Bone Chemical Composition Assessment with Multi-Wavelength Photoacoustic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Bone Specimens
2.3. Theory
2.4. Signal Processing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kanis, J.A. Pocket Reference to Osteoporosis; Springer: Cham, Switzerland, 2019; pp. 11–20. [Google Scholar]
- Marcocci, C.; Saponaro, F. Multidisciplinary Approach to Osteoporosis; Springer: Cham, Switzerland, 2018; pp. 45–57. [Google Scholar]
- Raum, K.; Leguerney, I.; Chandelier, F.; Bossy, E.; Talmant, M.; Saïed, A.; Peyrin, F.; Laugier, P. Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound Med. Biol. 2005, 31, 1225–1235. [Google Scholar] [CrossRef]
- Laugier, P. Bone Quantitative Ultrasound; Springer: Cham, Switzerland, 2011; pp. 47–71. [Google Scholar]
- Töyräs, J.; Nieminen, M.; Kröger, H.; Jurvelin, J. Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical properties of trabecular bone differently. Bone 2002, 31, 503–507. [Google Scholar] [CrossRef]
- Liu, C.; Ta, D.; Fujita, F.; Hachiken, T.; Matsukawa, M.; Mizuno, K.; Wang, W. The relationship between ultrasonic backscatter and trabecular anisotropic microstructure in cancellous bone. J. Appl. Phys. 2014, 115, 064906. [Google Scholar] [CrossRef]
- Njeh, C.; Boivin, C.; Langton, C. The role of ultrasound in the assessment of osteoporosis: A review. Osteoporos. Int. 1997, 7, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Justesen, J.; Stenderup, K.; Ebbesen, E.; Mosekilde, L.; Steiniche, T.; Kassem, M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2001, 2, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, G.; Capuani, S.; Manenti, G.; Vinicola, V.; Fusco, A.; Baldi, J.; Scimeca, M.; Hagberg, G.E.; Bozzali, M.; Simonetti, G.; et al. Bone marrow lipid profiles from peripheral skeleton as potential biomarkers for osteoporosis: A 1H-MR spectroscopy study. Acad. Radiol. 2016, 23, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Griffith, J.F.; Yeung, D.K.W.; Antonio, G.E.; Lee, F.K.H.; Hong, A.W.L.; Wong, S.Y.S.; Lau, E.M.C.; Leung, P.C. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: Dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 2005, 236, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Griffith, J.F.; Yeung, D.K.W.; Antonio, G.E.; Wong, S.Y.S.; Kwok, T.C.Y.; Woo, J.; Leung, P.C. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 2006, 241, 831–838. [Google Scholar] [CrossRef]
- Patsch, J.M.; Burghardt, A.J.; Kazakia, G.; Majumdar, S. Noninvasive imaging of bone microarchitecture. Ann. N. Y. Acad. Sci. 2011, 1240, 77. [Google Scholar] [CrossRef] [Green Version]
- Pifferi, A.; Torricelli, A.; Taroni, P.; Bassi, A.; Chikoidze, E.; Giambattistelli, E.; Cubeddu, R. Optical biopsy of bone tissue: A step toward the diagnosis of bone pathologies. J. Biomed. Opt. 2004, 9, 474–481. [Google Scholar] [CrossRef]
- Schulmerich, M.V.; Dooley, K.; Morris, M.D.; Vanasse, T.M.; Goldstein, S.A. Transcutaneous fiber optic Raman spectroscopy of bone using annular illumination and a circular array of collection fibers. J. Biomed. Opt. 2006, 11, 060502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, M.D.; Mandair, G.S. Raman assessment of bone quality. Clin. Orthop. Relat. Res. 2011, 469, 2160–2169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draper, E.R.; Morris, M.D.; Camacho, N.P.; Matousek, P.; Towrie, M.; Parker, A.W.; Goodship, A.E. Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy. J. Bone Miner. Res. 2005, 20, 1968–1972. [Google Scholar] [CrossRef]
- Wang, X.; Pang, Y.; Ku, G.; Xie, X.; Stoica, G.; Wang, L.V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.V.; Hu, S. Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. Science 2012, 335, 1458–1462. [Google Scholar] [CrossRef] [Green Version]
- Lashkari, B.; Yang, L.; Mandelis, A. The application of backscattered ultrasound and photoacoustic signals for assessment of bone collagen and mineral contents. Quant. Imaging Med. Surg. 2015, 5, 46. [Google Scholar]
- Yang, L.; Lashkari, B.; Mandelis, A.; Tan, J.W. Bone Composition Diagnostics: Photoacoustics Versus Ultrasound. Int. J. Thermophys. 2015, 36, 862–867. [Google Scholar] [CrossRef]
- Feng, T.; Kozloff, K.M.; Tian, C.; Perosky, J.E.; Hsiao, Y.-S.; Du, S.; Yuan, J.; Deng, C.X.; Wang, X. Bone assessment via thermal photo-acoustic measurements. Opt. Lett. 2015, 40, 1721–1724. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Perosky, J.E.; Kozloff, K.M.; Xu, G.; Cheng, Q.; Du, S.; Yuan, J.; Deng, C.X.; Wang, X. Characterization of bone microstructure using photoacoustic spectrum analysis. Opt. Express 2015, 23, 25217–25224. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Zhu, Y.; Feng, T.; Yuan, J.; Cheng, Q.; Xu, G.; Wang, X. Comparison study of photoacoustic and ultrasound spectrum analysis in osteoporosis detection. Chin. Opt. Lett. 2017, 15, 111101. [Google Scholar]
- Wood, C.; Harutyunyan, K.; Sampaio, D.R.; Konopleva, M.; Bouchard, R. Photoacoustic-based oxygen saturation assessment of murine femoral bone marrow in a preclinical model of leukemia. Photoacoustics 2019, 14, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, I.; Shiloh, L.; Gannot, I.; Eyal, A. First-in-human study of bone pathologies using low-cost and compact dual-wavelength photoacoustic system. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 1–8. [Google Scholar] [CrossRef]
- Guldager, B.; Brixen, K.T.; Jørgensen, S.J.; Nielsen, H.K.; Mosekilde, L.; Jelnes, R. Effects of Intravenous Edta Treatment on Serum Parathyroid Hormone (1-84) and Biochemical Markers of Bone Turnover. Dan. Med Bull. 1993, 40, 627–630. [Google Scholar] [PubMed]
- Callis, G.; Sterchi, D. Decalcification of bone: Literature review and practical study of various decalcifying agents. Methods, and their effects on bone histology. J. Histotechnol. 1998, 21, 49–58. [Google Scholar] [CrossRef]
- Madden, V.J.; Henson, M.M. Rapid decalcification of temporal bones with preservation of ultrastructure. Hear. Res. 1997, 111, 76–84. [Google Scholar] [CrossRef]
- Feng, T.; Zhu, Y.; Wang, X. Functional Photoacoustic and Ultrasonic Assessment of Osteoporosis—A Clinical Feasibility Study. BME Front. 2020, 2020, 1081540. [Google Scholar] [CrossRef]
- Cox, B.T.; Laufer, J.G.; Beard, P.C.; Arridge, S.R. Quantitative spectroscopic photoacoustic imaging: A review. J. Biomed. Opt. 2012, 17, 061202. [Google Scholar] [CrossRef] [Green Version]
- Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, R37. [Google Scholar] [CrossRef]
- Wear, K.A. Mechanisms of Interaction of Ultrasound with Cancellous Bone: A Review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020, 67, 454–482. [Google Scholar] [CrossRef]
- Udelhoven, T.; Emmerling, C.; Jarmer, T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study. Plant Soil 2003, 251, 319–329. [Google Scholar] [CrossRef]
- Taicher, G.Z.; Tinsley, F.C.; Reiderman, A.; Heiman, M.L. Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal. Bioanal. Chem. 2003, 377, 990–1002. [Google Scholar] [CrossRef] [PubMed]
- El Maghraoui, A.; Borderie, D.; Cherruau, B.; Edouard, R.; Dougados, M.; Roux, C. Osteoporosis, body composition, and bone turnover in ankylosing spondylitis. J. Rheumatol. 1999, 26, 2205–2209. [Google Scholar] [PubMed]
- Boskey, A.L.; Robey, P.G. The Composition of Bone. In Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Abdulsamee, N. Erbium Family Laser: Silent Revolution in Dentistry. Review. EC Dent. Sci. 2017, 13, 168–190. [Google Scholar]
- Deán-Ben, X.; Gottschalk, S.; Mc Larney, B.; Shoham, S.; Razansky, D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem. Soc. Rev. 2017, 46, 2158–2198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantarella, D.; Kotlow, L. The 9.3-µm CO2 Dental Laser: Technical Development and Early Clinical Experiences. J. Laser Dent. 2014, 22, 1. [Google Scholar]
- Featherstone, J.; Nelson, D. Laser effects on dental hard tissues. Adv. Dent. Res. 1987, 1, 21–26. [Google Scholar] [CrossRef]
- Bashkatov, A.N.; Genina, E.A.; Kochubey, V.I.; Tuchin, V.V. Saratov Fall Meeting 2005: Optical Technologies in Biophysics and Medicine VII; International Society for Optics and Photonics: Bellingham, WA, USA, 2006; Volume 6163. [Google Scholar]
- Mejia, P.A.L.; Manuel, U.C.G.; Pérez, J.L.J.; Gomez, L.H.H.; Butron, H.L.; Cruz-Orea, A. Photoacoustic Spectroscopy Applied to the Study of Bone Consolidation in Fractures. In Materials Science Forum; Trans Tech Publications: Bäch, Switzerland, 2005; Volume 480, pp. 339–344. [Google Scholar]
- Firbank, M.; Hiraoka, M.; Essenpreis, M.; Delpy, D. Measurement of the optical properties of the skull in the wavelength range 650–950 nm. Phys. Med. Biol. 1993, 38, 503. [Google Scholar] [CrossRef]
- Van Veen, R.L.P.; Sterenborg, H.J.; Pifferi, A.; Torricelli, A.; Chikoidze, E.; Cubeddu, R. Determination of visible near-IR absorption coefficients of mammalian fat using time-and spatially resolved diffuse reflectance and transmission spectroscopy. J. Biomed. Opt. 2005, 10, 054004. [Google Scholar] [CrossRef]
- Taroni, P.; Comelli, D.; Pifferi, A.; Torricelli, A.; Cubeddu, R. Absorption of collagen: Effects on the estimate of breast composition and related diagnostic implications. J. Biomed. Opt. 2007, 12, 014021. [Google Scholar] [CrossRef]
- Ehrlich, H.; Koutsoukos, P.G.; Demadis, K.D.; Pokrovsky, O.S. Principles of demineralization: Modern strategies for the isolation of organic frameworks: Part II. Decalcification. Micron 2009, 40, 169–193. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, T.; Zhu, Y.; Kozloff, K.M.; Khoury, B.; Xie, Y.; Wang, X.; Cao, M.; Yuan, J.; Ta, D.; Cheng, Q. Bone Chemical Composition Assessment with Multi-Wavelength Photoacoustic Analysis. Appl. Sci. 2020, 10, 8214. https://doi.org/10.3390/app10228214
Feng T, Zhu Y, Kozloff KM, Khoury B, Xie Y, Wang X, Cao M, Yuan J, Ta D, Cheng Q. Bone Chemical Composition Assessment with Multi-Wavelength Photoacoustic Analysis. Applied Sciences. 2020; 10(22):8214. https://doi.org/10.3390/app10228214
Chicago/Turabian StyleFeng, Ting, Yunhao Zhu, Kenneth M. Kozloff, Basma Khoury, Yejing Xie, Xueding Wang, Meng Cao, Jie Yuan, Dean Ta, and Qian Cheng. 2020. "Bone Chemical Composition Assessment with Multi-Wavelength Photoacoustic Analysis" Applied Sciences 10, no. 22: 8214. https://doi.org/10.3390/app10228214
APA StyleFeng, T., Zhu, Y., Kozloff, K. M., Khoury, B., Xie, Y., Wang, X., Cao, M., Yuan, J., Ta, D., & Cheng, Q. (2020). Bone Chemical Composition Assessment with Multi-Wavelength Photoacoustic Analysis. Applied Sciences, 10(22), 8214. https://doi.org/10.3390/app10228214