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Abstract: The cavitation states among centrifugal pumps can be mirrored by corresponding vibration
features. To select the vibration feature target scientifically and objectively for monitor the cavitation
states in real time, the analysis method of grey slope correlation with weight entropy was proposed
in this paper to explore the relevance between cavitation and vibration features. Thus, the net
positive suction head (NPSH) and vibration signal from centrifugal pumps under multiple operation
conditions were captured. Moreover, the universal feature targets were extracted from the vibration
signal. The grey slope correlation method was applied in the analysis of the positive and negative
relevance between NPSH and the multiple operation conditions in a different stage. These feature
targets are transformed into the same numerical scale by standardization process. In the end,
the final comprehensive coefficient can be attached after endowing power by weight entropy method.
These methods can be used to determine the feature targets which have intensive relevance with
NPSH. The analysis results indicate that the kurtosis factor, variance, absolute mean, and root mean
square obtained from the vibration acceleration signal have stable relevance with NPSH. These feature
targets can be used for the proper detection and evaluation of cavitation states in centrifugal pumps.
Therefore, the analysis method of grey slope correlation with weight entropy can be used to pre-select
the feature targets based on the calculated grey incidence. This method is effective in establishing the
relevance between NPSH and vibration.

Keywords: centrifugal pumps; cavitation; vibration; grey slope correlation; weight entropy;
selection strategy

1. Introduction

Real-time monitoring based on centrifugal pumps [1] has become a trending research point
in the hydraulic machine as a result of development in artificial intelligence and communication
technology. Nowadays, the acceleration signal can be received by vibration transducer and processed by
corresponding algorithm, such as wavelet packet transform (WPT) and empirical mode decomposition
(EMD) [2]. The acquired data from hydraulic machine [3,4] can be used to identify pump working
states and give a valid disposal scheme based on intelligence diagnosis [5]. These can considerably
reduce contingency occurrence probability and prolong the pump life cycle. However, in the real
experiments, an error could be found due to poor incidence such as background noise and vibration,
flow rate setting error, the influence of reflecting surfaces around the instrument, even the distance
between the pump and the instrument [6]. Meanwhile, it is important to ensure that the applied
data are robust enough to give an accurate result and reduce the misjudgment ratio induced by the
diagnostic algorithm. In the present study, the selection of feature parameters extracted from the
acceleration signal is a random and tedious process for some scholars which usually leads to ideal
output. Considering the relevance between the independent variable and dependent variable as a
most fundamental task, ensuring the significant degree and priority among the feature targets before
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the running of analysis code enable the scholar to pay more attention in digging valuable results from
vast amount of data.

Currently available results indicated that the suction pressure difference might change the pump
vibration states [7–9], although this sort of vibration feature has a different appearance in different
working flow rates [10–16]. However, cavitation can be defined as the rupture of a liquid due to a
pressure drop [17]. It can be identified by vibration feature due to bubble burst. In these cited works of
signal process, the feature target is a key element which should be considered and determined. Thus,
root mean square (RMS) might be the most popular and universal parameter since it can be extracted
from a historical vibration signal and reflect the cavitation occurrence. For instance, Dong et al. [18]
and Zhang et al. [19] selected the concept of energy developed from the RMS to establish the potential
variation caused by suction pressure and working flow rates. Similarly, to acquire the situations
in different net positive suction head (NPSH), the RMS of acceleration in different monitor points
displaced on the pump was captured to mirror the cavitation states [20]. Moreover, the parameters like
the mean, variance, standard deviation, skewness, kurtosis, and crest factor were also used to carry
out this kind of work [21]. In the literature [22], empirical mode decomposition (EMD) method with
these parameters was used to decompose original signals into a number of intrinsic mode functions
(IMFs). In the process of diagnosing the flow instabilities [23], the most troubling and confusion things
were that different feature target selection might disturb the evaluation while the pump is working in
the cavitation or air injection mode. The result points out the fact that the feature target might have
different sensitivity under various circumstances.

As mentioned in the first part, all the feature target selections were based on perceptual cognizance
and personal experience. The details of strict mathematical explanation about why these targets can be
used to evaluate the vibration manner were not adequately captured in the literature. It is against this
backdrop that this research was conceived to find a reliable way to execute a robust and reliable relation
between variables which would give an absolute fact instead of ambiguous justification identified by
Al-Obaidi [24]. On the condition of the small sample, variety and complexity of uncertain factors,
multivariate analysis cannot be directly applied. Grey relation analysis, a branch of grey system theory,
as an effective method to evaluate the relevance between variants, has exhibited its charming and
universality in the multifarious discipline. For instance, in the automatic driving [25], the parameters
which affect safe driving can be extracted and analyzed. In the iron austempering [26], it can be used
to establish the relationship between temperature and machinability performance. In the architectural
planning [27], it can be used to evaluate and ensure the substation site selection.

Above all, the grey relation method would be applied in the pump field to determine what
targets derived from the initial vibration signal have an intensity relation with the NPSH. Moreover,
the information entropy method would be used in the research to sort out the relevant parameters for
its importance degree.

2. Grey Relation Entropy Analysis Method

2.1. Grey Slope Correlation Method

Although the traditional Deng’s relation computation has perfectly solved issues like small
samples and poor information, some limited applied conditions are worthy of discussion in this
algorithm. Existing literature [28,29] about pump parameter assumption established the use of positive
correlation between variables. Meanwhile, there is a potential risk that a negative correlation may
exist between NPSH and vibration feature. This situation makes it difficult to completely rely on the
traditional method to draw a conclusion since it could result in fatal errors. As a result, the improved
algorithm and grey slope correlation can be more appropriate in solving these problems. In the
improved algorithm method, the slope is used to establish the relevance of the relationship between
the numerical interval of −1 and 1. While the absolute slope value is closer to one, the extracted feature
is more sensitive to NPSH. On the contrary, the insensitivity between two variables due to the positive
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and negative sign convention is a reflection of its positive or negative characteristic. Hence, a new
method needs to be established that can account for both positive and negative characteristics between
cavitation and vibration. Thus, to evaluate the feature target, the acquired data need to be validated
and transformed into a unified standard. The above process is an essential part in the assessment
process which enables the application of the weight entropy method in order to solve the problem.

2.2. Weight Entropy Method

Weight entropy is an objective weighting method. This concept was originally introduced into
information theory from thermodynamics by Shannon [30]. For this method, if the feature values of
the research target have a tremendous difference on some index, the entropy is small which indicates
that this index can provide massive valid information and the weight should be vast. On the contrary,
if the feature values of research target have a small difference on some index, the entropy is large which
indicates that this index can provide a tiny amount of effective information and the weight should
be small.

2.3. Calculation Process

The concrete steps of grey slope correlation with weight entropy methods are listed as follows.
Step 1: Define reference sequence (RS) and comparative sequence (CS)
Suppose N =

{
N(P1), N(P2), N(P3), · · · , N(Pn)

}
as the reference sequence, which indicates the sequence

of tabulated data of NPSH, where Pn represents the real-time pressure on nth times. Vibration features are
taken as the comparative sequence, that is Vi =

{
Vi(P1) , Vi(P2) , Vi(P3) , · · · , Vi(Pn)

}
, i = 1 , 2 , · · · , k,

which denotes the comparative sequence.
Step 2: Make sequence be dimensionless
Due to the values’ physical scale difference, the maximum value treatment can be used to normalize

the data. This mathematical process can enable us to obtain more accurate results in the grey correlation
analysis. The preprocessing can express as:

max
Pn =

Pn

max{Pn}
, n = 1 , 2 , 3 , · · · , m (1)

X(
max
Pn ) =

N(Pn)

max
{
N(Pn)

} , n = 1 , 2 , 3 , · · · , m (2)

Yi(
max
Pn ) =

Vi(Pn)

max
n

{
Vi(Pn)

} , n = 1 , 2 , 3 , · · · , m (3)

Step 3: Calculate the coefficient of grey slope correlation
For the unequal interval sequence, define the grey slope correlation coefficient as

ξi(
max
Pn ) = sgn(∆X(

max
Pn ), ∆Yi(

max
Pn )) ·Θ (4)

where,

sgn(∆X(
max
Pn ), ∆Yi(

max
Pn )) =

 1 , ∆X(
max
Pn )∆Yi(

max
Pn ) ≥ 0

−1 , ∆X(
max
Pn )∆Yi(

max
Pn ) < 0

(5)

Θ =

1 +

∣∣∣∣∣∣ 1
X

∆X(
max
Pn )

∆
max
Pn

∣∣∣∣∣∣
1 +

∣∣∣∣∣∣ 1
X
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max
Pn )

∆
max
Pn

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1
X

∆X(
max
Pn )

∆
max
Pn

−
1
Yi

∆Yi(
max
Pn )

∆
max
Pn

∣∣∣∣∣∣
(6)
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∆X(

max
Pn ) = X(

max
Pn ) −X(

max
Pn−1)

∆Yi(
max
Pn ) = ∆Yi(

max
Pn ) − ∆Yi(

max
Pn−1) , n ≥ 2

∆
max
Pn =

max
Pn −

max
Pn−1

(7)

Yi =
1
m

m∑
n=1

Yi(
max
Pn ) (8)

X =
1
m

m∑
n=1

X(
max
Pn ) (9)

Step 4: Standardize the target matrix ξi(
max
Pn )

As the uncertainty of positive and negative value exist in ξi(
max
Pn ), therefore, the transmitting to

the same sign is necessary for this paper.

Define, Rin = (ξi(
max
Pn ))i×n

If the sequence belongs to the larger-the-better type-like positive value, the comparable sequence
(CS) is calculated as

R∗
in
=

Rin −min{Rin}
n

max{Rin}
n

−min{Rin}
n

(10)

If the sequence belongs to the smaller-the-better type like negative value, the comparable sequence
(CS) is expressed as

R∗
in
=

max{Rin} −Rin
n

max{Rin}
n

−min{Rin}
n

(11)

where R∗
in
∈ [0 , 1]

Step 5: Calculate grey slope correlation entropy
Define the entropy of the nth to be:

Hn = −
1

ln m

m∑
n=1

fin ln fin (12)

where, fin =
R∗in

m∑
n=1

R∗in

, while R∗in = 0, let R∗in ln R∗in = 0

Then, the nth entropy coefficient is:

ωn =
1−Hn

m∑
n=1

1−Hn

(13)

Step 6: Calculate final comprehensive coefficient
From the weight entropy, the final coefficient can be expressed as

ξ∗i =
m∑

n=1

ω(n)R∗
in
(n) (14)

Accordingly, the ranking rule of the grey slope correlation sequence is obtained. The higher the
entropy correlation degree of the comparison column and the reference column is, the greater the
influence on the reference column will be.
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3. Signal Capture and Pretreatment

In order to verify the scientific feasibility of the proposed method as described earlier in
Sections 2.1 and 2.2, a handle process was adopted as shown in Figure 1. The experiments were
conducted in multiple suction pressure under three flow rate points. The vibration features were
extracted from its vibration acceleration signal.
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Figure 1. Flow chart of process.

3.1. Test Rig

The experiments were carried out on a closed test rig located within Jiangsu University as
presented in Figure 2. In the cyclic process, the fluid from the tank enters into the pump through
the soft pipe by the rotational effect of the impeller. The impeller transfers the fluid back to the tank
through the elbow sections, electromagnetic flowmeter (for monitor flow rate) and magnetic valve
(for adjust flow rate).
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Figure 2. Test rig.

Table 1 shows the important geometric and operational parameters of the prototype pump
under investigation.

Table 1. Main parameters of the prototype pump.

Name Symbol Value

Designed flow rate Qd 50 m3/h
Designed head Hd 37 m

Rated rotational speed n 3000 r/min
Impeller inlet diameter D1 74 mm

Impeller outlet diameter D2 174 mm
Impeller outlet width b2 12 mm

Blades Z 6
Volute diameter D3 184 mm

Rated Power p 5 kW

3.2. Experiment Instrument

In this experiment, vibration acceleration and suction pressure data were monitored and recorded
in detail. The vertical vibration acceleration signals of suction pipe ektexine were monitored using
a computer and these signals were saved under different operating conditions of pressure. Figure 3
shows the monitor location on the tested pump.

The sensor used in this experiment is a high frequency sensor (PCB 352A60 series) with a
sensitivity value of 10 mv/g and the frequency response range of ±500 g/Hz. A pressure transmitter
(WIKA S-10) with ±0.2% accuracy in full scale was used to record the pressure difference. In order
to capture the relative signals accurately, the sampling frequency and time used were 16,000 Hz and
1 s respectively [22]. For further details about the experimental method, please refer to the author’s
previous work [31–33].
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3.3. Experiment Method

In this experiment, the pressure and vibration must be recorded simultaneously. At the given flow
rate, multiple data, captured by the suction pressure, were used to study the vibration with pressure
variation at a constant rotation speed of 3000 rpm. Firstly, the deflation valve was fully open and the
ball valve was closed. After measuring the data under this condition, the deflation valve was closed
and the ball valve and vacuum pump were opened gradually in order to reduce the pressure at the
suction side of the pump until cavitation occurred. After the emergence of cavitation, the vacuum
pump and ball valve were opened and observed over a period of time until there was a drop in pressure
at the inlet of the pump. At this point, the data acquisition process was put on hold until the vacuum
pump cannot take away any atmosphere from the tank or the test rig cannot provide the foreseeable
dangers. The same steps would be repeated in the flow rate of 40 m3/h and 60 m3/h to guarantee the
robust of algorithm.

3.4. Data Pretreatment

Transforming the suction pressure into NPSH and the vibration acceleration signal would
convert into fifteen (15) types of feature target which contain the maximum, minimum, mean, peak,
absolute mean, variance, standard deviation, kurtosis, skewness, root mean square, shape factor,
crest factor, kurtosis factor, impulse factor, and margin factor. The specific mathematical function and
steps can be found in Appendix A from the literature [24].

4. Analysis and Methodology

On the foundation of Step 1, the above data in ever flow rate point would be turned into the
reference sequence (RS) and comparative sequence (CS) as the following matrix expresses:

RS =
{
NPSHr(p1), NPSHr(p2), NPSHr(p3) · · ·NPSHr(pn−1), NPSHr(pn)

}

CS =



Maximum(p1) Maximum(p2) · · · Maximum(pn−1) Maximum(pn)

Minimum(p1) Minimum(p2) · · · Minimum(pn−1) Minimum(pn)
...

...
...

...
Impulse f actor(p1) Impulse f actor(p2) · · · Impulse f actor(pn−1) Impulse f actor(pn)

Margin(p1) Margin(p2) · · · Margin(pn−1) Margin(pn)


For the normalization processing of the data from a matrix by the maximum way according to

Step 2, the tackled data are drawn on Figure 4.
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Figure 4. Normalization value: (a) NPSH, (b) Maximum, (c) Minimum, (d) Mean, (e) Peak,
(f) Absolute mean, (g) Variance, (h) Standard deviation, (i) Kurtosis, (j) Skewness, (k) Root mean square,
(l) Shape factor, (m) Crest factor, (n) Kurtosis factor, (o) Impulse factor, (p) Margin factor.

From Figure 4, in the NPSH decreasing process, the corresponding fifteen (15) vibration feature
value in the test interval coexist in the situation of increase and decrease instead of monotonous
relations. Meanwhile, as the vacuum pump starts working, positive and negative relevance coexists
between the NPSH and fifteen (15) vibration feature. On the other hand, some values might be
abnormal since the negative values exist in the original signal and the potential unknown factors are
distributing. For instance, Figure 4d shows the mean value in 40 m3/h. However, as weight entropy
states, the rationale and credible value can be acquired based on the calculated value of grey relation
and entropy weight. In this way, the objective relation between NPSH and feature parameter can be
decided whether it is related or not. Furthermore, the relevance matrix θ can be acquired with the data
in Figure 4b–p through the Step 3 calculation, the consequence of which can be seen in Figure 5.

In Figure 5, n denotes the numbers of the calculated slope, and ζ expresses the grey slope
coefficient of the corresponding feature target in different stages. From Figure 5, the trend of all
targets except the Kurtosis factor basically considered has a positive or negative relevance with NPSH
but the grey coefficient tends to 0 in the terminal. In mathematical terms, these parameters do not
have strong relevance with NPSH in the terminal. However, from a physics perspective, this kind
of description cannot satisfy common sense. According to the definition of grey slope correlation,
using the slope in different stages reflects the relevance between the vibration feature target and NPSH.
Mirrored in Figure 5, in the cavitation stage, the slope value of the feature target and vibration has a
big difference. The physics states in the pump are changed and the corresponding physics meaning
is the minimum variation in NPSH which would cause logarithmic leaps among the feature targets.
Thus, these descriptions correspond to the fact of phase-change vibration caused by bubble burst.
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Due to the existence of positive and negative value in the feature target, the relevance of the
feature target cannot be judged directly. Therefore, transforming the negative and positive value into
the same positive interval by Step 4 as Figure 6 depicted.
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2. 50 m3/h: kurtosis factor > variance > root mean square > standard deviation > absolute mean > 
maximum > peak > skewness > minimum > margin factor > impulse factor > crest factor > kurtosis 
> mean >shape factor. 

3. 60 m3/h: kurtosis factor > kurtosis > shape factor > skewness > mean > variance > margin factor > 
impulse factor > crest factor > minimum > maximum > peak > standard deviation > root mean 
square > absolute mean. 

Figure 6. Heat map of translated value: (a) 40 m3/h, (b) 50 m3/h, (c) 60 m3/h.
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According to Step 5, the corresponding entropy weight can be attached under different pressure
stages in a corresponding flow rate. The final relevant coefficient in the corresponding flow rate can be
calculated by Step 6. The average value can be acquired by repeating Step 5 and Step 6. The calculation
results are enumerated in Table 2.

Table 2. Final comprehensive coefficient.

Target 40 50 60 Average

Maximum 0.5084 0.8431 0.5090 0.6398
Minimum 0.4455 0.5725 0.5108 0.5130

Mean 0.7145 0.3881 0.8119 0.6131
Peak 0.4465 0.8429 0.5086 0.6187

Absolute mean 0.9254 0.9343 0.4888 0.8102
Variance 0.9472 0.9541 0.5519 0.8424

Standard deviation 0.9237 0.9344 0.4899 0.8099
Kurtosis 0.4068 0.4199 0.8836 0.5416

Skewness 0.7447 0.5816 0.8498 0.7093
Root mean square 0.9238 0.9345 0.4899 0.8100

Shape factor 0.3774 0.2944 0.8706 0.4790
Crest factor 0.4453 0.4200 0.5117 0.4534

Kurtosis factor 0.6869 0.9923 0.9162 0.8690
Impulse factor 0.4463 0.4201 0.5126 0.4541
Margin factor 0.44 0.4201 0.5130 0.4543

For the above calculating consequence, the value closer to 1 means the relevance is more intense.
On the contrary, when the value is closer to 0, it depicts a weaker relevance. By ranking the feature
target in the principle of small to large, the recommended ordering of vibration feature target in
different flow rate is as follows:

1. 40 m3/h: variance > absolute mean > root mean square > standard deviation > skewness > mean
> kurtosis factor > maximum > margin factor> peak > impulse factor> minimum > crest factor >

kurtosis > shape factor.
2. 50 m3/h: kurtosis factor > variance > root mean square > standard deviation > absolute mean

> maximum > peak > skewness > minimum > margin factor > impulse factor > crest factor >

kurtosis > mean >shape factor.
3. 60 m3/h: kurtosis factor > kurtosis > shape factor > skewness > mean > variance > margin factor

> impulse factor > crest factor > minimum > maximum > peak > standard deviation > root mean
square > absolute mean.

4. Average: kurtosis factor > variance > absolute mean > root mean square > standard deviation >

skewness > maximum > peak > mean > kurtosis > minimum > shape factor > margin factor >

impulse factor > crest factor.

From the calculated results, the relevance coefficient might have diversity under different operating
conditions. However, the relevance coefficient of the kurtosis factor, variance, absolute mean and root
mean square above all along which recommend applying priority. The shape factor, margin factor,
impulse factor, and peek factor always below 0.5 means that the low sensitive with NPSH. This explains
why the summary feature targets from the literature [21,23] have good effects in detecting and
monitoring the cavitation in terms of mathematics. From the physical concept, such as the kurtosis
factor, it is a quantity indicating how sharply a probability distribution increases and decreases
around the distribution mean. As one sort of dimensionless coefficient, it has great sensitivity to
the impulse signal and is nearly independent of the rotation speed, size, and load with machine.
The numerical value uncovers the fact that this feature target has an intensity relation with NPSH
which can put the vibration signal induced by the bubble burst into the range of the impulse signal.
Thus, this feature target is especially appropriate to establish the relation between the vibration and
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cavitation. This further establishes how feasible the application of grey slope correlation and entropy
weight method is in the selection of centrifugal pump.

5. Conclusions

In this research, the vibration acceleration signal is captured under pressure and flow rate variation
and extracted fifteen (15) common feature targets from it to establish the relevance issues between
cavitation and vibration. The grey slope correlation is proposed to quantitatively evaluate the relevance
between feature the target and cavitation. The new established method has successfully solved the
problem of positive and negative relations which cannot be solved by the traditional Deng’s grey
relation. In addition, with the entropy weight method applied, the feature target can be evaluated
on the same scale. The numerical calculation shows that the kurtosis factor, variance, absolute mean,
root mean square of vibration acceleration signal has intensity relevance with NPSH. The cavitation
states of the centrifugal pump can be monitored by using these parameters. This paper provides
an objective selection strategy of a vibration feature target in evaluating the cavitation based on the
numerical value. In terms of feature target selection, the universal and specific mathematical standard
is established in the research.
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