Heatwave Damage Prediction Using Random Forest Model in Korea
Abstract
:1. Introduction
2. Methodology
2.1. Test Area
2.2. Variable Selection
2.3. Random Forest Regression
3. Results of Predicting the Number of Heatwave-Related Patients
3.1. Data Collection and Pre-Processing for Model Training
3.2. Hyper-Parameter Optimization
3.3. Model Comparasion
3.4. Feature Importance
3.5. Model Application and Visualization
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Djalante, R. Key assessments from the IPCC special report on global warming of 1.5 °C and the implications for the Sendai framework for disaster risk reduction. Prog. Disaster Sci. 2019, 1, 100001. [Google Scholar] [CrossRef]
- Peduzzi, P. The disaster risk, global change, and sustainability nexus. Sustainability 2019, 11, 957. [Google Scholar] [CrossRef] [Green Version]
- Schär, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häberli, C.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Public Health England. Heatwave Plan for England; Public Health England: London, UK, 2019.
- Lim, J.; Bok, K.; Yoo, J. Design and implementation of a realtime public transport route guidance system using big data analysis. J. Korea Cont. Assoc. 2019, 19, 460–468. [Google Scholar]
- Choi, S.H.; Park, Y.J.; Shim, J.H. Strengthening of disaster management ability through big data utilization. J. Korean Soc. Civ. Eng. 2015, 63, 21–28. [Google Scholar]
- Lee, J.H.; Baek, S.H.; Lee, S.J.; Bae, H.Y. The method for Real-time complex event detection of unstructured big data. Korea Spat. Inf. Soc. 2012, 20, 99–109. [Google Scholar]
- Meehl, G.A. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [Green Version]
- Green, H.K.; Andrews, N.J.; Bickler, G.; Pebody, R.G. Rapid estimation of excess mortality: Nowcasting during the heatwave alert in England and Wales in June 2011. J. Epidemiol. Comm. Health 2012, 66, 866–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, G.B.; Oleson, K.W.; Jones, B.; Peng, R.D. Classifying heatwaves: Developing health-based models to predict high-mortality versus moderate united states heatwaves. Clim. Chang. 2018, 146, 439–453. [Google Scholar] [CrossRef]
- Kim, D.W.; Deo, R.C.; Park, S.J.; Lee, J.S.; Lee, W.S. Weekly heat wave death prediction model using zero-inflated regression approach. Theor. Appl. Climatol. 2019, 137, 823–838. [Google Scholar] [CrossRef]
- Williams, S.; Nitschke, M.; Weinstein, P.; Pisaniello, D.L.; Parton, K.A.; Bi, P. The impact of summer temperatures and heatwaves on mortality and morbidity in Perth, Australia 1994–2008. Environ. Int. 2012, 40, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Lee, M.I. Interannual variability of heat waves in Korea and their connection with large-scale atmospheric circulation patterns. Int. J. Climatol. 2016, 36, 4815–4830. [Google Scholar] [CrossRef] [Green Version]
- Suh, M.S.; Oh, S.G.; Lee, Y.S.; Ahn, J.B.; Cha, D.H.; Lee, D.K.; Hong, S.Y.; Min, S.K.; Park, S.C.; Kang, H.S.; et al. Projections of high resolution climate changes for Korea using multiple-regional climate models based on four RCP scenarios. Part 1: Surface air temperature. Asia Pac. J. Atmos. Sci. 2016, 52, 151–169. [Google Scholar] [CrossRef]
- Min, K.H.; Chung, C.H.; Bae, J.H.; Cha, D.H. Synoptic characteristics of extreme heatwaves over the Korean peninsula based on era interim reanalysis data. Int. J. Climatol. 2020, 40, 3179–3195. [Google Scholar] [CrossRef]
- Lee, H.D.; Min, K.H.; Bae, J.H.; Cha, D.H. Characteristics and comparison of 2016 and 2018 heat wave in Korea. Atmosphere 2020, 30, 1–15. [Google Scholar]
- Reid, C.E.; O’Neill, M.S.; Gronlund, C.J.; Brines, S.J.; Brown, D.G.; Diez-Roux, A.V.; Schwartz, J. Mapping community determinants of heat vulnerability. Environ. Health Perspect. 2009, 117, 1730–1736. [Google Scholar] [CrossRef]
- Huisman, M.; Kunst, A.E.; Mackenbach, J.P. Socioeconomic inequalities in morbidity among the elderly: A European view. Soc. Sci. Med. 2003, 57, 861–873. [Google Scholar] [CrossRef]
- Basu, R. High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008. Environ. Health 2009, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Vose, R.S.; Applequist, S.; Bourassa, M.A.; Pryor, S.C.; Barthelmie, R.J.; Blanton, B.; Bromirski, P.D.; Brooks, H.E.; Degaetano, A.T.; Dole, R.M.; et al. Monitoring and understanding changes in extremes: Extratropical storms, winds, and waves. Bull. Am. Meteorol. Soc. 2014, 95, 377–386. [Google Scholar] [CrossRef]
- Zubov, D.; Barbosa, H.A.; Duane, G.S. A nonanticipative analog method for long-term forecasting of air temperature extremes. arXiv 2015, arXiv:1507.03283. [Google Scholar]
- Gershunov, A.; Johnston, Z.; Margolis, H.G.; Guirguis, K. The California heat wave 2006 with impacts on statewide medical emergency. Geogr. Res. Forum 2011, 31, 53–69. [Google Scholar]
- Guirguis, K.; Gershunov, A.; Tardy, A.; Basu, R. The impact of recent heat waves on human health in California. J. Appl. Meteor. Climatol. 2014, 53, 3–19. [Google Scholar] [CrossRef]
- Basu, R.; Samet, J.M. Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence. Epidemiol. Rev. 2002, 24, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Kovats, R.S.; Hajat, S. Heat stress and public health: A critical review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, N.; Liu, J.; Zhang, Z.; Liu, Y. Global heat wave hazard considering humidity effects during the 21st century. Int. J. Environ. Res. Public Health 2019, 16, 1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemonsu, A.; Viguié, V.; Daniel, M.; Masson, V. Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Clim. 2015, 14, 86–605. [Google Scholar] [CrossRef]
- Li, D.; Sun, T.; Liu, M.; Wang, L.; Gao, Z. Changes in wind speed under enhance urban heat islands in the Beijing metropolitan area. J. Appl. Meteorol. Climatol. 2016, 55, 2369–2375. [Google Scholar] [CrossRef]
- Vescovi, L.; Rebetez, M.; Rong, F. Assessing public health risk due to extremely high temperature events: Climate and social parameters. Clim. Res. 2005, 30, 71–78. [Google Scholar] [CrossRef]
- Kim, Y.; Joh, S. A vulnerability study of the low-income elderly in the context of high temperature and mortality in Seoul, Korea. Sci. Total Environ. 2006, 371, 82–88. [Google Scholar] [CrossRef]
- Hajat, S.; Kovats, R.S.; Lachowycz, K. Heat-related and cold-related deaths in England and Wales: Who is at risk? Occup. Environ. Med. 2007, 64, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Bonauto, D.; Anderson, R.; Rauser, E.; Burke, B. Occupational heat illness in Washington state, 1995–2005. Am. J. Ind. Med. 2007, 50, 940–950. [Google Scholar] [CrossRef] [PubMed]
- Spector, J.T.; Bonauto, D.K.; Sheppard, L.; Busch-Isaksen, T.; Calkins, M.; Adams, D. A case-crossover study of heat exposure and injury risk in outdoor agricultural workers. PLoS ONE 2016, 11, e0164498. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.; Lee, E.; Kwon, B.Y.; Lee, S.; Jo, K.H.; Kim, J. Long-term changes in the heat–mortality relationship according to heterogeneous regional climate: A time-series study in Korea. BMJ 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Xu, X.; Yu, H. Floor heating customer prediction model based on random forest. In Proceedings of the 17th International Conference on Computer and Information Science, Singapore, 6–8 June 2018; pp. 573–578. [Google Scholar]
- Dang, V.H.; Dieu, T.B.; Tran, X.L.; Hoang, N.D. Enhancing the accuracy of rainfall-induced landslide prediction along mountain roads with a GIS-based random forest classifier. Bull. Eng. Geol. Environ. 2019, 78, 2835–2849. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Q.; Du, Y.; Wang, J.; Zhou, J.; Du, Z.; Li, T. A random forest model to predict heatstroke occurrence for heatwave in China. Sci. Total Environ. 2019, 650, 3048–3053. [Google Scholar] [CrossRef]
- Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015, 527, 1130–1141. [Google Scholar] [CrossRef]
- Deng, M.; Chen, J.; Huang, J.; Niu, W. Agricultural drought risk evaluation based on an optimized comprehensive index system. Sustainability 2018, 10, 3465. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.L.J.; Tropsha, A.; Winkler, D.A. Beware of R2: Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J. Chem. Inf. Model. 2015, 55, 1316–1322. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Lu, Y. Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kazimierz Dolny, Poland, 21–23 November 2019. [Google Scholar]
- Zikmund, W.G.; Babin, B.J.; Carr, J.C.; Adhikari, A.; Griffin, M. Business Research Methods: A South Asian Perspective, 8th ed.; Cengage Learning: Boston, MA, USA, 2013. [Google Scholar]
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Breiman, L. Out-of-Bag Estimation; Citeseer: Berkeley, CA, USA, 1996. [Google Scholar]
- Taylor, S.J.; Letham, B. Forecasting at scale. Am. Stat. 2018, 72, 37–45. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, H.; Li, J.; Jiang, Z.; Ma, T. Heat wave frequency variability over North America: Two distinct leading modes. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Chen, Y.H.; Schwartz, J.D.; Rood, R.B.; O’Neill, M.S. Using forecast and observed weather data to assess performance of forecast products in identifying heat waves and estimating heat wave effects on mortality. Environ. Health Perspect. 2014, 122, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Lee, W.S.; Yoo, J.H. Assessment of medium-range ensemble forecasts of heat waves. Atmos. Sci. Lett. 2016, 17, 19–25. [Google Scholar] [CrossRef]
- Qi, X.; Yang, J. Extended-range prediction of a heat wave event over the Yangtze river valley: Role of intraseasonal signals. Atmos. Ocean. Sci. Lett. 2019, 12, 451–457. [Google Scholar] [CrossRef] [Green Version]
Variable Description | Abbreviation | Units | Data Source |
---|---|---|---|
Static variables—socioeconomic and demographic data | Korean statistical information service | ||
Per capita income | Income | ×$1000 | |
Insurance premiums per person | Insurance | ×$1000 | |
Resident registration population | RRP | ×1 | |
Number of vulnerable occupational groups (agricultural, manufacturing, and construction workers) | V-groups | ×1000 | |
Dynamic variables—meteorological data | KMA | ||
Maximum temperature of the week | Max Tem | °C | |
Minimum temperature of the week | Min Tem | °C | |
Mean temperature of the week | Mean Tem | °C | |
Median temperature of the week | Median Tem | °C | |
Variance temperature of the week | Variance Tem | °C | |
Mean humidity of the week | Mean Hum | % | |
Mean wind speed of the week | Mean wind speed | m/s | |
Dynamic variables—demographic data | Statistical data center | ||
Floating population | FP | ×1 |
Method | MAE | RMSE | RMSLE | |
---|---|---|---|---|
Logistic regression | 5.301 | 12.460 | 0.855 | 0.593 |
SVM | 5.184 | 8.800 | 0.956 | 0.797 |
Decision tree | 5.524 | 13.384 | 0.803 | 0.531 |
Random forest | 3.816 | 8.655 | 0.645 | 0.804 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.; Jung, D.; Lee, S.; Park, S. Heatwave Damage Prediction Using Random Forest Model in Korea. Appl. Sci. 2020, 10, 8237. https://doi.org/10.3390/app10228237
Park M, Jung D, Lee S, Park S. Heatwave Damage Prediction Using Random Forest Model in Korea. Applied Sciences. 2020; 10(22):8237. https://doi.org/10.3390/app10228237
Chicago/Turabian StylePark, Minsoo, Daekyo Jung, Seungsoo Lee, and Seunghee Park. 2020. "Heatwave Damage Prediction Using Random Forest Model in Korea" Applied Sciences 10, no. 22: 8237. https://doi.org/10.3390/app10228237
APA StylePark, M., Jung, D., Lee, S., & Park, S. (2020). Heatwave Damage Prediction Using Random Forest Model in Korea. Applied Sciences, 10(22), 8237. https://doi.org/10.3390/app10228237