Biorefinery: The Production of Isobutanol from Biomass Feedstocks
Abstract
:1. Introduction
2. Research on Isobutanol Production
3. Biomass Isobutanol Production
3.1. Isobutanol Production from Lignocellulose
3.1.1. Cellulosic Isobutanol Produced by Natural Cellulose-Degrading Microorganisms
3.1.2. Cellulosic Isobutanol Produced by Non-Native Cellulose-Degrading Microorganisms
3.2. Isobutanol Production from Protein
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cherubini, F.; Strømman, A.H. Life cycle assessment of bioenergy systems: State of the art and future challenges. Bioresour. Technol. 2011, 102, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Chou, H.; Ham, T.S.; Lee, T.S.; Keasling, J.D. Metabolic engineering of microorganisms for biofuels production: From bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 2008, 19, 556–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raud, M.; Kikas, T.; Sippula, O.; Shurpali, N. Potentials and challenges in lignocellulosic biofuel production technology. Renew. Sustain. Energy Rev. 2019, 111, 44–56. [Google Scholar] [CrossRef]
- Choi, Y.J.; Lee, J.; Jang, Y.-S.; Lee, S.Y. Metabolic engineering of microorganisms for the production of higher alcohols. mBio 2014, 5, e01524-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, J.C.; Mi, L.; Pontrelli, S.; Luo, J.C.L.L.M.S.P.S. Fuelling the future: Microbial engineering for the production of sustainable biofuels. Nat. Rev. Genet. 2016, 14, 288–304. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.; Hu, H.; Wang, W.; Zhang, X. Metabolic engineering and enzyme-mediated processing: A biotechnological venture towards biofuel production—A review. Renew. Sustain. Energy Rev. 2018, 82, 436–447. [Google Scholar] [CrossRef]
- Isikgor, F.H.; Becer, C.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef] [Green Version]
- Valdivia, M.; Galan, J.L.; Laffarga, J.; Ramos, J. Biofuels 2020: Biorefineries based on lignocellulosic materials. Microb. Biotechnol. 2016, 9, 585–594. [Google Scholar] [CrossRef]
- Lara-Flores, A.A.; Araújo, R.G.; Rodríguez-Jasso, R.M.; Aguedo, M.; Aguilar, C.N.; Trajano, H.L.; Ruiz, H.A. Bioeconomy and Biorefinery: Valorization of Hemicellulose from Lignocellulosic Biomass and Potential Use of Avocado Residues as a Promising Resource of Bioproducts; Singhania, R., Agarwal, R., Kumar, R., Sukumaran, R., Eds.; Waste to Wealth; Springer: Singapore, 2018; pp. 141–170. [Google Scholar]
- Weber, C.; Farwick, A.; Benisch, F.; Brat, D.; Dietz, H.; Subtil, T.; Boles, E. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl. Microbiol. Biotechnol. 2010, 87, 1303–1315. [Google Scholar] [CrossRef]
- Amoah, J.; Kahar, P.; Ogino, C.; Kondo, A. Bioenergy and biorefinery: Feedstock, biotechnological conversion, and products. Biotechnol. J. 2019, 14, e1800494. [Google Scholar] [CrossRef]
- Toor, M.; Kumar, S.S.; Malyan, S.K.; Bishnoi, N.R.; Mathimani, T.; Rajendran, K.; Pugazhendhi, A. An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere 2020, 242, 125080. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.-W.; Shi, A.-Q.; Tu, R.; Zhang, X.-L.; Wang, Q.; Bai, F. Branched-chain higher alcohols. Process Integr. Biochem. Eng. 2011, 128, 101–118. [Google Scholar] [CrossRef]
- Atsumi, S.; Hanai, T.; Liao, J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nat. Cell Biol. 2008, 451, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Connor, M.R.; Liao, J.C. Microbial production of advanced transportation fuels in non-natural hosts. Curr. Opin. Biotechnol. 2009, 20, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Shahsavan, M.; Mack, J.H. Numerical study of a boosted HCCI engine fueled with n-butanol and isobutanol. Energy Convers. Manag. 2018, 157, 28–40. [Google Scholar] [CrossRef]
- Savage, N. Fuel options: The ideal biofuel. Nat. Cell Biol. 2011, 474, S9–S11. [Google Scholar] [CrossRef] [Green Version]
- Elfasakhany, A. Investigations on performance and pollutant emissions of spark-ignition engines fueled with n-butanol-, isobutanol-, ethanol-, methanol-, and acetone-gasoline blends: A comparative study. Renew. Sustain. Energy Rev. 2017, 71, 404–413. [Google Scholar] [CrossRef]
- Baez, A.; Cho, K.-M.; Liao, J.C. High-flux isobutanol production using engineered Escherichia coli: A bioreactor study with in situ product removal. Appl. Microbiol. Biotechnol. 2011, 90, 1681–1690. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.M.; Liao, J.C. An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metab. Eng. 2011, 13, 674–681. [Google Scholar] [CrossRef]
- Bastian, S.; Liu, X.; Meyerowitz, J.T.; Snow, C.D.; Chen, M.M.; Arnold, F.H. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab. Eng. 2011, 13, 345–352. [Google Scholar] [CrossRef]
- Smith, K.M.; Cho, K.-M.; Liao, J.C. Engineering Corynebacterium glutamicum for isobutanol production. Appl. Microbiol. Biotechnol. 2010, 87, 1045–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blombach, B.; Riester, T.; Wieschalka, S.; Ziert, C.; Youn, J.-W.; Wendisch, V.F.; Eikmanns, B.J. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl. Environ. Microbiol. 2011, 77, 3300–3310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, S.; Jojima, T.; Suda, M.; Inui, M. Isobutanol production in Corynebacterium glutamicum: Suppressed succinate by-production by pckA inactivation and enhanced productivity via the Entner-Doudoroff pathway. Metab. Eng. 2020, 59, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wen, J.; Jia, X. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl. Microbiol. Biotechnol. 2011, 91, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Shouliang, Y.; Huang, D.; Li, Y.; Wen, J.; Jia, X. Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis. Microb. Cell Factories 2012, 11, 101. [Google Scholar] [CrossRef] [Green Version]
- Qi, H.; Li, S.; Zhao, S.; Huang, D.; Xia, M.; Wen, J. Model-driven redox pathway manipulation for improved isobutanol production in bacillus subtilis complemented with experimental validation and metabolic profiling analysis. PLoS ONE 2014, 9, e93815. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Qureshi, N. How microbes tolerate ethanol and butanol. New Biotechnol. 2009, 26, 117–121. [Google Scholar] [CrossRef]
- Chen, X.; Nielsen, K.F.; Borodina, I.; Kielland-Brandt, M.C.; Karhumaa, K. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol. Biofuels 2011, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Brat, D.; Weber, C.; Lorenzen, W.; Bode, H.B.; Boles, E. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol. Biofuels 2012, 5, 65. [Google Scholar] [CrossRef] [Green Version]
- Wess, J.; Brinek, M.; Boles, E. Improving isobutanol production with the yeast Saccharomyces cerevisiae by successively blocking competing metabolic pathways as well as ethanol and glycerol formation. Biotechnol. Biofuels 2019, 12, 1–15. [Google Scholar] [CrossRef]
- Zhao, E.M.; Zhang, Y.; Mehl, J.; Park, H.; Lalwani, M.A.; Toettcher, J.E.; Avalos, J.L. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nat. Cell Biol. 2018, 555, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.A.; Brancoli, P.; Agnihotri, S.; Bolton, K.; Taherzadeh, M.J. A review of integration strategies of lignocelluloses and other wastes in 1st generation bioethanol processes. Process. Biochem. 2018, 75, 173–186. [Google Scholar] [CrossRef]
- Liu, C.-G.; Xiao, Y.; Xia, X.-X.; Zhao, X.-Q.; Peng, L.; Srinophakun, P.; Bai, F. Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnol. Adv. 2019, 37, 491–504. [Google Scholar] [CrossRef]
- Xin, F.; Dong, W.; Zhang, W.; Ma, J.; Jiang, M. Biobutanol production from crystalline cellulose through consolidated bioprocessing. Trends Biotechnol. 2019, 37, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Li, Q.; Liu, J.; Jin, M.; Yang, S. Consolidated bioprocessing for butanol production of cellulolytic Clostridia: Development and optimization. Microb. Biotechnol. 2019, 13, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Tan, E.C.D.; McCormick, R.L.; Zhang, M.; Aden, A.; He, X.; Zigler, B.T. Techno-economic analysis and life-cycle assessment of cellulosic isobutanol and comparison with cellulosic ethanol and n-butanol. Biofuels Bioprod. Biorefining 2014, 8, 30–48. [Google Scholar] [CrossRef]
- Hal, W.J. Iso-Butanol Platform Rotterdam (IBPR); Policy Studies; ECN Biomass & Energy Efficiency: Schagen, The Netherlands, 2016. [Google Scholar]
- Higashide, W.; Li, Y.; Yang, Y.; Liao, J.C. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl. Environ. Microbiol. 2011, 77, 2727–2733. [Google Scholar] [CrossRef] [Green Version]
- Guedon, E.; Desvaux, M.; Payot, S.; Petitdemange, H. Growth inhibition of Clostridium cellulolyticum by an inefficiently regulated carbon flow. Microbiology 1999, 145, 1831–1838. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xu, T.; Tschaplinski, T.J.; Engle, N.L.; Yang, Y.; Graham, D.E.; He, Z.; Zhou, J. Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation. Biotechnol. Biofuels 2014, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.P.; Rabe, K.S.; Takasumi, J.L.; Kadisch, M.; Arnold, F.H.; Liao, J.C. Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metab. Eng. 2014, 24, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.P.; Mi, L.; Morioka, A.H.; Yoshino, K.M.; Konishi, S.; Xu, S.C.; Papanek, B.A.; Riley, L.A.; Guss, A.M.; Liao, J.C. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Metab. Eng. 2015, 31, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Holwerda, E.K.; Olson, D.G.; Ruppertsberger, N.M.; Stevenson, D.M.; Murphy, S.J.L.; Maloney, M.I.; Lanahan, A.A.; Amador-Noguez, D.; Lynd, L.R. Metabolic and evolutionary responses of Clostridium thermocellum to genetic interventions aimed at improving ethanol production. Biotechnol. Biofuels 2020, 13, 1–20. [Google Scholar] [CrossRef]
- Minty, J.J.; Singer, M.E.; Scholz, S.A.; Bae, C.-H.; Ahn, J.-H.; Foster, C.E.; Liao, J.C.; Lin, X.N. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc. Nat. Acad. Sci. USA 2013, 110, 14592–14597. [Google Scholar] [CrossRef] [Green Version]
- Rubinstein, G.M.; Lipscomb, G.L.; Williams-Rhaesa, A.M.; Schut, G.J.; Kelly, R.M.; Adams, M.W.W. Engineering the cellulolytic extreme thermophile Caldicellulosiruptor bescii to reduce carboxylic acids to alcohols using plant biomass as the energy source. J. Ind. Microbiol. Biotechnol. 2020, 47, 1–13. [Google Scholar] [CrossRef]
- Nakashima, N.; Tamura, T. A new carbon catabolite repression mutation of Escherichia coli, mlc, and its use for producing isobutanol. J. Biosci. Bioeng. 2012, 114, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Akita, H.; Nakashima, N.; Hoshino, T. Bacterial production of isobutanol without expensive reagents. Appl. Microbiol. Biotechnol. 2014, 99, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Brat, D.; Boles, E. Isobutanol production fromd-xylose by recombinant Saccharomyces cerevisiae. FEMS Yeast Res. 2013, 13, 241–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Cheng, J.-S.; Wang, B.L.; Fink, G.R.; Stephanopoulos, G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab. Eng. 2012, 14, 611–622. [Google Scholar] [CrossRef]
- Zhang, Y.; Lane, S.; Chen, J.-M.; Hammer, S.K.; Luttinger, J.; Yang, L.; Jin, Y.-S.; Avalos, J.L. Xylose utilization stimulates mitochondrial production of isobutanol and 2-methyl-1-butanol in Saccharomyces cerevisiae. Biotechnol. Biofuels 2019, 12, 1–15. [Google Scholar] [CrossRef]
- Promdonkoy, P.; Mhuantong, W.; Champreda, V.; Tanapongpipat, S.; Runguphan, W. Improvement in d-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering. J. Ind. Microbiol. Biotechnol. 2020, 47, 497–510. [Google Scholar] [CrossRef]
- Kim, S.R.; Skerker, J.M.; Kang, W.; Lesmana, A.; Wei, N.; Arkin, A.P.; Jin, Y.-S. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS ONE 2013, 8, e57048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, S.; Zhang, Y.; Yun, E.J.; Ziolkowski, L.; Zhang, G.; Jin, Y.-S.; Avalos, J.L. Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae. Biotechnol. Bioeng. 2019, 117, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Lange, J.; Müller, F.; Takors, R.; Blombach, B. Harnessing novel chromosomal integration loci to utilize an organosolv-derived hemicellulose fraction for isobutanol production with engineered Corynebacterium glutamicum. Microb. Biotechnol. 2017, 11, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Krause, F.S.; Blombach, B.; Eikmanns, B.J. Metabolic Engineering of Corynebacterium glutamicum for 2-Ketoisovalerate Production. Appl. Environ. Microbiol. 2010, 76, 8053–8061. [Google Scholar] [CrossRef] [Green Version]
- Desai, S.H.; Rabinovitch-Deere, C.A.; Tashiro, Y.; Atsumi, S. Isobutanol production from cellobiose in Escherichia coli. Appl. Microbiol. Biotechnol. 2014, 98, 3727–3736. [Google Scholar] [CrossRef]
- Desai, S.H.; A Rabinovitch-Deere, C.; Fan, Z.; Atsumi, S. Isobutanol production from cellobionic acid in Escherichia coli. Microb. Cell Factories 2015, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Lin, J.; Wang, G. Metabolic engineering of Corynebacterium crenatium for enhancing production of higher alcohols. Sci. Rep. 2016, 6, 39543. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Kim, J.K.; Ahn, J.-O.; Song, Y.-H.; Shin, C.-S.; Park, Y.-C.; Kim, K.H. Isobutanol production from empty fruit bunches. Renew. Energy 2020, 157, 1124–1130. [Google Scholar] [CrossRef]
- Jung, H.-M.; Lee, J.Y.; Lee, J.-H.; Oh, M.-K. Improved production of isobutanol in pervaporation-coupled bioreactor using sugarcane bagasse hydrolysate in engineered Enterobacter aerogenes. Bioresour. Technol. 2018, 259, 373–380. [Google Scholar] [CrossRef]
- Jung, H.M.; Kim, Y.H.; Oh, M.K. Formate and nitrate utilization in Enterobacter aerogenes for semi-anaerobic production of isobutanol. Biotechnol. J. 2017, 12, 1700121. [Google Scholar] [CrossRef]
- Huo, Y.-X.; Cho, K.M.; Rivera, J.G.L.; Monte, E.; Shen, C.R.; Yan, Y.; Liao, J.C. Conversion of proteins into biofuels by engineering nitrogen flux. Nat. Biotechnol. 2011, 29, 346–351. [Google Scholar] [CrossRef]
- Wu, W.; Tran-Gyamfi, M.B.; Jaryenneh, J.D.; Davis, R.W. Cofactor engineering of ketol-acid reductoisomerase (IlvC) and alcohol dehydrogenase (YqhD) improves the fusel alcohol yield in algal protein anaerobic fermentation. Algal Res. 2016, 19, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Wu, W.; Tran-Gymfi, M.B.; Jaryenneh, J.D.; Zhuang, X.; Davis, R.W. Bioconversion of distillers’ grains hydrolysates to advanced biofuels by an Escherichia coli co-culture. Microb. Cell Factor. 2017, 16, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.-J.; Seo, D.; Choi, K.-Y. Bioalcohol production from spent coffee grounds and okara waste biomass by engineered Bacillus subtilis. Biomass. Convers. Biorefinery 2019, 10, 167–173. [Google Scholar] [CrossRef]
- Tian, L.; Papanek, B.; Olson, D.G.; Rydzak, T.; Holwerda, E.K.; Zheng, T.; Zhou, J.; Maloney, M.; Jiang, N.; Giannone, R.J.; et al. Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum. Biotechnol. Biofuels 2016, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, S.A.; Olson, D.G.; Argyros, D.A.; Miller, B.B.; Barrett, T.F.; Murphy, D.M.; McCool, J.D.; Warner, A.K.; Rajgarhia, V.B.; Lynd, L.R.; et al. Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl. Environ. Microbiol. 2010, 76, 6591–6599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, D.G.; Lynd, L.R. Transformation of Clostridium thermocellum by electroporation. Cellulases 2012, 510, 317–330. [Google Scholar] [CrossRef]
- Mearls, E.B.; Olson, D.G.; Herring, C.D.; Lynd, L.R. Development of a regulatable plasmid-based gene expression system for Clostridium thermocellum. Appl. Microbiol. Biotechnol. 2015, 99, 7589–7599. [Google Scholar] [CrossRef]
- Walker, J.E.; Lanahan, A.A.; Zheng, T.; Toruno, C.; Lynd, L.R.; Cameron, J.C.; Olson, D.G.; Eckert, C.A. Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Metab. Eng. Commun. 2020, 10, e00116. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Y.; Li, Y. Production of fuels and chemicals from renewable resources using engineered Escherichia coli. Biotechnol. Adv. 2019, 37, 107402. [Google Scholar] [CrossRef]
- Hasunuma, T.; Ishii, J.; Kondo, A. Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown. Curr. Opin. Chem. Biol. 2015, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Arora, A. Tracking strategic developments for conferring xylose utilization/fermentation by Saccharomyces cerevisiae. Ann. Microbiol. 2020, 70, 1–17. [Google Scholar] [CrossRef]
- Promdonkoy, P.; Siripong, W.; Downes, J.J.; Tanapongpipat, S.; Runguphan, W. Systematic improvement of isobutanol production from d-xylose in engineered Saccharomyces cerevisiae. AMB Express 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Bengtsson, O.; Hahn-Hägerdal, B.; Gorwa-Grauslund, M.F. Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 2009, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Petschacher, B.; Nidetzky, B. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Factories 2008, 7, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, S.; Abu Saleh, A.; Pack, S.P.; Annaluru, N.; Kodaki, T.; Makino, K. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+ -dependent xylitol dehydrogenase. J. Biotechnol. 2007, 130, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, Y.; Zhu, B.; Zhang, G.; Wei, N. Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling. PLoS ONE 2018, 13, e0199104. [Google Scholar] [CrossRef] [Green Version]
- Vinuselvi, P.; Lee, S.K. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. Enzym. Microb. Technol. 2012, 50, 1–4. [Google Scholar] [CrossRef]
- Kumar, B.; Bhardwaj, N.; Agrawal, K.; Chaturvedi, V.; Verma, P. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process. Technol. 2020, 199, 106244. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Alriksson, B.; Nilvebrant, N.-O. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnol. Biofuels 2013, 6, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, H.; Jiang, J.; Lu, Q.; Zhao, Z.; Xie, T.; Zhao, H.; Wang, M. Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock. Microb. Cell Factories 2015, 14, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.-Y.; Wernick, D.G.; Tat, C.A.; Liao, J.C. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab. Eng. 2014, 23, 53–61. [Google Scholar] [CrossRef]
- Tojo, S.; Satomura, T.; Kumamoto, K.; Hirooka, K.; Fujita, Y. Molecular mechanisms underlying the positive stringent response of the Bacillus subtilis ilv-leu operon, involved in the biosynthesis of branched-chain amino acids. J. Bacteriol. 2008, 190, 6134–6147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.Y.; Yang, Y.-H.; Choi, K.-Y. Bioconversion of plant hydrolysate biomass into biofuels using an engineered Bacillus subtilis and Escherichia coli mixed-whole cell biotransformation. Biotechnol. Bioprocess. Eng. 2020, 25, 477–484. [Google Scholar] [CrossRef]
- Robak, K.; Balcerek, M. Current state-of-the-art in ethanol production from lignocellulosic feedstocks. Microbiol. Res. 2020, 240, 126534. [Google Scholar] [CrossRef]
- Kuroda, K.; Hammer, S.K.; Watanabe, Y.; López, J.M.; Fink, G.R.; Stephanopoulos, G.; Ueda, M.; Avalos, J.L. Critical roles of the pentose phosphate pathway and GLN3 in isobutanol-specific tolerance in yeast. Cell Syst. 2019, 9, 534–547.e5. [Google Scholar] [CrossRef]
- Seo, H.-M.; Jeon, J.-M.; Lee, J.H.; Song, H.-S.; Joo, H.-B.; Park, S.-H.; Choi, K.-Y.; Kim, Y.H.; Park, K.; Ahn, J.; et al. Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural. J. Ind. Microbiol. Biotechnol. 2015, 43, 37–44. [Google Scholar] [CrossRef]
- Song, H.-S.; Jeon, J.-M.; Choi, Y.-K.; Kim, J.-Y.; Kim, W.; Rene, E.R.; Park, K.; Ahn, J.-O.; Lee, H.; Yang, Y.-H. L-Glycine alleviates furfural-induced growth inhibition during isobutanol production in Escherichia coli. J. Microbiol. Biotechnol. 2017, 27, 2165–2172. [Google Scholar] [CrossRef]
- Song, H.-S.; Jeon, J.-M.; Kim, H.-J.; Bhatia, S.; Sathiyanarayanan, G.; Kim, J.; Hong, J.W.; Hong, Y.G.; Choi, K.-Y.; Kim, Y.-G.; et al. Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli. Bioresour. Technol. 2017, 245, 1430–1435. [Google Scholar] [CrossRef]
- Andre, A.; Nagy, T.; Toth, A.J.; Haaz, E.; Fozer, D.; Tarjani, J.A.; Mizsey, P. Distillation contra pervaporation: Comprehensive investigation of isobutanol-water separation. J. Clean. Prod. 2018, 187, 804–818. [Google Scholar] [CrossRef]
- Farhadi, M.; Pazuki, G.; Raisi, A. Modeling of the pervaporation process for isobutanol purification from aqueous solution using intelligent systems. Sep. Sci. Technol. 2017, 53, 1383–1396. [Google Scholar] [CrossRef]
Ethanol | 1-butanol | Isobutanol | Gasoline | |
---|---|---|---|---|
Lower Heating Value (MJ/kg) | 27.0 | 33.1 | 33.3 | 43.5 |
Flash point (°C) | 13 | 37 | 28 | −43 |
Solubility (20 °C in water, wt %) | Miscible | 7.7 | 8.7 | negligible |
Boiling temperature (°C) | 78.4 | 117.7 | 108 | 25–215 |
Vapor toxicity | Toxic | Moderate | Moderate | Moderate |
Microorganism | Carbon Source | Strategy | Genes Involved | Titer | Time | Reactor | Reference |
Clostridium cellulolyticum | Cellulose | Engineered isobutanol pathway | ilvDEC, ilvCEC, yqhDEC, alsSBS, kivdLL | 0.66 g/L | 216 h | Tube | [41] |
Cellulose | Keto acid pathway Promoter engineering | Δspo0A, alsSBS, kivdLL | 0.35 g/L | ~250 h | Unknown | [43] | |
Geobacillus thermoglucosidasius | Cellobiose | Keto acid pathway Promoter engineering | ilvCGT alsSBS, kivdLL (LLKF_1386) | 0.6 g/L | 48 h | Tube | [44] |
Clostridium thermocellum | Cellulose | Keto acid pathway Promoter engineering Optimize fermentation conditions | ilvBCT, ilvNCT, ilvCCT, ilvDCT, kivdLL | 5.4 g/L | 75 h | Tube | [45] |
Cellulose | Inhibition competition pathway Adaptive laboratory evolution | Δhpt, Δldh, Δpta, adhED494G | 5.1 g/L | 220 h | Bioreactor | [46] | |
Trichoderma reesei and Escherichia coli | Pretreated corn stover | Random mutagenesis Engineered isobutanol pathway Microbial consortium | T. reesei RUTC30: - E. coli NV3: ilvCEC, ilvDEC, alsSBS, kivdLL, Adh2SC | 1.88 g/L | 380 h | Bioreactor | [47] |
Caldicellulosiruptor bescii | Switchgrass | Inhibition competition pathway AOR-ADH pathway | Δldh PF0346PF (AOR), Teth514_0564PF (ADHA) | 0.17 g/L | 40 h | Fermentor | [48] |
Glucose-xylose mixture | Dismantle carbon catabolite repression Inhibition competition pathway Engineered isobutanol pathway | ΔldhA, ΔadhE, ΔpflB, Δpta-ackA, mlc*, ilvCEC, ilvDEC, alsSBS, kivdLL, Adh2SC, | 11 g/L | 182 h | Flask | [49] | |
Cedar | Dismantle carbon catabolite repression Inhibition competition pathway Promoter engineering Chromosome integration Optimize fermentation conditions | ΔldhA, ΔadhE, ΔpflB, Δpta-ackA, mlc*, ilvCEC, ilvDEC, alsSBS, kivdLL, adhALL | 3.7 g/L | 96 h | Flask | [49,50] | |
Saccharomyces cerevisiae | Xylose | Xylose XI pathway Cytosolic isobutanol pathway | ΔIlv2, ΔIlv5, ΔIlv3, xylACP, Tal1SC, Xks1SC, Ilv2ΔN54SC, Ilv5ΔN48SC, Ilv3ΔN19SC, Aro10SC, Adh2SC | 1.36 mg/L | 150 h | Flask | [51] |
Xylose | Xylose XI pathway Chromosome integration Adaptive laboratory evolution Mitochondrial isobutanol pathway Fed-batch fermentation | ΔBAT1, ΔALD6, ΔPHO13, ΔURA3 RKI1SC, RPE1SC, TKL1SC, TAL1SS, XYLAPE, XYL3SS, ILV2SC, ILV5SC, ILV3SC, kivdLL, | 3.1 g/L | 192 h | Tube | [52,53] | |
Xylose | Xylose XR-XDH pathway Chromosome integration Mitochondrial isobutanol pathway Copy number optimization Adaptive laboratory evolution | ΔPHO13, ΔGRE3, hxt7F79S, XYL1SS, XYL2SS, XYL3SS ILV2SC, ILV5SC, ILV3SC, ADH7SC, kivdLL | 92.9 mg/ L | 144 h | Tube | [53,54] | |
Xylose | Xylose XR-XDH pathway Chromosome integration Copy number optimization Mitochondrial isobutanol pathway Optimize fermentation conditions Fed-batch fermentation | ΔALD6, ΔPHO13 XYL1SS, XYL2SS, XYL3SS ILV2SC, ILV5SC, ILV3SC, kivdLL, | 2.6 g/L | Unknown | Bioreactor | [55,56] | |
Corynebacterium glutamicum | Hemicellulose fraction | Inhibition competition pathway Xylose XI pathway Arabinose metabolism pathway Engineered isobutanol pathway | Δpqo, ΔilvE, ΔldhA, Δmdh, xylAXC, xylBCG, araBEC, araAEC, araDEC, ilvBEC, ilvNEC, ilvCEC, ilvDEC, pntABEC, kivdLL, Adh2CG | 0.53 g/L | ~28 h | Flask | [57,58] |
Cellobiose | Inhibition competition pathway Copy number optimization Engineered isobutanol pathway Cellobiose metabolism pathway | ΔadhE, ΔfrdBC, Δfnr, ΔldhA, Δpta, ΔpflB, ilvCEC, ilvDEC, alsSBS, kivdLL, adhALL, bglCTF | 7.64 g/L | 72 h | Unknown | [59] | |
Cellobionic | Inhibition competition pathway Engineered isobutanol pathway | ΔadhE, ΔfrdBC, Δfnr, ΔldhA, Δpta, ΔpflB, ilvCEC, ilvDEC, alsSBS, kivdLL, adhALL | 1.4 g/L | 48 h | Unknown | [60] | |
Corynebacterium crenatum | Duckweed | Engineered isobutanol pathway | ILV2SC, ILV5SC, ILV3SC, kivdLL, Adh2SC | 1.15 g/L | 96 h | Flask | [61] |
Duckweed | Whole-cell mutagenesis Engineered isobutanol pathway Simultaneous saccharification and fermentation | , , ILV3SC, kivdLL, | 5.6 g/L | 96 h | Flask | [62] | |
Emptyfruit bunches | Engineered isobutanol pathway Optimize fermentation conditions Separate hydrolysis and fermentation | ilvCEC, ilvDEC, adhPEC, alsSBS, kivDLL | 5.4 g/L | 156 h | Unknown | [62] | |
Enterobacter aerogenes | Sugarcane bagasse | Inhibition competition pathway Engineered isobutanol pathway Pervaporation-coupled fermentation | ΔldhA, ΔbudA, ΔpflB, ΔptsG, ilvDKP, ilvCKP, budBKP, kivDLL, adhALL | 23 g/L | 72 h | Fermenter | [63,64] |
Escherichia coli | Algal protein | Chemical mutagenesis Protein conversion Cofactor engineering | ΔglnA, ΔgdhA, ΔluxS, ΔlsrA, ilvCA71S, R76D, S78D, Q110A, yqhDG39I, S40R ilvEEC, ilvAEC, sdabEC, avtaEC, LueDHTI ilvDEC, alsSBS, kivDLL | 0.2 g/L | Unknown | Flask | [65,66] |
E. coli BLF2 and E. coli AY3 (1:1.5) | Distillers’ grains | Chemical mutagenesis Protein conversion Cofactor engineering Engineered isobutanol pathway Microbial consortium | E. coli BLF2: Δldh ilvCEC, ilvDEC, YqhDEC, alsSBS, kivdLL E. coli AY3: ΔglnA, ΔgdhA, ΔluxS, ΔlsrA, ilvCA71S, R76D, S78D, Q110A, yqhDG39I, S40R ilvEEC, ilvAEC, sdabEC, avtaEC, LueDHTI ilvDEC, alsSBS, kivDLL | 6.5 g/L | 52 h | Tube | [65,67] |
Bacillus subtilis | Okara wastes | Activation of ilv-leu operonInhibition competition pathwayKeto acid pathway | ΔcodY, ΔbkdB, ΔrelA,LueDHTI,kivDLL, yqhDEC | 0.02 g/L | Unknown | Flask | [68] |
Bacillus subtilis and Escherichia coli (1:4) | Watermelon rind and Okara waste | Protein conversion Engineered isobutanol pathway Microbial consortium | B. subtilis: ΔcodY, ΔbkdB, LueDHTI, kivDLL, yqhDEC E. coli: ilvCEC, ilvDEC, YqhDEC, alsSBS, kivdLL | 0.88 g/L | 220 h | Flask | [69,70,71,72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Zhang, W.; Zhang, A.; Shao, W. Biorefinery: The Production of Isobutanol from Biomass Feedstocks. Appl. Sci. 2020, 10, 8222. https://doi.org/10.3390/app10228222
Su Y, Zhang W, Zhang A, Shao W. Biorefinery: The Production of Isobutanol from Biomass Feedstocks. Applied Sciences. 2020; 10(22):8222. https://doi.org/10.3390/app10228222
Chicago/Turabian StyleSu, Yide, Weiwei Zhang, Aili Zhang, and Wenju Shao. 2020. "Biorefinery: The Production of Isobutanol from Biomass Feedstocks" Applied Sciences 10, no. 22: 8222. https://doi.org/10.3390/app10228222
APA StyleSu, Y., Zhang, W., Zhang, A., & Shao, W. (2020). Biorefinery: The Production of Isobutanol from Biomass Feedstocks. Applied Sciences, 10(22), 8222. https://doi.org/10.3390/app10228222