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Abstract: The present work deals with natural and whirl frequency analysis of a porous functionally
graded (FG) rotor–bearing system using the finite element method (FEM). Stiffness, mass and
gyroscopic matrices are derived for porous and non-porous FG shafts by developing a novel
two-noded porous FG shaft element using Timoshenko beam theory (TBT), considering the effects of
translational inertia, rotatory inertia, gyroscopic moments and shear deformation. A functionally
graded shaft whose inner core is comprised of stainless steel (SS) and an outer layer made of ceramic
(ZrO2) is considered. The effects of porosity on the volume fractions and the material properties are
modelled using a porosity index. The non-linear temperature distribution (NLTD) method based on
the Fourier law of heat conduction is used for the temperature distribution in the radial direction.
The natural and whirl frequencies of the porous and non-porous FG rotor systems have been computed
for different power law indices, volume fractions of porosity and thermal gradients to investigate
the influence of porosity on fundamental frequencies. It has been found that the power law index,
volume fraction of porosity and thermal gradient have a significant influence on the natural and
whirl frequencies of the FG rotor–bearing system.

Keywords: porosity; functionally graded rotor; finite element method; non-linear temperature
distribution; power law; whirl frequency

1. Introduction

An important aspect to take into consideration for a superior structural performance is the material
strength of the system. Traditional composite materials are impotent when they are subjected to
thermo-mechanical loading, due to inter-laminar stresses which cause the de-lamination of layers.
Generally, metals are preferred because of their high strength and toughness [1]. However, at high
temperatures, the strength of the metal drastically deteriorates. On the other hand, ceramics are heat
resistant; however, their applications are restricted due to their low toughness. The development
of a new class of composites, functionally graded materials (FGMs), mitigated the problems of
de-bonding, de-lamination and residual stresses in fibre-reinforced composites at elevated temperature,
while making use of the advantages of both metal and ceramic material properties. FGM is an
inhomogeneous micromechanical composite typically made from different phases of metal and ceramic
material constituents. The volume fraction of constituent materials is arranged in the desired direction
based on material laws for smooth and continuous change from one layer to another.
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The term FGM was coined by a group of Japanese scientists in the mid-1980s. There are
numerous types of methods based on material applications to fabricate FGMs—they include plasma
spraying, chemical vapour deposition, physical vapour deposition, slurry dipping, electroplating,
sintering, combustion synthesis, centrifugal casting, tape casting, hot pressing, powder metallurgy, etc.
Suresh and Mortensen [2] and Miyamoto et al. [3] discussed some of the manufacturing processes of
functionally graded materials. The initial functionally graded materials were made for the aerospace
industry, as the highest temperature of the surface of spacecrafts is estimated to reach as high
as 2100 K; hence, the material used on the surface should withstand that high temperature [4].
Moreover, on account of wide range of applications in many other industries, such as automotive,
electronics, biomedical, marine, defence and construction, functionally graded materials have become
a topic of interest for many researchers. Most of the previous works have reported on the dynamic
characteristics of beams. Since the modelling of the FG shaft in the present work is based on Timoshenko
beam theory with rotating effects, the literature review is arranged around the dynamic analysis of FG
beams, FG rotors and then porous FG beams and rotors.

Many investigations were executed to analyse FG structures, and excellent review papers are
reported in the literature [5–7]. Liu et al. [8] developed a shell element to analyse the nonlinear response
of FG structures. Liu and Jeffers [9] performed an isogeometric analysis of FG sandwich plates based
on layer wise displacement theory. Simsek [10] investigated a static analysis of a functionally graded
simply supported beam under a uniformly distributed load by the Ritz method, using Timoshenko and
higher order shear deformation beam theories. The fundamental frequency of FG beams using classical,
first order and different higher order shear deformation theories for different boundary conditions was
analysed [11]. Aydogdu and Taskin [12] performed a free vibration analysis of simply supported FG
beams using parabolic shear deformation beam theory, classical beam theory and exponential shear
deformation beam theory. Pydah and Sabole [13] performed a static analysis of an FG bi-directional
circular beam based on Euler–Bernoulli theory. The free vibration analysis of Euler and Timoshenko
FG beams using the Rayleigh–Ritz method subjected to different boundary conditions is investigated
by Pradhan and Chakraverty [14]. Li et al. [15] developed a beam model for the accurate analysis of
FG beams based on a material-based higher-order shear theory.

Rotor–bearing systems play a crucial role in the mechanical industry, and several researchers
analysed rotor–bearing systems based on various models. Dimentberg [16] examined viscous and
hysteretic internal damping of a rotating shaft. Ruhl and Booker [17] developed a finite element model
of a turbo-rotor system by including the effects of translational kinetic energy and elastic bending energy.
Nelson and McVaugh [18] generalised the Ruhl’s element by including the effects of rotatory inertia,
gyroscopic moments and axial load. Extending this work, Nelson [19] developed a finite shaft element
using Timoshenko beam theory by including the effects of transverse shear deformation. The works
reported above are related to steel or uniform shafts. Very few works reported on the dynamic
analysis of an FG rotor–bearing system. Gayen and Roy [20], based on Timoshenko beam theory
(TBT), presented a work on the vibration and stability analysis of a functionally graded spinning shaft
using three node beam elements. Bose and Sathujoda [21] performed natural frequency analysis of a
functionally graded rotor system using a three-dimensional element, modelled in ANSYS (ANSYS 18.0,
ANSYS, Canonsburg, PA, USA). As FGMs have an extensive variety of applications, it is important to
consider the effect of temperature on FG structures and rotors. Recently, Mahi et al. [22] investigated
the temperature-dependent free vibration analysis of FG beams with general boundary conditions.
The thermo-mechanical buckling and non-vibration analysis of FG beams on a nonlinear elastic
foundation are examined [23]. Zhang [24] analysed the thermal post buckling and nonlinear vibration
behaviour of functionally graded beams based on the concept of physical neutral surfaces, von Karman
strain–displacement relationships and higher order shear deformation theory. Kiani and Eslami [25]
analysed the thermal buckling of FG beams. Very few works are reported to investigate the effect of
temperature on FG rotors. The effect of thermal gradients on the natural frequencies of functionally
graded rotor–bearing systems is investigated by Bose and Sathujoda [26]. The natural frequency
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of the FG rotor–bearing system for different temperature gradients is analysed by Gayen et al. [27].
Gayen et al. [28] also analysed the influence of temperature gradients on the whirl frequencies of a
cracked rotor.

Amid all of the fabrication techniques, sintering is one of the ways to fabricate an FGM, but due
to huge differences in the solidification temperatures of material constituents, micro voids and
porosities are formed within the inter-layers of FGM while fabricating with this technique [29].
Wattanasakulpong et al. [30] deduced that porosities are also formed when a functionally graded
material is fabricated using a multi-step sequential infiltration technique. The density and strength of
an FGM are reduced due to the presence of porosities in the structure of FGM. Since the formation
of porosities is inevitable while fabricating, the effect of porosity has become extremely prominent
for analysing an FG system. Akbas [31] explored the forced vibration analysis of FG porous deep
beams under dynamic loads. Ebrahimi and Jafari [32] investigated the vibration analysis of porous FG
beams subjected to various thermal loadings based on higher order shear deformation theory carried
out by utilising the Navier solution method. Ebrahimi and Mokhtari [33] presented a transverse
vibration analysis of rotating porous functionally graded beams using the differential transform method.
Atmane et al. [34] presented a free vibration analysis of thick, porous, functionally graded beams resting
on elastic foundations using efficient shear and normal deformation beam theory. Wattanasakulpong
and Chaikittiratana [35] investigated the flexural vibration analysis of a porous functionally graded
beam using Timoshenko beam theory. Wattanasakulpong and Ungbhakorn [36] investigated the
linear and nonlinear vibration analysis of elastically end-restrained FG beams with different porosities.
Researchers have been analysing FG rotor systems with crack defects. A vibration analysis of an FG
rotor–bearing system whose FG shaft had a transverse crack and a surface crack was performed using
finite element formulation [27,28]. Sathujoda et al. [37] investigated the natural and whirl frequencies of
a corroded FG rotor–bearing system using the finite element method (FEM). Even though a few works
on the natural frequency analysis of cracked and corroded FG rotor systems are available [27,28,37]
in the literature, to the best of the authors’ knowledge, research on the dynamic analysis of a porous
FG rotor system is rarely found. Recently, an attempt was made by Bose and Sathujoda [38] to analyse
the natural frequencies of a porous FG rotor–bearing system without thermal effects using ANSYS
three-dimensional finite elements. However, this is an approximate analysis without any thermal
effects and the model is not suitable for time dependent steady-state and transient dynamic vibration
analyses. Since FG rotors are generally subjected to elevated temperatures to make use of FG material
properties, a comprehensive and accurate study of the natural and whirl frequencies of a porous FG
rotor system using efficient modelling is required, which is addressed in the present work.

This literature review reveals that the research on the vibration analysis of porous FG rotor–bearing
systems is extremely limited. Since the porosity affects the dynamic characteristics of an FG rotor
system, it is important to analyse the dynamic properties, such as natural and whirl frequencies,
to avoid rotor failures. Our main interest in the present work is to investigate the natural and whirl
frequencies of a porous FG rotor–bearing system using a novel two-node porous FG shaft element.
Dimensionless natural frequencies and whirl frequencies are computed for different power law indices
(k) and volume fractions of porosity (α) at different temperature gradients (∆T).

2. Materials and Methods

Material modelling of a porous FG shaft is reported in this section. Detailed descriptions of the
non-linear temperature distribution (NLTD), as well as the power law gradation of nonporous and
porous FG shafts, are presented in Sections 2.1–2.3, respectively.

Material gradation is divided into three categories: continuously graded microstructure,
discretely graded microstructure and multi-phase graded microstructure [39]. Generally, in FGM,
material properties (thermal conductivity K, Young’s modulus E, density and Poisson’s ratio)
are diversified along the gradation direction. The radial direction is considered the gradation
direction in the case of circular FG shafts; as the precise details of the graded microstructure of FGM
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are obscured, the volume fraction of different phases is used for material gradation. The distribution
of metal and ceramic phases along the radial direction of the FG shaft is represented in Figure 1.
The properties of FGM must be position and temperature dependent for a precise model of the FG shaft.
The position dependency of material properties can be achieved by the Voigt model [40], which is a
simple rule for mixtures of composites. The material properties of a specific layer Pl are expressed as
in Equation (1).

Pl = PmVm + PcVc (1)

where Pm and Pc are the material properties of metal and ceramic; Vm and Vc are the volume fractions
of metal and ceramic of the respective layers. The temperature dependency of material properties
given by Touloukian [41] can be expressed as a non-linear function of temperature, as shown in
Equation (2). Although there are many other non-linear variations in the rotating systems [42,43],
the non-linear gradation of material properties and non-linear temperature distribution are considered
in the present work.

P(T) = P0
(
P−1T−1 + 1 + P1T + P2T2 + P3T3

)
(2)

where T is temperature in Kelvin, and P−1, P0, P1, P2 and P3 are coefficients of temperature that are
different for different material constituents. Reddy and Chin [44] listed these coefficients and they are
represented in Table 1.

Figure 1. Distribution of metal and ceramic phases along the radial direction of a functionally graded
(FG) shaft.

Table 1. Thermal coefficients of the constituent materials of functionally graded materials (FGMs).

Material Properties P0 P−1 P1 P2 P3

Steel
E 201.04 × 109 0 3.08 × 10−4

−6.534 × 10−7 0
K 15.379 0 −1.26 × 10−3 2.09 × 10−6

−3.7 × 10−10

v 0.326 0 −2 × 10−4 3.797 × 10−7 0

ZrO2

E 244.27 × 109 0 −1.37 × 10−3 1.21 × 10−6
−3.7 × 10−10

K 1.7 0 1.276 × 10−4 6.648 × 10−8 0
v 0.2882 0 1.133 × 10−4 0 0

Si3N4

E 348.4 × 109 0 −3.07 × 10−4 2.160 × 10−7
−8.9 × 10−11

K 0 9.095 × 10−4 0 0
v 0.24 0 0 0 0

SUS304
E 201.04 × 109 0 3.07 × 10−3

−6.534 × 10−7 0
K 0 1.276 × 10−4 0 0
v 0.3262 0 −2 × 10−4 3.797 × 10−7 0
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2.1. Non-Linear Temperature Distribution (NLTD)

It is presumed that the temperature is varied only along the radial direction of the shaft.
The temperature variation in a hollow cylinder at any radial distance r is given by a 1-D Fourier
heat conduction equation, as shown in Equation (3). Tm and Tc are inner and outer temperatures of
a cylinder, while Ri and Ro are the innermost and outermost radii of the cylinder, respectively, K is
thermal conductivity at radius r.

d
dr

[
rK

dT
dr

]
= 0 (3)

Considering that there is no heat generation and, for boundary conditions,
T = Tm when r = Ri and T = Tc when r = Ro gives the non-linear temperature distribution
T(r), Equation (4) is the solution of Equation (3). Only the first seven terms of a polynomial series are
considered as the solution [45]. Kcm = Kc − Km and Ri ≤ r ≤ Ro

T(r) = Tm + (Tc − Tm)

[∑5
j=0

{
(−1) j

jk+1

(
Kcm
Km

) j( r−Ri
Ro−Ri

) jk+1
}]

[∑5
j=0

{
(−1) j

jk+1

(
Kcm
Km

) j
}] (4)

2.2. Power Law Gradation of Non-Porous FG Shaft

There are various gradation laws such as the power law, sigmoidal law and exponential law
for material gradation. Amongst these gradation laws, the power law is the most widely used and
is the simplest for controlling the gradation of material properties. As FGM is especially made for
high-temperature conditions, it is considered that material properties vary nonlinearly with temperature
(T). Thus, NLTD is always used alongside the power law. For an FG shaft with a circular cross-section,
the power law is expressed as in Equation (5) [28].

P(r, T) = Pm + (Pc − Pm)

[
r−Ri

Ro −Ri

]k

(5)

where P(r,T) represents the varying material properties along with the radius. Ri and Ro represent the
inner and outer radius of the shaft, r is the radial coordinate of the shaft and k is the power law index.
The value of k can range from 0 to∞.

2.3. Material Gradation of Porous FG Shaft

The porosity of an FG system can be classified into even porosity and uneven porosity. The even
distribution of the porosities is represented in Figure 2. The distribution of porosity in an FG rectangular
beam is available in the literature [36]; however, in the present work, porosities are distributed in
FG circular shafts. An FG shaft whose inner core is comprised of stainless steel (SS) and an outer
layer made of ceramic (ZrO2) is considered to have porosities that are evenly distributed within the
cross-section of the shaft. Typically, these porosities are formed in the shaft during the process of
fabrication. Due to these porosities, the material properties of layer Pl are modified as shown in
Equation (6).

Pl = Pm

(
Vm −

α
2

)
+ Pc

(
Vc −

α
2

)
(6)

where α (� 1) is the porosity volume fraction for the porous FG shafts and α = 0 for the FG shaft
without porosity. Here, in Equation (6), Pm, Pc and Vm, Vc represent material properties and volume
fraction of metal and ceramic. The sum of the volume fractions of metal and ceramic is shown in
Equation (7).

Vm + Vc = 1 (7)
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Figure 2. Even distribution of porosity in an FGM.

Since the FG shaft consists of porosities, the material properties of the FG shaft also depend on
the volume fraction of the porosity. Hence, the modified power law for even porosity is expressed as
shown in Equation (8).

P(r, T,α) = Pm + (Pc − Pm)

[
r−Ri

Ro −Ri

]k

− (Pc + Pm)
α
2

(8)

The material properties such as Young’s modulus, Poisson’s ratio and the material density of
imperfect FGM with an even porosity are expressed as shown in Equations (9a)–(9c).

E(r, T,α) = Em(T) + (Ec(T) − Em(T))
[

r−Ri
Ro −Ri

]k

− (Ec(T) + Em(T))
α
2

(9a)

ρ(r, T,α) = ρm(T) + (ρc(T) − ρm(T))
[

r−Ri
Ro −Ri

]k

− (ρc(T) + ρm(T))
α
2

(9b)

v(r, T,α) = vm(T) + (vc(T) − vm(T))
[

r−Ri
Ro −Ri

]k

− (vc(T) + vm(T))
α
2

(9c)

where Ri represents the inner radius, Ro represents the outer radius of the shaft, r is the radial coordinate
of the shaft and k is the power law index.

A porous, functionally graded rotor–bearing system is considered in the present work. The rotor
shaft is made of an FGM; it is assumed that porosity is evenly distributed in the FG shaft. The disc,
made of uniform steel, is precisely located at the mid-span of the FG shaft. The ends of the shaft
are mounted on linear bearings. Python (IDLE Python 3.6.1, 64-bit, Python Software Foundation,
Wilmington, DE, USA) code is developed to assign the material properties using the power law and
NLTD. Finite element modelling of the porous FG shaft element provides the novelty of the current
research work, and is described in Section 3.

3. Finite Element Modelling of Porous FG Rotor–Bearing System

The finite element formulations have been developed using Timoshenko beam theory (TBT)
for natural frequency analysis of porous and nonporous FG rotor systems. A two-noded porous
FG shaft element stiffness and mass matrices are derived in this work, and is, to the best of the
authors’ knowledge, not available in the literature. The effects of rotatory inertia, gyroscopic moments,
elastic bending energy, translational kinetic energy, and transverse shear deformation are included in
shaft element modelling. A typical FG rotor–bearing system is shown in Figure 3a. A uniform steel
disc is located precisely at the mid-span of the shaft and the ends of the shaft are supported on linear
bearings. The component equations of motion of the FG rotor system are discussed in the following
Sections (Sections 3.1–3.3).
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Figure 3. (a) An FG rotor–bearing system. (b) A porous FG shaft element.

3.1. Finite Porous FG Shaft Element

The FG shaft was divided into ten finite elements. A two-node FG shaft element was developed
based on Timoshenko beam theory. Each node of the element was considered to have four degrees of
freedom (two translational and two rotational) as shown in Figure 3b. As the analysis was performed
for natural bending frequencies, which are appropriate in the case of a Jeffcott rotor supported on
linear bearings in transverse directions, the axial translational degree of freedom was not considered.
The equation of motion of the uniform shaft element is mentioned in the work of Nelson and
McVaugh [16]. The equation of motion of the porous FG shaft element (Equation (10)) can be developed
by the application of Hamilton’s extended principle and by using the equation of energy and work
functions discussed in [19]. However, in the present work, the individual matrices are also the functions
of the volume fraction of porosity, the radial variation in the material properties and the temperature
gradients, unlike the uniform shaft element.

([Me] + [Ne])
{..
q
}
− Ω[Ge]

{ .
q
}
+ [Ke]

{
q
}
=

{
Qe

c
}
cos Ωt +

{
Qe

s
}
sin Ωt (10)

The coefficient matrices are
[Ke] = [K]0 +ΦR[K]1 (11a)

[Me] = [M]0 +ΦR[M]1 +ΦR
2[M]2 (11b)

[Ne] = [N]0 +ΦR[N]1 +ΦR
2[N]2 (11c)

[Ge] = [G]0 +ΦR[G]1 +ΦR
2[G]2 (11d)

Equation (10) represents the elemental equation of motion of a porous FG shaft. Ω is the spin
speed of the shaft in rad/ sec. [Ke] is the elemental stiffness matrix, [Me] is the elemental translational
mass matrix, [Ne] is the elemental rotatory matrix and [Ge] is the elemental gyroscopic matrix of the
porous FG shaft. [Ke], [Me], [Ne] are symmetric matrices, whereas [Ge] is a skew symmetric matrix.
ΦR is the transverse shear effect and is shown in Equation (12a). As the shaft element is composed of
FGM, it also depends on radial distance, as well as the volume fraction of porosity and temperature.

Φ(r, T,α) =
12E(r, T,α) I(r) dr

κ(r, T ,α) A G(r, T,α)le2 (12a)

where, E(r, T ,α) is Young’s Modulus, I(r) is the moment of inertia, κ(r, T,α) is the transverse shear
form factor, G(r, T,α) is the Shear Modulus of the shaft element, le is the length of the element and dr
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is the thickness of the shaft element whose inner radius is r and outer radius is r + dr. A solid FG shaft
whose inner radius Ri = 0 and outer radius Ro = R is shown in Equation (12b).

ΦR =

R∫
0

Φ(r, T,α) =

R∫
0

12E(r, T,α ) I(r) dr
κ(r, T ,α) A G(r, T ,α)le2 (12b)

The spatial constraint matrix associated with translational shape functions is shown in
Equation (13).

[ψ(s)] =

[
ψ1 0 0 ψ2 ψ3 0 0 ψ4
0 ψ1 −ψ2 0 0 ψ3 −ψ4 0

]
(13)

ψj(s) =

[
αj(s) + ΦRβj(s)

]
1 + ΦR

j = 1, 2, 3, 4; µ =
s
le

α1 = 1− 3µ2 + 2µ3 β1 = 1− µ

α2 = leµ
(
1− 2µ+ µ3

)
β2 = leµ(1− µ)/2

α3 = µ2(3− 2µ) β3 = µ

α4 = leµ2(−1 + µ) β4 = leµ(−1 + µ)/2

The spatial constraint matrix associated with rotational shape functions is shown in Equation (14).

[ϕ(s)] =

[
ϕv

ϕw

]
=

[
0 −ϕ1 ϕ2 0 0 −ϕ3 ϕ4 0
ϕ1 0 0 ϕ2 ϕ3 0 0 ϕ4

]
(14)

ϕj(s) =

[
γj(s) + ΦRδj(s)

]
1 + ΦR

γ1 = µ(6µ− 6)/le δ1 = 0

γ2 = 1− 4µ+ 3µ2 δ2 = 1− µ

γ3 = µ(−6µ+ 6)/le δ3 = 0

γ4 = µ(3µ− 2) δ4 = µ

These spatial constraint matrices are taken from the lines of Nelson [19]. The shape functions
are established using Timoshenko beam theory. The spatial constraint matrices, which are associated
with translational and rotational shape functions, are used to derive the elemental stiffness matrix,
translational mass matrix, rotatory mass matrix and gyroscopic matrix of a porous FG shaft element.
These elemental matrices are derived using the equations below.

Elemental stiffness matrix:

[Ke] = C1


le∫

0

E(r, T,α)I(r)[ψ′′ ]T[ψ′′ ]ds +

le∫
0

κ(r, T,α)G(r, T,α)A(r)[ψ′]T[ψ′]ds

 (15a)

Elemental translatory mass matrix:

[Me] = C2

le∫
0

m[ψ]T[ψ]ds (15b)
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Elemental rotatory mass matrix:

[Ne] = C3

le∫
0

ID[ϕ]
T[ϕ]ds (15c)

Elemental gyroscopic matrix:

[Ge] = [He] − [He]Twhere [He] = C4

le∫
0

IP[ϕw]
T[ϕv]ds (15d)

While solving the elemental matrices of a porous FG shaft element, coefficients arise for
every elemental matrix. C1, C2, C3 and C4 are the coefficients of the elemental stiffness matrix,
elemental translatory mass matrix, elemental rotatory mass matrix and elemental gyroscopic matrix,
respectively, and these coefficients depend on the radial distance, temperature and volume fraction
of porosity.

The coefficient of stiffness matrix [Ke] of a solid porous FG shaft element for radius R is

C1 =
1

le3(1 + ΦR)

R∫
0

E(r, T,α)I(r) dr (16a)

The coefficient of the translatory mass matrix [Me] of a solid porous FG shaft element for radius R is

C2 =
le

420(1 + ΦR)
2

R∫
0

ρ(r, T,α)A(r) dr (16b)

The coefficient of the rotatory mass matrix [Ne] of a solid porous FG shaft element for radius R is

C3 =
1

120 le(1 + ΦR)
2

R∫
0

ρ(r, T,α)A(r)r2 dr (16c)

The coefficient of gyroscopic matrix [Ge] of a solid porous FG shaft element for radius R is

C4 =
1

60le(1 + ΦR)
2

R∫
0

ρ(r, T,α)A(r)r2 dr (16d)

where I(r) = πr3 is the moment of inertia and A(r) = 2πr is the area of a thin layer of the shaft
whose inner radius is r, while the outer radius of the layer is r + dr.

3.2. Uniform Steel Disc

The equation of motion of a uniform steel disc [18] is([
Md

]
+

[
Nd

]){..
qd

}
− Ω

[
Gd

]{ .
qd

}
=

{
Qd

c

}
cos Ωt +

{
Qd

s

}
sin Ωt (17)

where
[
Md

]
is the translational mass matrix of the disc,

[
Nd

]
is the rotatory mass matrix of the disc,[

Gd
]

is the gyroscopic matrix of the disc,
{
qd

}
is the nodal displacement vector of the disc and

{
Qd

}
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is the external loading vector of the disc. Here, v and w are translational displacements, while β and τ
are rotational displacements along the y and z axes.

{
qd

}
=


v
w
β
τ

,
[
Md

]
=


md 0 0 0
0 md 0 0
0 0 0 0
0 0 0 0

,
[
Nd

]
=


0 0 0 0
0 0 0 0
0 0 Id 0
0 0 0 Id

,
[
Gd

]
=


0 0 0 0
0 0 0 0
0 0 0 −Ip

0 0 Ip 0

 (18)

3.3. Linear Bearings

The bearings used in this work obey the equation of motion [18] shown in Equation (19).[
Cb

]{ .
qb

}
+

[
Kb

]{
qb

}
=

{
Qb

}
(19)

where
[
Cb

]
is the damping matrix of the bearings,

[
Kb

]
is the stiffness matrix of the bearings,

{
qb

}
is the

nodal displacement vector and
{
Qb

}
is the external loading vector.

{
qb

}
=

{
v
w

}
,

[
Cb

]
=

[
cb

vv cb
vw

cb
wv cb

ww

]
,

[
Kb

]
=

[
kb

vv kb
vw

kb
wv kb

ww

]
(20)

The bearings used in the system are isotropic in nature kb
vw = kb

wv = 0 and cb
ww = cb

vv = 0.

4. System Equation of Motion and Solution Procedure

The assembled equation of motion of the FG rotor–bearing system with and without porosity is

[Mf]
{..
q
}
− Ω[Gf]

{ .
q
}
+ [Kf]

{
q
}
= {Q} (21)

where [Mf] is the global mass matrix, which is incorporated into the elemental translational and rotary
mass matrices of the porous FG shaft and disc mass, while [Gf] is the global gyroscopic matrix, which
includes the gyroscopic moments of the FG shaft and disc. [Kf] is the global stiffness matrix, which
includes all the elemental stiffness matrices of the porous FG shaft and the stiffness matrix

[
Kb

]
of the

bearings.
Equation (21) can be expressed as

[A]
.
h + [B]h = 0 (22)

where

[A] =

[
0 [Mf]

[Mf] −Ω[Gf]

]
, [B] =

[
−[Mf] 0

0 [Kf]

]
, h =

{ .
q
q

}
Equation (23) is assumed as the solution of Equation (22)

h = hoeλt (23)

Equation (24) can be obtained by substituting Equation (23) into Equation (22),

λ[A]hoeλt + [B]hoeλt = 0 (24)

Eigen values can be calculated by solving the Eigen value problem; see Equation (25).([
B−1

]
[A] + λI

)
ho = 0 (25)
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The Eigen values are of the form

λn(Ω) = ξn(Ω) ± iωn(Ω) (26)

where ξ is the damping constant and ω is the natural frequency. The inverse of the imaginary part at
Ω (spin speed) = 0 gives the value of the natural frequency in rad/s.

5. Validations

A finite element code was developed in Python using the formulation discussed in Section 4
to obtain the natural and whirl frequencies of the FG rotor–bearing system. The Python code was
validated using the data available in the literature. A step-by-step code validation of the power law
gradation, nonlinear temperature distribution, natural and whirl frequencies was carried out and is
presented in the following subsections.

5.1. Non-Linear Temperature Distribution and Power Law Gradation in Circular FG Shaft

The non-linear temperature distribution as a function of radial distance is expressed as in Equation
(4). A solid FG shaft with a radius of 0.05 m, an inner core (SS) temperature of 300 K and an outer
ceramic layer temperature (ZrO2) of 900 K is considered. The computed NLTD of the circular FG shafts
for different power law indices, using Python code, is shown in Figure 4a. For k = 0, the temperature
distribution is linear and for k = 0.5, 1, 3 and 5, the temperature distribution is nonlinear. This is
because the thermal conductivity is a function of temperature. The computed values of the plot are in
good accordance with the literature [28].

Figure 4. Variation in material properties across the radius. (a) Temperature; (b) Young’s modulus.

Power law gradation and NLTD method are used to obtain the material properties as a function
of the radius and temperature of an FG shaft. The variation in the computed Young modulus of the FG
(SS-ZrO2) shaft due to the radial distance is shown in Figure 4b. The computed values are in good
accordance with the literature [28].

5.2. Natural Frequencies of Simply Supported Non-Rotating FG Shaft

The dimensionless natural frequencies (DNFs) of a simply supported non-rotating FG shaft whose
inner core is comprised of stainless steel (SS) with an outer layer made of zirconia (ZrO2) are considered
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for validation. The power law is used for material gradation, DNFs are computed for the power law
indices, k = 0.5, 1, 5, and for the slenderness ratio (R/2L) of 0.02. The length of the shaft is taken as 1.25 m
and the radius of the cross-section is taken as 0.05 m. The shaft is assumed to be at 300 K. The computed
values are tabulated in Table 2 and it can be seen that the percentage of error is almost negligible.
The computed values are in good accordance with the natural frequencies in the literature [28].

Table 2. Dimensionless natural frequencies of simply supported non-rotating FG shaft.

Modes
k = 0.5

Error %
k = 1

Error %
k = 5

Error %
[26] Present [26] Present [26] Present

1st 3.2059 3.2031 0.087 3.1859 3.1780 0.248 3.1505 3.1328 0.562
2nd 3.2059 3.2031 0.087 3.1859 3.1780 0.248 3.1505 3.1328 0.562
3rd 6.3455 6.3492 0.058 6.3059 6.2995 0.101 6.2356 6.2098 0.414
4th 6.3455 6.3492 0.058 6.3059 6.2995 0.101 6.2356 6.2098 0.414
5th 9.3684 9.3941 0.274 9.3096 9.3206 0.118 9.2054 9.1872 0.198
6th 9.3684 9.3941 0.274 9.3096 9.3206 0.118 9.2054 9.1872 0.198

5.3. Natural Frequencies of Simply Supported Porous Functionally Graded Square Cross-Sectional Beam

The dimensionless fundamental natural frequency ω(ω4 = ω2L4ρss/Essh2) of the simply
supported functionally graded beam with porosity is calculated using Python code and is validated
with the published results of Ebrahimi et al. [32] in this section. The validation was performed to
verify the porosity formulation and the Python code. The materials used in the porous functionally
graded beam are Si3N4 and SUS304 and the temperature-dependent coefficients of Young’s modulus,
the mass density and Poisson’s ratio of these materials are tabulated in Table 3. The slenderness
ratio of the beam L/h is taken as 20. The natural frequencies are validated for the different material
distributions of the metal–ceramic (k = 0.5, 1, 2, 5) and porosity models (α = 0, 0.1, 0.2). The validations
are tabulated in Table 4. The computed values are in good agreement with the values found in the
literature. Hence, based on this validation, we ensured that the porosity formulation and FE code used
to compute the DNFs were accurate.

Table 3. Material properties of Stainless Steel and Zirconia.

Material Properties Stainless Steel (SS) Zirconia (ZrO2)

Young’s Modulus (GPa) 207.8 168
Density (kg/m3) 8166 5700
Poisson’s ratio 0.3 0.24

Table 4. Dimensionless natural frequencies of a simply supported, functionally graded square
cross-sectional beam with porosity.

α
k = 0.5 k = 1

Present [30] Error % Present [30] Error %

0 4.5283 4.5158 0.28 3.9695 3.9583 0.28
0.1 4.5947 4.5821 0.27 3.9621 3.9509 0.28
0.2 4.6806 4.6678 0.27 3.9516 3.9406 0.28

α
k = 2 k = 5

Present [30] Error % Present [30] Error %

0 3.5659 3.5553 0.3 3.2436 3.2332 0.32
0.1 3.5188 3.5082 0.3 3.1736 3.1634 0.33
0.2 3.4599 3.4495 0.3 3.0888 3.0787 0.33



Appl. Sci. 2020, 10, 8197 13 of 22

5.4. Whirl Frequencies of a Double-Disc Steel Rotor System

Since there is no research available to validate the whirl frequencies of the FG rotor, the whirl
frequencies of the steel rotor–bearing system are considered. The computed whirl frequencies, using the
developed FE code, are given in Table 5. The rotor system is kept at room temperature. The length
and diameter of the shaft are 1.5 m and 0.5 m, respectively. The shaft is discretised into 15 elements.
The thickness of the two discs is 0.07 m; the radius of the left (first) disc is 0.14 m and the radius of the
right (second) disc is 0.175 m. The stiffness of the bearings is 1 MN/m. It can be seen from Table 5 that
the computed values are in good accordance with the whirl frequencies in the literature [46].

Table 5. Backward and forward whirl (BW and FW) frequencies of a steel double-disc rotor.

Modes
0 RPM 4000 RPM

[46] Present Error % [46] Present Error %

1BW 13.79 13.76 0.217 13.59 13.56 0.221
1FW 13.79 13.76 0.217 13.97 13.94 0.215
2BW 43.66 43.75 0.206 40.07 40.19 0.299
2FW 43.66 43.75 0.206 46.90 46.96 0.127
3BW 114.08 115.32 1.087 95.52 96.76 1.298
3FW 114.08 115.32 1.087 131.63 132.67 0.790

6. Results and Discussions

Jeffcott FG rotor systems with FG porous and non-porous shafts, whose inner cores are comprised
of stainless steel with outer layers made of ZrO2, as shown in Figure 3a, are considered in the present
work. The shaft is divided into ten finite elements based on convergence. The power law and the
non-linear temperature distribution method are used for the gradation of material properties in the
radial direction. Rotor–bearing data used for this analysis are given in Table 6 and material properties
are defined in Table 3. The effect of different parameters such as the volume fraction of porosity,
power law index, and the thermal gradients of the natural and whirl frequencies are investigated and
discussed in detail in this section.

Table 6. Data used in the present work.

Shaft

Length (L) 0.5 m
Diameter (D) 0.02 m

Disc

Location Mid-span
Mass (m) 2 kg
Polar moment of inertia (Ip) 0.0024 kg m2

Diametral moment of inertia (Id) 0.0012 kg m2

Bearing Stiffness 105 N/m

6.1. Effect of Porosity on Material Properties

The material properties of the FG shaft are the functions of the power law parameters, temperature
and volume fraction of porosity. The temperature of the inner core is considered to be 300 K, whereas the
outer layer is considered to be 900 K. The variation in the Young modulus of the porous FG shaft through
the radius is shown in Figure 5a,b for volume fractions with porosities of 0.1 and 0.2. Young’s modulus
of the FG shaft reduces due to the presence of porosities in the FG shaft. Similarly, other material
properties such as density and Poisson’s ratio are affected due to the presence of porosities in the FG
shaft. The effect on material properties is more prevalent with the increase in the volume fraction
of porosity.
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Figure 5. Variation in Young’s modulus along the radial direction of a porous FG shaft (a) for α = 0.1
(b) for α = 0.2.

6.2. Mode Shapes of Rotor–Bearing System

The first, second and third mode shapes of porous and non-porous FG rotor–bearing systems are
plotted in Figure 6a–c for volume fractions of porosity, α = 0.3 and a power law index of 0.5. The dotted
line represents the modal displacement curve of a non-porous FG rotor–bearing system, whereas the
solid line represents the modal displacement curve of a porous FG rotor–bearing system. The plotted
graphs are as expected and can be compared with the mode shapes of rotors with intermediate bearings
described in the literature [47]. The natural frequencies corresponding to each mode shape are given in
Figure 6a–c.

Figure 6. Cont.
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Figure 6. (a) First mode shape of a porous and non-porous FG rotor–bearing system; power law index
(k) = 0.5. (b) Second mode shape of a porous and non-porous FG rotor–bearing system; power law
index (k) = 0.5. (c) Third mode shape of a porous and non-porous FG rotor–bearing system; power law
index (k) = 0.5.

6.3. The Effect of Porosity on DNFs for Different Power Law Indices (k)

The dimensionless natural frequencies (ω) of the FG rotor–bearing system for different volume
fractions of porosity are calculated using ω4 = ρssALω2/EssI, where ρss is the density of stainless
steel, A is the area of the cross-section of the shaft, L is the length of the shaft,ω is the natural frequency
of the shaft in rad/s, Ess is Young’s modulus of stainless steel at room temperature and I is a diametrical
moment of inertia. Dimensionless natural frequencies (DNFs) of FG rotor–bearing systems at different
volume fractions of porosity are plotted for different power law indices in Figure 7. It has been observed
that the DNFs decrease with an increase in the volume fraction of porosity. The DNFs decrease due to a
reduction in the material properties such as Young’s modulus and density, while there is an increase in
the volume fraction of porosity. Young’s modulus and density for various volume fractions of porosity
are tabulated in Table 7. However, the DNF curves of different power law indices converge at α = 0.4
due to a proportional drop in the stiffness and mass of the porous FG shaft for all power law indices.
DNFs also decrease with the increase in k. The reason for this is explained in Section 6.4.
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Figure 7. Variation in dimensionless natural frequency (DNF) for different volume fractions of
porosity (α).

Table 7. Young’s modulus and density of ZrO2 and stainless steel (SS) at different α.

α E (ZrO2) E (SS) Density (ZrO2) Density (SS)

0 1.68 × 1011 2.078 × 1011 5700 8166
0.1 1.492 × 1011 1.8901 × 1011 5006.7 7472.7
0.2 1.304 × 1011 1.7022 × 1011 4313.4 6779.4
0.3 1.116 × 1011 1.5143 × 1011 3620.1 6086.1
0.4 9.284 × 1010 1.3264 × 1011 2926.8 5392.8

6.4. The Effect of Power Law Index on DNFs for Different Volume Fractions of Porosity

Figure 8 shows the variation in DNFs against the power law index for different volume fractions
of porosity. It has been observed that the DNFs reach their maximum at k = 0. Since the FG shaft is
completely composed of ceramic at k = 0, the ratio of Young’s modulus to the density of a ceramic is
high. However, the DNFs of the system decrease with the increase in the power law index. As the
power law index increases from zero to five, the composition of the FG shaft alters from an absolute
ceramic to an FG shaft that is comprised of a combination of metal and ceramic. The percentage
of metal increases in the FG shaft and hence the ratio of Young’s modulus to the density decreases.
Eventually, the DNFs of the system are reduced. DNFs with volume fractions that have porosities
(α) = 0.1, 0.2 are slightly higher than the DNFs without porosity. This is due to the fact that the
reductions in the material properties lead to an increase in the ratio of stiffness and mass as compared
to the ratio of the FG shaft without porosity.

Figure 8. Variation in DNF for different power law indices (k).
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6.5. The Effect of Temperature Gradient on DNFs for Different Values of k and α

The variation in DNFs with the power law index of an FG rotor system with and without porosity
for different thermal gradients is plotted in Figure 9a,b. Dimensionless natural frequencies decrease
with the increase in the temperature gradient, as expected. This is due to the reduction in material
properties, especially Young’s modulus, at higher temperatures. However, the presence of porosities in
the FG shaft result in a reduction in Young’s modulus and other material properties, which would
lead to the abrupt drop in the DNFs at high temperatures (Toi = To − Ti = 300 or 600). Later, the DNFs
slightly increase initially with the power law index (k), but the surge in DNFs eventually becomes
barely detectable.

Figure 9. (a) Variation in DNF of an FG rotor system at different thermal gradients without porosity.
(b) Variation in DNFs of a porous FG rotor system for α = 0.2 at different thermal gradients.

6.6. The Effect of Power Law Index, Volume Fraction of Porosity, Thermal Gradient on Whirl Frequencies

The whirl frequencies of the porous FG rotor–bearing system at a shaft speed of 4000 rpm are
calculated for different power law indices, volume fractions of porosity and temperature gradients in
this work. The results are tabulated in Table 8. As the power law index increases, the whirl frequencies
of the FG rotor system decrease. The whirl frequencies decrease with the increase in the temperature
gradient as expected due to the reduction in stiffness at higher thermal gradients. The split between
1BW-1FW and 3BW-3FW is minimal compared to the split between 2BW and 2FW. Campbell diagrams
for k = 0.5, α = 0, 0.1 and Ω = 4000 rpm, 10,000 rpm at different temperature gradients are shown in
Figure 10a–d. The split between 1FW-1BW and 3FW-3BW is barely detectable in the figures.
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Table 8. Whirl frequencies of a porous FG rotor–bearing system for different values of k, α and ∆T.

Modes ∆T = 0
α = 0 α = 0.1 α = 0.2

k = 0.5 k = 1 k = 5 k = 10 k = 0.5 k = 1 k = 5 k = 10 k = 0.5 k = 1 k = 5 k = 10

1BW 36.166 35.979 35.530 35.423 36.233 36.061 35.667 35.581 36.176 36.028 35.718 35.663
1FW 36.169 35.981 35.533 35.425 36.236 36.064 35.670 35.584 36.179 36.031 35.721 35.666
2BW 115.421 112.794 106.213 104.396 121.456 118.403 110.859 108.800 128.509 124.906 116.150 113.796
2FW 123.974 120.924 113.333 111.249 131.128 127.536 118.729 116.343 139.655 135.344 124.963 122.194
3BW 298.593 294.259 286.243 285.250 301.059 295.974 285.567 285.339 304.723 298.622 287.369 285.826
3FW 299.121 294.785 286.784 285.805 301.566 296.478 287.088 285.874 305.208 299.104 287.868 286.341

Modes ∆T = 300
α = 0 α = 0.1 α = 0.2

k = 0.5 k = 1 k = 5 k = 10 k = 0.5 k = 1 k = 5 k = 10 k = 0.5 k = 1 k = 5 k = 10

1BW 35.384 35.307 35.128 35.102 35.326 35.288 35.225 35.240 35.109 35.128 35.231 35.301
1FW 35.387 35.310 35.131 35.105 35.330 35.292 35.228 35.243 35.113 35.132 35.234 35.304
2BW 115.009 112.453 106.028 104.253 120.921 117.968 110.638 108.637 127.783 124.330 115.882 113.605
2FW 123.727 120.717 113.217 111.159 130.816 127.279 118.595 116.242 139.247 135.014 124.803 122.079
3BW 279.577 277.400 274.872 275.731 281.708 278.952 275.531 276.345 284.924 281.370 276.713 277.439
3FW 280.103 277.924 275.413 276.286 282.213 279.454 276.051 276.880 285.405 281.849 277.211 277.953

Modes ∆T = 600
α = 0 α = 0.1 α = 0.2

k = 0.5 k = 1 k = 5 k = 10 k = 0.5 k = 1 k = 5 k = 10 k = 0.5 k = 1 k = 5 k = 10

1BW 34.868 34.834 34.723 34.673 34.766 34.776 34.789 34.775 34.502 34.573 34.761 34.798
1FW 34.872 34.838 34.726 34.676 34.770 34.780 34.792 34.778 34.507 34.578 34.765 34.801
2BW 114.722 112.201 105.836 104.056 120.569 117.663 110.413 108.406 127.340 123.951 115.613 113.331
2FW 123.555 120.564 113.097 111.035 130.612 127.100 118.457 116.100 139.000 134.799 124.643 121.914
3BW 269.020 267.286 264.812 264.470 271.652 269.309 265.917 265.481 275.452 272.277 267.610 267.022
3FW 269.545 267.809 265.352 265.026 272.155 269.810 266.436 266.015 275.932 272.755 268.107 267.536

Figure 10. Cont.
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Figure 10. (a) Campbell diagram of an FG rotor–bearing system for k = 0.5 and ∆T = 0, without porosity.
(b) Campbell diagram of a porous FG rotor–bearing system for k = 0.5, α = 0 and ∆T = 600.
(c) Campbell diagram of a porous FG rotor–bearing system for k = 0.5, α = 0.1 and ∆T = 0.
(d) Campbell diagram of a porous FG rotor–bearing system for k = 0.5, α = 0.1 and ∆T = 600.

7. Conclusions

A dynamic analysis of a porous functionally graded rotor–bearing system has been carried out
using the finite element method. The stiffness and mass matrices of a two-noded porous FG shaft are
derived in this work. The FG rotor shaft’s inner core is comprised of stainless steel and its outer layer is
made of ceramic ZrO2. The effects of porosity, power law index and thermal gradients on the natural
and whirl frequencies of an FG rotor system have been analysed and the following conclusions can be
drawn from the analysis:

• DNFs decrease with an increase in the volume fraction of porosity (α) due to the reductions in the
material properties, which lead to a drop in the stiffness and mass of the porous FG shaft.

• DNFs of the FG shaft with low volume fraction porosity are slightly higher than the DNFs of
the FG shaft without porosity. The drop in stiffness and mass escalated the DNFs of the porous
FG shaft.

• DNFs of the FG rotor system initially decrease with the increase in k, but later the rate of decrease
in DNFs is comparatively low. This is because the percentage of metal is significantly higher at
higher power law indices.

• DNFs decrease with an increase in thermal gradients—the reason being that Young’s Modulus
reduces at elevated temperatures, which, in turn, reduces the stiffness of the system. However,
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due to the presence of porosities in the FG shaft, the DNFs drop abruptly at low values of k;
however, later, the growth is hardly detectable.

• Whirl frequencies decrease with an increase in the power law index and thermal gradients.
The split between the second forward and backward whirl frequencies is significant compared to
the split between the first and third whirls.

As the natural and whirl frequencies are affected by various factors of a porous FG rotor system,
such as the power law index, volume fraction of porosity and thermal gradients, it is important to
analyse the effects of these factors to accurately predict the critical speeds of an FG rotor–bearing
system in order to avoid any rotor failures due to resonance. The present analysis provides an
important insight into the natural frequency analysis of a porous FG rotor system, which can be used
to analyse the dynamic behaviour of a porous FG rotor system at its critical speeds. Further work in
this direction could include the modelling of uneven porosity distributions in an FG rotor system in
order to investigate their effects on the dynamic properties of the system.
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