kernels. We assume that DKL can effectively classify sketches appearing on the surface and defects with unformed shapes. FCL has a global average pooling of 1000 nodes, and the activation function of FCL is the softmax function.




3.1.2. Double-Frame ResNeXt


The double-frame ResNeXt (DF-ResNeXt) is inspired from a fast and robust CNN using the twofold approach proposed by Wang et al. [24]. DF-ResNeXt, illustrated in Figure 3, has a mainframe composed of FKL (5) and FCL (1000) and a subframe composed of FKL (2), DKL (2), and FCL (1000).



The mainframe inputs a   224 × 224   image. The network structure of the mainframe is the same as that of ResNeXt presented in Table 1. The input size of the images for the subframe was 28 × 28. The mainframe classifies classes, and the subframe determines the defects. The decision of two frames is combined to determine which class has defects. Detailed model information is listed in Table 2.



FKL1 (  3 × 3  , 32, stride 1, and padding 1) indicates that the   3 × 3   kernel performs convolution operations with one stride and one padding in the first fixed kernel layer. The subframe is composed of only FKL and DKL. FCL has 256 nodes, and the activation function is the softmax function. We cropped the image to emphasize the defect features presented in various forms, and we assumed that the cropped image can further improve the performance of DKL. We assumed that the cropped input images emphasized the defect features. Therefore, we expected to be able to distinguish various defects using a simple network structure.





3.2. The Dataset


A DAGM dataset, Weakly Supervised Learning for Industrial Optical Inspection, provided by the German Chapter of the European Neural Network Society, is an essential industrial image processing dataset that represents characteristics similar to those of real-world problems. It consists of 10 classes of datasets, each consisting of 1000 images of background textures without defects and 150 images with one labeled defect. Figure 4 shows the image samples of six classes with a pixel size of   512 × 512  . The DAGM dataset has two critical issues, which make defect detection challenging. The first issue is local textural irregularities, which is the primary concern for most visual surface inspection applications. The other issue is the global deviation of color and texture, where regional patterns or textures do not exhibit abnormalities. Various researchers have conducted studies on this dataset for feature extraction by applying statistical and filter-based approaches, including CNNs. Existing studies have proven that feature-extraction techniques using Weibull features [33], scale-invariant feature transforms (SIFT), artificial neural networks (ANNs) [34], statistical features [35], and CNNs [24,36] are sufficient for detecting defects. We conducted comparative studies based on the existing research.




3.3. Training Details


The DAGM dataset has six classes, and each class has defect and nondefect images. Therefore, PE-ResNeXt has 12 output classes (defect and nondefect for each of the 6 classes). DF-ResNeXt has eight output classes. The mainframe classifies six classes, and the subframe classifies only the defect or nondefect classes. We selected 70% and 30% of the dataset for training and validation datasets, respectively. Therefore, the numbers of images for training and validation were 700/106 (nondefect/defect images) and 300/44, respectively. To reduce model computation and cost while increasing the number of training images, the training image was cropped to a pixel size of   128 × 128  . Therefore, we augmented the number of images from 700/106 to 11,200/1696 (nondefect/defect images). The defect image was automatically cropped using the label image (see Figure 5). The pixel value of the label image was only 0 or 255. A pixel value of 255 indicates the defect boundary. The training image and the label image were cropped simultaneously, and the defective part was automatically labeled with a value of 255. To prevent overfitting, the cropped images were augmented by flapping, rotating, and scaling with a 70% probability. The number of images was increased for the training purpose to 34,300/18,656 (nondefect/defect images) for each class. Training images were resized to   224 × 224   for the input of PE-ResNeXt and the mainframe of DF-ResNeXt. For the subframe of DF-ResNeXt, we downsized the training images to   28 × 28  .



The cross-entropy function was used as a loss function. The activation functions of FKL and DKL were rectified linear units. The optimizer was a stochastic gradient descent with a learning rate of 0.01, momentum of 0.5, batch size for learning of 384, and 10 epochs. We conducted transfer learning for fine tuning the pretrained ResNeXt 50 and 101 models implemented by PyTorch. Therefore, our model is quick and easy to train and test. Deformable ConvNet V2 was implemented by modifying the MMdetection [37] and pytorch-deform-conv-v2 [38]. The training environment employed two GPUs (NVIDIA TITAN RTX) for parallel computing.




3.4. Experimental Results


The PE-ResNeXt model was validated using the DAGM dataset. Table 3 lists the experimental results of comparing the basic ResNeXt-50     32 × 4 d    , ResNeXt-101     32 × 8 d    , Deformable ConvNet V2, and our proposed PE-ResNeXt models. As listed in Table 3, the highest accuracy is 99.97% for the PE-ResNeXt-101     32 × 8 d     model.



Table 4 presents the experimental results of the DF-ResNeXt model. Output class 6 is the classification-test result for the background texture of each class, and class 2 is the experimental result of classifying defects and nondefects. Output class 6/2 is the experimental result of a test that simultaneously detects six classes and two defects. The highest accuracy achieved is 100% with DF-ResNeXt-101     32 × 8 d    . As listed in Table 3, ResNeXt has better classification accuracy than Deformable ConvNet V2. According to Table 4, Deformable ConvNet V2 exhibits better performance than ResNeXt when experiments are conducted for each class and defect. In particular, in defect classification, Deformable ConvNet V2 performs much better than ResNeXt. Therefore, we assume that the deformable kernel performs better than the fixed kernel for the distinction between texture and pattern.



Figure 6 presents the training, validation loss, and accuracy of the proposed model. The results show a decrease in training, validation loss, and an increase in accuracy of the DF-ResNeXt-101     32 × 8 d     and PE-ResNeXt-101     32 × 8 d    . The DF-ResNeXt-101     32 × 8 d     performed low training and validation loss from the first epoch and obtained the first highest accuracy at five epochs. A bit of overfitting occurred at six epochs, but validation loss was decreased from seven epochs. The computation time was 9718 s (2 h, 41 min, and 58 s). The PE-ResNeXt-101     32 × 8 d     exhibited higher training and validation loss values than the DF-ResNeXt-101     32 × 8 d    . No overfitting or underfitting occurred. The accuracy gradually increased, but the maximum accuracy did not exceed 99.97% even more epochs were added. The computation time was 9519 s (2 h, 38 min, and 39 s). The computation time of the DF-ResNeXt 101     32 × 8 d     was longer than the PE-ResNeXt-101     32 × 8 d    , about 2%, but the accuracy of the DF-ResNeXt 101     32 × 8 d     was 0.03% higher.



Table 5 provides a comparative summary of the true positive rate (TPR), true negative rate (TNR), and accuracy between the proposed models and models from previous studies. The PE-ResNeXt and DF-ResNeXt models proposed in this study have 12 and 8 final output nodes, respectively, and their structural characteristics are different. PE-ResNeXt, which has 12 output classes, has a 99.9% accuracy. This is 0.7% higher than the 99.2% value of DCNN [36] and 0.1% higher than that of FR-CNN [24]. DF-ResNeXt performed 0.2% better than FR-CNN. The PE-ResNeXt model, proposed by Weimer et al. [36], is an advanced DCNN model with 12 output nodes. DF-ResNeXt is an advanced twofold CNN model proposed by Wang et al. [24]. A conclusion can be drawn that both proposed models are able to effectively classify images by applying a basic CNN. In this study, we build a more effective model and maintain better classification performance while maintaining the structural characteristics of DCNN and FR-CNN.





4. Case Study


In this section, we present a case study that performs defect inspection with the proposed model using real injection-molded products. The target product presented in Figure 7 is a signal switch used for the electronic equipment operation inside a vehicle. Because the target product is a product that is directly related to the driver’s safety, it has to be thoroughly tested. The target product is partially blinded due to the security issue and request from the supplier.



The manufacturing process consists of magnetic core insertion, injection molding, and core cutting. Surface defects such as flash, sink marks, flow lines, and black spots and shape defects such as short shots and uncut cores occur in this process. The target defects presented in Figure 8 are the black spots, short shots, and uncut defects that occur most frequently. Several types of defects may occur in one product. Another problem is the difficulty in arranging products to acquire product images for automated inspection. Two products are produced in one mold, and the cycle time is within 3 s. A worker must immediately insert the magnetic core inside the mold after the product is ejected. It is challenging to acquire images of equal scale and quality because multiple products are simultaneously ejected from a mold. We assume that, when the product is ejected, the alignment of the product is not constant. Therefore, it is necessary to focus on detecting defects that may occur in all parts and sides of the product.



Five classes are defined for the target product according to the appearance of the product: the front, back, side, head, and tail (Figure 7). The three most common defects are selected (black spots, short shots, and uncut defects) in the target product, as shown in Figure 8. Images included 656 black spots, 224 short shots, 64 uncut defects, and 560 nondefect images. We assigned 1304 images for training and 200 images for validation with 50 defect images and 50 nondefect images. The number of training images was increased to 20,864 via image cropping and augmentation. The models applied for the experiment were PE-ResNeXt-101     32 × 8 d     and DF-ResNeXt-101     32 × 8 d     models, each with 20 and 9 output classes, respectively. Table 6 lists 20 output classes of PE-ResNeXt. FB in Table 6, for example, indicates a black spot on the front of the part, BB indicates a black spot on the back of the part, and so on. DK-ResNeXt has nine output classes, as shown in Figure 9b, including five outputs of the mainframe (e.g., front, back, side, head, and tail) and four outputs of the subframe (e.g., black spot, short shot, cutting, and nondefect). Figure 9 shows schematic network models of PE-ResNeXt and DF-ResNeXt.



The experiment was performed 10 times, and the average TPR, TNR, and accuracy are presented in Table 7. We compared the proposed models (PE-ResNeXt-101    32 × 8 d     and DF-ResNeXt-101      32 × 8 d    ) with ResNeXt-101     32 × 8 d     and Deformable ConvNet V2. DF-ResNeXt-101     32 × 8 d     exhibited the highest classification accuracy of 98.5%, while PE-ResNeXt-101     32 × 8 d     had an accuracy of 97.8%. All four models tend to have a slightly higher TNR than TPR, which means that the sensitivity of the model is slightly lower than the specificity.



Figure 10 shows the average accuracy and standard deviation of each model. The model with the highest variability was PE-ResNeXt-101     32 × 8 d    . The standard deviation was 0.7898, which was significantly higher than other models. The model with the smallest variability was DF-ResNet-101     32 × 8 d    . The standard deviation was the lowest at 0.3444, but there was no significant difference with ResNeXt-101     32 × 8 d     and Deformable ConvNet V2. The standard deviations of ResNeXt-101     32 × 8 d     and Deformable ConvNet V2 are 0.4115 and 0.5332, respectively.



The most frequent error in this case study was to classify black spots as short shots. The black spots used in the experiment can be defined as a normal spot, smeared spots, and crack spot, as shown in Figure 11. Normal spots were classified with excellent accuracy in most experiment cases, but smeared spots and crack spots were occasionally classified as short shots. In particular, a case in which crack spots were classified as short shots occurred in the DK-ResNeXt-101     32 × 8 d     experiment. We assumed that cropping and feeding of the DK-ResNeXt-101     32 × 8 d     could be a drawback that causes misclassification of the black spot and short shot (see Figure 12). Further research should identify and analyze this drawback that may arise from the interactions of the multimodal.



Even though one of our models proposed in this study (i.e., DF-ResNeXt-101     32 × 8 d    ) gave the highest classification accuracy compared to other models, it is not enough to apply the model to the real production process immediately. The DAGM dataset has clearly independent background textures and types of defects for each class. Defects in real injection-molded products, however, may occur on all sides of the product. PE-ResNeXt occasionally does not classify accurate locations (front, back, side, head, or tail) of defects and only identifies the type of defects. Therefore, the classification performance of the model using real product data is slightly lower than that using DAGM data. The methodology proposed in this study, however, has the potential to be improved via a detailed analysis of defect types and locations or strategies of data acquisition. For example, the DF-ResNeXt-101     32 × 8 d     model is very robust for the product location classification, but an error occurred in distinguishing crack spots and short shots. The proposed methodology consists of two models that train only image data. In order to deal with actual defects, however, a novel network model can be proposed, which train multimodal data (e.g., mixing data of images, discrete and continuous data, etc.). The proposed model has the flexibility to integrate various characteristics of networks such as autoencoder, recurrent learning network, resign proposal network, and generative adversarial network. We assume that the product weight is a significant parameter for understanding process stability and product defects. Besides, we expect to extract not only product defects but also process anomalies through a different multimodal approach by simultaneously acquiring defect images, product weight, and machining noise generated during the injection molding process.




5. Conclusions


In this study, two classification models are proposed using fixed and deformable kernels simultaneously. A product that simultaneously has defects on its surface and a defective shape can be detected effectively by referring to appearance defects, such as foreign matter, color variations on the surface of perfect products, defects in geometrical shape, and defects in which both characteristics occur. The practical designs of the deformable kernel—which has been proven to extract geometrical features effectively—and the fixed kernel are expected to effectively extract both surface and shape defects. The proposed model is robust to rotational or positional changes of the product. As demonstrated in the scaled MINIST dataset [10], a model using a serially designed fixed kernel and deformable kernels is robust to the positional change and distortion of the target characteristics. PE-ResNeXt, the model proposed in this study, applies ResNeXt as a backbone, which is known as a simple structure, and includes three deformable kernel layers at the end of the network to combine classification results. The majority voting method is applied to improve classification accuracy. DF-ResNeXt uses a multimodal network method to classify classes and defects using subframes composed of deformable kernel layers with cropped input images. The proposed model has a deformable kernel layer modified from the fixed kernel layer to compensate for the weakness of the existing CNN, and it combines the classification results. The image cropping and feeding method achieve high detection accuracy with a small network and low complexity. In addition, the proposed model exhibits better performance than the deep CNN model by changing the detailed design of the network. The proposed model is demonstrated and proven to be comparable to the models from existing studies using the DAGM dataset. In the test with DAGM data, the classification accuracies of the PE-ResNeXt and DF-ResNeXt models were 99.9% and 100%, respectively. The proposed models with the same output numbers are superior to FR-CNN with output class 6/2 and DCNN with output class 12. The case study demonstrates that the proposed model is valid for products with defects on the surface or in shape. This research conducts comparative research with previous excellent studies. This study contributes to applying and analyzing models verified with existing open-source datasets to actual products. In addition, this paper suggests one of the solutions to the problem that occurs in real cases. The proposed model also has the advantage of easy modification by adapting pretrained networks. However, the classification accuracy needs to be improved for the model to be applied in actual industrial processes. As opposed to actual product data which have variations, there is a lack of variation in the experimental data, and model verification and accuracy improvement with more experiments need to be performed in future studies. Furthermore, we will conduct further research on process anomaly detection by integrating the proposed model, noise recognition of a machining process using LSTM, and operator and part recognition based on R-CNN.
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Figure 1. Primary defects of injection molded products. 
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Figure 2. Schematic of the PE-ResNeXt architecture. 
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Figure 3. Schematic of the DF-ResNeXt architecture. 
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Figure 4. Image samples of six classes from the DAGM dataset. 
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Figure 5. Example of defect image cropping. 
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Figure 6. Training, validation loss, and accuracy (%). 
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Figure 7. Five classes depending on the product surface. 
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Figure 8. Target defects. 
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Figure 9. DK-ResNeXt used for the case study. 
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Figure 10. Mean accuracy with standard deviation error bar. 
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Figure 11. Three types of black spots. 
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Figure 12. Examples of cropped images. 
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Table 1. Detailed structure of PE-ResNeXt.
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Stage

	
Output

	
PE-ResNeXt-50 (32 × 4d)

	
PE-ResNeXt-101 (32 × 8d)






	
FKL1

	
   112 × 112   

	
7 × 7, 64, stride 2




	
FKL2

	
   56 × 56   

	
3 × 3 max pool, stride 2




	
         1 × 1 ,   128       3 × 3 ,   128       1 × 1 ,   256         , = 32       × 3   

	
         1 × 1 ,   128       3 × 3 ,   128       1 × 1 ,   256         , C = 32       × 3   




	
FKL3

	
   28 × 28   

	
         1 × 1 ,   256       3 × 3 ,   256       1 × 1 ,   256         , C = 32       × 4   

	
         1 × 1 ,   256       3 × 3 ,   256       1 × 1 ,   256         , C = 32       × 4   




	
DKL3




	
FKL4

	
   14 × 14   

	
         1 × 1 ,   512       3 × 3 ,   512       1 × 1 ,   1024         , C = 32       × 6   

	
         1 × 1 ,   512       3 × 3 ,   512       1 × 1 ,   1024         , C = 32       × 23   




	
DKL4




	
FKL5

	
   7 × 7   

	
         1 × 1 ,   1024       3 × 3 ,   1024       1 × 1 ,   1024         , C = 32       × 3   

	
         1 × 1 ,   1024       3 × 3 ,   1024       1 × 1 ,   1024         , C = 32       × 3   




	
DKL5




	
FCL

	
   1 × 1   

	
Global average pooling,

1000-d, softmax

	
Global average pooling,

1000-d, softmax
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Table 2. Detailed structure of the subframe of DF-ResNeXt.
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Stage

	
Output

	
    DF - ResNeXt - 50   ( 32 × 4  d  )    

	
    DF -   ResNeXt - 101   ( 32 × 8  d  )    






	
FKL1

	
   28 × 28   

	
  3 × 3  , 32, stride 1, padding 1

	
  3 × 3  , 32, stride 1, padding 1




	
FKL2

	
   14 × 14   

	
         1 × 1 ,   32       3 × 3 ,   32       1 × 1 ,   64         , C = 32       × 6   

	
         1 × 1 ,   32       3 × 3 ,   32       1 × 1 ,   64         , C = 32       × 4   




	
  2 × 2   max pool, stride 2

	
  2 × 2   max pool, stride 2




	
DKL1

	
   14 × 14   

	
         1 × 1 ,   64       3 × 3 ,   128       1 × 1 ,   128         , C = 32       × 6   

	
         1 × 1 ,   64       3 × 3 ,   128       1 × 1 ,   128         , C = 32       × 23   




	
DKL2

	
   7 × 7   

	
         1 × 1 ,   128       3 × 3 ,   128       1 × 1 ,   256         , C = 32       × 3   

	
         1 × 1 ,   128       3 × 3 ,   128       1 × 1 ,   256         , C = 32       × 3   




	
FCL

	
   1 × 1   

	
Global average pooling, 256-d, softmax

	
Global average pooling, 256-d, softmax
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Table 3. Experimental results for PE-ResNeXt.
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	Model
	Accuracy (%)





	ResNeXt-50      32 × 4 d    
	98.79



	ResNeXt-101     32 × 8 d    
	99.42



	Deformable ConvNet V2
	97.94



	PE-ResNeXt-50     32 × 4 d    
	98.83



	PE-ResNeXt-101     32 × 8 d    
	99.97
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Table 4. Experimental results for the DF-ResNeXt.
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Output Classes

	
Model

	
Accuracy (%)






	
6

	
Mainframe [ResNeXt-50     32 × 4 d    ]

	
99.42




	
Mainframe [ResNeXt-101     32 × 8 d    ]

	
100




	
Subframe [Deformable ConvNet V2]

	
100




	
2

	
Mainframe [ResNeXt-50     32 × 4 d    ]

	
93.62




	
Mainframe [ResNeXt-101     32 × 8 d    ]

	
93.62




	
Subframe [Deformable ConvNet V2]

	
100




	
6/2

	
DF-ResNeXt-50     32 × 4 d    

	
96.14




	
DF-ResNeXt-101     32 × 8 d    

	
100
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Table 5. Comparison of accuracy (%) of the proposed and previous models.
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	Classes
	ResNeXt-

101     32 × 8 d    

(6/2 Classes)
	PE-ResNeXt-101     32 × 8 d    

(12 Classes)
	FR-CNN [24]

(6/2 Classes)
	DCNN [36]

(12 Classes)
	SIFT/ANN [22]

(12 Classes)





	TPR
	
	
	
	
	



	1
	100
	100
	100
	100
	98.9



	2
	100
	100
	100
	100
	95.7



	3
	100
	100
	100
	95.5
	98.5



	4
	100
	99.3
	100
	100
	-



	5
	100
	100
	99.7
	98.8
	98.2



	6
	100
	100
	100
	100
	99.8



	TNR
	
	
	
	
	



	1
	100
	100
	100
	100
	100



	2
	100
	100
	100
	97.3
	91.3



	3
	100
	100
	100
	100
	100



	4
	100
	100
	93.2
	98.7
	-



	5
	100
	99.9
	100
	100
	100



	6
	100
	100
	100
	99.5
	100



	Average accuracy
	100
	99.9
	99.8
	99.2
	98.2
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Table 6. Output classes of PE-ResNeXt.
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	Criteria
	Front
	Back
	Side
	Head
	Tail





	Black spot
	FB
	BB
	SB
	HB
	TB



	Short shot
	FS
	BS
	SS
	HS
	TS



	Cutting
	FC
	BC
	SC
	HC
	TC



	Nondefect
	FN
	BN
	SN
	HN
	TN
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Table 7. Experimental results for the case study.
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	Criteria (%)
	DF-ResNeXt-

101     32 × 8 d    
	PE-ResNeXt-101     32 × 8 d    
	ResNeXt-101     32 × 8 d    
	Deformable ConvNet V2





	TPR
	97.4
	96.6
	92.3
	85.3



	TNR
	100
	99.0
	95.0
	93.6



	Accuracy
	98.5
	97.8
	94.6
	91.2
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