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Given the simplicity in sample preparation and application, thin-layer chromatography (TLC)
and high-performance thin-layer chromatography (HPTLC) as its most enhanced form are commonly
used to separate and identify complex mixtures in solution. (HP)TLC has a long tradition of use in
quality control of medicinal plants, complex plant extracts and natural products. HPTLC is based
on the use of special layers of fine particles of stationary phase (~5 µm, narrow particle size range)
applied to a plate. The use of automated computer controlled HPTLC instrumentation has improved
method sensitivity, reproducibility, separation efficiency and enabled quantitative determination of
separated components.

Through coupling with direct enzyme and enzyme inhibition bioassays whose response
can be visualized on the chromatographic plate, (HP)TLC has been established as a targeted
bioactivity screening method. These bioautographic assays provide not only phytochemical results
by chromatographic separation, but also additional information about the activity of constituents
in complex mixtures and extracts. However, one of the problems in (HP)TLC is the identification
of separated compounds on the plate. In recent years, considerable effort has been devoted to the
coupling of (HP)TLC with spectrometric methods due to the robustness and simplicity of (HP)TLC
and the need for effective identification and determination of sample constituents. In instrumental
analysis, compounds are usually been identified based on chromatographic-spectroscopic hyphenated
techniques. The goal of hyphenation of two analytical techniques in (HP)TLC is to enable
rapid and efficient chromatographic separation with subsequent identification of the separated
fractions. Mass spectrometry (MS) is one of the most powerful identification techniques used in
analytical chemistry and biochemistry. It has been successfully hyphenated with (HP)TLC as thin
layer chromatography/mass spectrometry (TLC/MS) and thin layer chromatography/tandem mass
spectrometry (TLC/MS/MS) [1–6]. Although TLC/MS/MS offers additional benefits, it requires more
expensive instrumentation and more challenging operational requirements. Also, HPTLC–MS and
HPTLC/MS/MS systems are available to only a small number of research groups. The introduction
of an elution-based TLC–MS interface has also allowed the possibility of expanding the connection
with other detectors. The chromatogram bands can be eluted from the HPTLC plate with a suitable
solvent and either transferred online to the mass spectrometer or collected in a sample vial for further
offline analysis.

Infrared (IR) spectroscopy is another useful spectroscopic method that can be coupled with
(HP)TLC. The major advantages of IR spectroscopy is no (or minimal) sample preparation is required,
and it is an environmentally friendly and reagent-free green tool, that provides results within minutes [7].
Most IR spectrometers are easy to use, portable, and relatively inexpensive. After separation and
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bioassay detection, eluted bioactive bands can be easily chemically characterized using attenuated
total reflection Fourier transform infrared (ATR-FTIR) spectral analysis (Figure 1).
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Figure 1. Overview of hyphenated (HP)TLC with ATR-FTIR identification as a tool in the Effect-Directed
Discovery of bioactive compounds in plant extracts.

FTIR spectra are typically measured in the mid-IR region (4000 to 400 cm−1) of the electromagnetic
spectrum. When organic molecules absorb IR radiation, the radiation is converted into molecular
vibrations. Although the IR spectrum is not characteristic of the entire molecule, the energy required
to vibrate a functional group such as a carbonyl (–C=O) is very similar in different compounds so
the peaks occur at or near the same frequency regardless of the structure of the rest of the molecule.
Thus, IR spectroscopy can be used to elucidate organic structure by providing structural/chemical
characterization based on functional group vibrations. Characteristic absorption bands can be used
for compound-specific detection or to verify quality markers in plant extracts or distillates while a
fingerprint IR spectrum can be used to identify unknown compounds.

Attenuated total reflection (ATR) is a sampling technique which is considered a universal sampling
accessory. Spectra are recorded directly in either the solid or liquid state, without sample preparation.
The only sample preparation required is to apply pressure with the pressure applicator, if solid samples
are analyzed. There is no need to apply pressure when liquid samples are analyzed. The quality of
ATR-FTIR spectra is sufficient to allow identification when examined and compared to the reference
spectra of pure compounds, on different portions of the spectrum. Despite a small interference from
solubilized silica to sample identification, compounds isolated from certain chromatographic bioactive
bands can be identified. The search–match results can be used to compare the ATR-FTIR spectrum of the
compound from certain chromatographic bands with the ATR-FTIR spectrum of a standard compound.
The open access SpectraBaseTM (John Wiley & Sons, Inc., Hoboken, NJ, USA) [8] is a free database of
IR, NMR, Raman, UV, and mass spectra, containing hundreds of thousands of spectra provided by
Wiley. Spectra can be searched by name, International Chemical Identifier (InChI) key, and Chemical
Abstracts Service (CAS) number. Spectra of unknown compounds isolated from chromatograms can
be superimposed with the spectrum from the database for comparison. Combined with effect-directed
assays and ATR-FTIR spectroscopy, hyphenated HPTLC allows an effect-directed high-throughput
screening and fast characterization of the active compound. HPTLC combined with effect directed
analysis has been previously used to detect biological active compounds on chromatograms [9].
Combined with effect-directed assays and attenuated total reflectance-Fourier transform infrared
(ATR-FTIR) spectroscopy, hyphenated HPTLC has allowed a fast characterization of the compound
responsible for α-amylase inhibition in Mediterranean culinary herbs [10]. Compounds with biological
activities from five native Australian plants were identified via ATR-FTR spectroscopy [11]. ATR spectral
analysis of this bioactive band on chromatograms has tentatively identified an oleanolic acid derivative
to be responsible for α-amylase inhibition.
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