Study on the Applicability of Dynamic Stability Evaluation Criteria by Comparison of Trackside Measurement Results of Different Track Structures
Abstract
:1. Introduction
2. Theoretical Discussion
2.1. Key Dynamic Stability Evaluation Parameters Review
2.1.1. Derailment Coefficient and Wheel Load Fluctuation
- Q: Lateral wheel load (kN);
- P: Vertical wheel load (kN).
2.1.2. Spring Coefficient and TSS Calculation Methods
- : the stiffness of the pad (kN/mm),
- : the stiffness of the resilience (if applicable) (kN/mm),
- : the stiffness of the sleeper (if applicable) (kN/mm),
- : the stiffness of the ballast-less slab (kN/mm),
- : the stiffness of the subgrade (kN/mm),
- : the stiffness of the ballast-less slab track structure (kN/mm)
- E: modulus of elasticity (GPa),
- I: moment of inertia (mm4),
- d: distance of the sleepers (mm),
- : stiffness of the track structure (kN/mm),
- : track support stiffness (kN/mm).
- : is the trackside measurement based track support stiffness (kN/mm);
- : is the dynamic wheel load (maximum value derived from the trackside measurement) (kN);
- : is the rail vertical displacement (maximum value derived from the trackside measurement (mm);
2.2. Effect of Different Track Conditions and Types on the Parametric Evaluation
2.3. Investigation into the Applicability of Korean Dynamic Stability Evaluation Criteria
3. Trackside Measurement through Field Instrumentation
3.1. Trackside Measurement Site Condition
3.2. Dynamic Stability Evaluation Criteria
3.3. Field Measurement Method
Field Instrumentation and Installation
3.4. Trackside Measurement Method
3.5. Field Measurement Result Comparison
3.6. Dynamic Stability Performance Result Comparison
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, J.W.; Kim, M.C.; Park, Y.G. An Experimental Study on the Evaluation of Track Impact factor on the Various Track Type in Urban Transit. In Proceedings of the KSR Conference; Autumn Conference of Korean Society for Railway: Jeju, Korea, 2011; pp. 382–399. [Google Scholar]
- Van Dyk, B.J.; Edwards, J.R.; Dersch, M.S.; Ruppert, C.J., Jr.; Barkan, C.P. Evaluation of Dynamic and Impact Wheel Load Factors and their 3 Application for Design. In Proceedings of the Transportation Research Board 93rd Annual Meeting, (No. 14-4714), Washington, DC, USA, 12–16 January 2014. [Google Scholar]
- Kouroussis, G.; Caucheteur, C.; Kinet, D.; Alexandrou, G. Review of Trackside Monitoring Solutions: From Strain Gages to Optical Fibre Sensors. Sensors 2015, 15, 20115–20139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Pen, L.; Milne, D.; Thompson, D.; Powrie, W. Evaluating railway track support stiffness from trackside measurements in the absence of wheel load data. Can. Geotech. J. 2016, 53, 1156–1166. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, J.; Barati, P. Evaluation of conventional methods in analysis and design of railway track system. Int. J. Civ. Eng. 2010, 8, 44–56. [Google Scholar]
- Jenks, C.W. Design of Track Transitions; Transportation Research Board: Washington, DC, USA, 2006. [Google Scholar]
- Priest, J.A.; Powrie, W. Determination of Dynamic Track Modulus from Measurement of Track Velocity during Train Passage. J. Geotech. Geoenviron. Eng. 2009, 135, 1732–1740. [Google Scholar] [CrossRef]
- Esveld, C. Modern Railway Track, 2nd ed.; Delft University of Technology: Delft, The Netherlands, 2001; pp. 71–80. [Google Scholar]
- Kerr, A.D. On the determination of the rail support modulus k. Int. J. Solids Struct. 2000, 37, 4335–4351. [Google Scholar] [CrossRef]
- Roberto, S.; Valeri, M.; João, P. Study on different solutions to reduce the dynamic impacts in transition zones for high-speed rail. J. Appl. Vib. Acoust. 2017, 3, 199–222. [Google Scholar] [CrossRef]
- KR C–14060. Track Components Design; Korea Rail Network Authority: Seoul, Korea, 2019. [Google Scholar]
- KR C-14030. Ballasted Track Structure; Korea Rail Network Authority: Seoul, Korea, 2017. [Google Scholar]
- Zimmermann, H. Die Berechnung des Eisenbahnoberbaues; Ernst und Sohn: Berlin, Germany, 1930. [Google Scholar]
- Noh, G.T.; Lim, H.J.; Lee, J.Y.; Park, Y.G. Evaluation of Track Support Stiffness and Track Impact factor for Ballast and Concrete Type Tracks. J. Korean Soc. Railw. 2019, 21, 389–395. [Google Scholar] [CrossRef]
- Park, H.S.; Song, B.H.; Choi, J.Y.; Kim, M.C.; Park, Y.G. A Study on the Track Impact Factor for Curved Ballast Track According to Can’t Excess or Deficiency; Autumn Conference of Korean Society for Railway: Yeosu, Korea, 2015; pp. 929–933. [Google Scholar]
- LEE, S.H. A Study for Correlation of Track Support Stiffness and Track Impact Factor according by Track Structures. Ph.D. Thesis, Seoul National University of Science and Technology, Seoul, Korea, 2017. [Google Scholar]
- Choi, S.J. An Experimental Study on the Evaluation of Track Support Stiffness on the Various Track Type. Master’s Thesis, Seoul National University of Science and Technology, Seoul, Korea, 2011. [Google Scholar]
- Giannakos, K. Stiffness Coefficient in the Transition Zone between Ballasted and Ballastless Track and Its Influence on Formation Stressing. In Proceedings of the 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, CA, USA, 24–29 May 2010; Volume 50, pp. 1–11. [Google Scholar]
- Konstantinos, G.; Spyridon, T. Transition Zone between Ballastless and Ballasted Track: Influence of Changing Stiffness on Acting Forces. In Procedia—Social and Behavioral Sciences; Elsevier: Amsterdam, The Netherlands, 2012; Volume 48, pp. 3548–3557. [Google Scholar]
- Park, S.W. The Influence of Track Support Stiffness on the Void Sleeper of Ballasted Track. Master’s Thesis, Seoul National University of Science and Technology, Seoul, Korea, 2016. [Google Scholar]
- Lee, J.I.; Oh, K.H.O.; Park, Y.G. Separate Track Impact Factor Application depending on Track Types through Correlative Analysis with Track Support Stiffness. Infrastructures 2020, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.Y.; Park, Y.G.; Lee, S.M. The Evaluation of Track Impact Factor on the Various Track Type in Urban Transit. J. Korean Soc. Railw. 2011, 14, 248–255. [Google Scholar] [CrossRef]
- Prakoso, P.B. The Basic Concepts of Modelling Railway Track Systems using Conventional and Finite Element Methods. INFO Tek. 2012, 13, 57–65. [Google Scholar]
- Lewis, S.R.; Lewis, R.; Olofsson, U.; Eadie, D.T.; Cotter, J.; Lu, X. Eadie Effect of humidity, temperature and railhead contamination on the performance of friction modifiers: Pin-on-disk study, March 2013Proceedings of the Institution of Mechanical Engineers Part F. J. Rail Rapid Transit 2013, 227, 115–127. [Google Scholar] [CrossRef]
- Henrik, L. Transition Zones between Ballasted and Ballastless Tracks, Lunds University. 2014. Available online: http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=4498421&fileOId=8961741 (accessed on 9 January 2020).
- Shin, D.U.; Park, Y.G. Analysis of Noise Reduction Effect of Concrete Slab by the Sound Absorption Block in Urban Railway. Spring Academic Conference, Korean Society Railway. 2017. Available online: https://dbpia.co.kr/journal/articleDetail?nodeId=NODE07266383 (accessed on 17 December 2019).
- Lichtberger, B. Track Compendium. Formation, Permanent Way, Maintenance, Economics, 1st ed.; Eurail-Press: Hamburg, Germany, 2005; 633p. [Google Scholar]
Nations (Standards or Codes) | Evaluation Criteria of Q/P |
---|---|
Union of Railways (UIC) | ≤1.2 |
German ICE High Speed Train regulation | ≤0.8 |
North American regulation | ≤1.0 |
Korean Railway Code | ≤1.2 |
Chinese Standard (GB5599-85) | ≤1.2 (Limit 1, acceptable), ≤1.0 (increased safety margin) |
Japanese Railway Construction Standard | ≤0.8 |
Characteristics | Ballasted Tracks (B) | ||||
---|---|---|---|---|---|
B-Type 1: | B-Type 2: | B-Type 3: | B-Type 4: | B-Type 5: | |
Cumulative Tonnage (MGT) | 2.5 | 4.7 | 1.4 | 2.8 | 0 |
Structure Type | Earthwork | Earthwork | Tunnel | Turnout | Bridge |
Curvature (R) | Straight | Straight | Straight | Straight | Straight |
Rail Type | 60 kg | 60 kg | 60 kg | 60 kg | 60 kg |
Fastening System Type | E-clip | E-clip | E-clip | E-clip | E-clip |
Fastener Spring Coefficient | 124.8 | 125.8 | 125.8 | 125.8 | 125.8 |
Sleeper Type | PC sleeper | PC sleeper | PC sleeper | PC sleeper | PC sleeper |
Sleeper Spacing | 625 | 625 | 625 | 625 | 625 |
Characteristics | Concrete Track (C) | ||||
---|---|---|---|---|---|
C-Type 1: | C-Type 2 | C-Type 3: | C-Type 4: | C-Type 5: | |
Cumulative Tonnage (MGT) | 0 | 0.2 | 0 | 2.1 | 3.4 |
Curvature (R) | Straight | Straight | Straight | Straight | Straight |
Rail Type | 60 kg | 60 kg | 60 kg | 60 kg | 60 kg |
Fastening System Type | E type Elastic Fastening | B type Elastic Fastening | Rail Floating | L type Sleeper Floating | P type Sleeper Floating |
Fastener Spring Coefficient | 16.24 | 18.71 | 6.72 | 15.65 | 17.16 |
Sleeper Type | RC Block | Precast Slab Panel | - | RC Block | PC sleeper |
Sleeper Spacing | 625 | 625 | 630 | 625 | 620 |
Photo | Item | Specification | Item | Specification |
---|---|---|---|---|
Division | KTX-Sancheon | Full length (mm) | 2970 | |
Control method | VVVF-IGBT | Max. speed (km/h) | 305 | |
Vehicle formation | PC1-T1-T2-T3-T4-T5-T6-T7-T8-PC2 | Design max. speed (km/h) | 330 | |
Weight | Curb weight: 403 ton Full weight: 434 ton | Gauge (mm) | 1435 | |
Whole length (m) | 201.00 | Design wheel load (kN) | 85 |
Evaluation Parameter | Calculation Method | Requirement Criteria |
---|---|---|
Derailment Coefficient | - Maximum Value: 1.2 | Allowable Limit - 100%: ≦ 0.8 - 0.10%: ≦ 1.1 |
Wheel Load Fluctuation/Reduction | - = 85 kN: Static Wheel Load | Allowable Limit - 100%: ≦ 0.5 - 0.10%: ≦ 0.8 |
Rail Stress | ≦200 MPa | |
Rail Vertical Displacement | mm | Concrete track: 3 mm Ballast track: 4 mm |
Category | Type | Model | Manufacture Co. | Measurement Item and Purpose |
---|---|---|---|---|
Sensor | 2 axis-strain gauge | FCA-5-11-1L | Tokyo Sokki | Vert./lateral Wheel load |
1 axis-strain gauge | FLA-5-11-1L | Tokyo Sokki | Bending stress in rail | |
Dis. transducer | CDP-10 (10mm) | Tokyo Sokki | Vert./lateral dis. of rail, Vert. Dis. of sleeper | |
Measurement instrument | Data acquisition device for dynamic responses | MGC plus | HBM | Data acquisition and collection |
SDA-810 (8ch) | Tokyo Sokki | |||
Bridge box | DB-120 (1 ch, 8 ch) | Kyowa | ||
Laptop | Windows 10 | Samsung |
Railway Structures | Speed (km/h) | Wheel Loads (Averaged Peak Values) | Displacements (Averaged Peak Values) | ||
---|---|---|---|---|---|
Vertical (kN) | Lateral (kN) | Vertical Rail (mm) | Lateral Rail (mm) | ||
B-Type 1: | 120~130 | 121.16 | 20.54 | 0.87 | 0.54 |
130~140 | 120.09 | 25.33 | 0.87 | 0.57 | |
140~150 | 122.03 | 23.87 | 0.94 | 0.58 | |
150~160 | 121.45 | 26.43 | 0.85 | 0.56 | |
160~170 | 124.15 | 28.78 | 0.98 | 0.58 | |
B-Type 2: | 120~130 | 122.44 | 24.71 | 0.72 | 0.57 |
130~140 | 122.12 | 26.47 | 0.70 | 0.62 | |
140~150 | 125.25 | 28.73 | 0.78 | 0.65 | |
150~160 | 130.21 | 27.32 | 0.79 | 0.67 | |
160~170 | 129.12 | 28.49 | 0.78 | 0.71 | |
B-Type 3: | 120~130 | 105.72 | 15.42 | 0.75 | 0.43 |
130~140 | 107.44 | 16.06 | 0.80 | 0.33 | |
140~150 | 105.09 | 15.74 | 0.83 | 0.49 | |
150~160 | 98.47 | 16.74 | 0.84 | 0.51 | |
160~170 | 109.28 | 16.88 | 0.82 | 0.58 | |
B-Type 4: | 120~130 | 95.21 | 19.36 | 0.84 | 0.31 |
130~140 | 92.24 | 18.74 | 0.83 | 0.32 | |
140~150 | 92.72 | 17.51 | 0.85 | 0.41 | |
150~160 | 90.74 | 19.27 | 0.92 | 0.37 | |
160~170 | 93.52 | 20.03 | 0.89 | 0.39 | |
B-Type 5: | 120~130 | 82.33 | 18.46 | 0.71 | 0.56 |
130~140 | 89.47 | 17.54 | 0.73 | 0.51 | |
140~150 | 101.30 | 18.74 | 0.61 | 0.58 | |
150~160 | 97.55 | 19.26 | 0.76 | 0.64 | |
160~170 | 99.43 | 19.48 | 0.77 | 0.59 |
Railway Structures | Speed (km/h) | Wheel Loads | Displacements | ||
---|---|---|---|---|---|
Vertical (kN) | Lateral (kN) | Vertical Rail (mm) | Lateral Rail (mm) | ||
Type 1 | 120~130 | 88.26 | 11.12 | 1.35 | 0.21 |
130~140 | 86.81 | 13.31 | 1.31 | 0.23 | |
140~150 | 87.58 | 12.22 | 1.32 | 0.31 | |
150~160 | 88.46 | 11.74 | 1.43 | 0.32 | |
160~170 | 89.39 | 15.08 | 1.51 | 0.32 | |
Type 2 | 120~130 | 81.13 | 13.57 | 1.12 | 0.24 |
130~140 | 80.14 | 17.41 | 1.13 | 0.22 | |
140~150 | 81.17 | 15.44 | 1.26 | 0.21 | |
150~160 | 82.97 | 19.52 | 1.19 | 0.21 | |
160~170 | 84.42 | 19.44 | 1.13 | 0.27 | |
Type 3 | 120~130 | 88.81 | 21.65 | 0.98 | 0.31 |
130~140 | 87.52 | 18.01 | 0.92 | 0.34 | |
140~150 | 85.89 | 16.75 | 1.59 | 0.36 | |
150~160 | 87.37 | 19.32 | 1.59 | 0.38 | |
160~170 | 91.42 | 19.49 | 1.53 | 0.39 | |
Type 4 | 120~130 | 82.68 | 9.28 | 0.85 | 0.18 |
130~140 | 81.27 | 10.23 | 0.94 | 0.20 | |
140~150 | 82.82 | 12.14 | 0.86 | 0.21 | |
150~160 | 83.74 | 13.55 | 0.94 | 0.24 | |
160~170 | 89.81 | 15.89 | 0.91 | 0.27 | |
Type 5 | 120~130 | 82.19 | 12.49 | 1.02 | 0.25 |
130~140 | 81.22 | 13.75 | 0.91 | 0.27 | |
140~150 | 81.30 | 13.15 | 0.87 | 0.26 | |
150~160 | 86.55 | 17.83 | 1.10 | 0.31 | |
160~170 | 90.03 | 18.34 | 1.21 | 0.34 |
Railway Structures | Speed (km/h) | Track Performance and Dynamic Stability per Vehicle Speed | |||
---|---|---|---|---|---|
Wheel Load Fluctuation (1) | Derailment Coefficient (2) | Track Support Stiffness (kN/mm) | Stress (MPa) | ||
Type 1 | 120~130 | 0.43 | 0.17 | 139.26 | 52.78 |
130~140 | 0.41 | 0.21 | 138.03 | 55.12 | |
140~150 | 0.44 | 0.20 | 129.82 | 56.23 | |
150~160 | 0.43 | 0.22 | 142.88 | 52.41 | |
160~170 | 0.46 | 0.23 | 126.68 | 53.47 | |
Type 2 | 120~130 | 0.44 | 0.20 | 170.06 | 58.52 |
130~140 | 0.44 | 0.22 | 174.46 | 59.12 | |
140~150 | 0.47 | 0.23 | 160.58 | 64.23 | |
150~160 | 0.53 | 0.21 | 164.82 | 59.82 | |
160~170 | 0.52 | 0.22 | 165.54 | 63.72 | |
Type 3 | 120~130 | 0.24 | 0.15 | 140.96 | 57.34 |
130~140 | 0.26 | 0.15 | 134.30 | 58.42 | |
140~150 | 0.24 | 0.15 | 126.61 | 59.62 | |
150~160 | 0.16 | 0.17 | 117.23 | 54.32 | |
160~170 | 0.29 | 0.15 | 133.27 | 56.09 | |
Type 4 | 120~130 | 0.12 | 0.20 | 113.35 | 62.71 |
130~140 | 0.09 | 0.20 | 111.13 | 62.89 | |
140~150 | 0.09 | 0.19 | 109.08 | 60.78 | |
150~160 | 0.07 | 0.21 | 98.63 | 65.18 | |
160~170 | 0.10 | 0.21 | 105.08 | 66.47 | |
Type 5 | 120~130 | 0.03 | 0.22 | 115.96 | 59.12 |
130~140 | 0.05 | 0.20 | 122.56 | 58.45 | |
140~150 | 0.19 | 0.18 | 166.07 | 58.78 | |
150~160 | 0.15 | 0.20 | 128.36 | 52.48 | |
160~170 | 0.17 | 0.20 | 129.13 | 59.87 |
Railway Structures | Speed (km/h) | Track Performance and Dynamic Stability per Vehicle Speed | |||
---|---|---|---|---|---|
Wheel Load Fluctuation (1) | Derailment Coefficient (2) | Track Support Stiffness (kN/mm) | Stress (MPa) | ||
Type 1 | 120~130 | 0.04 | 0.13 | 65.38 | 23.78 |
130~140 | 0.02 | 0.15 | 66.27 | 28.45 | |
140~150 | 0.03 | 0.14 | 66.35 | 38.71 | |
150~160 | 0.04 | 0.13 | 61.86 | 42.42 | |
160~170 | 0.05 | 0.17 | 59.20 | 48.21 | |
Type 2 | 120~130 | 0.05 | 0.17 | 72.44 | 36.75 |
130~140 | 0.06 | 0.22 | 70.92 | 38.21 | |
140~150 | 0.05 | 0.19 | 64.42 | 38.65 | |
150~160 | 0.02 | 0.24 | 69.72 | 40.82 | |
160~170 | 0.01 | 0.23 | 74.71 | 39.52 | |
Type 3 | 120~130 | 0.03 | 0.26 | 84.50 | 35.48 |
130~140 | 0.03 | 0.21 | 95.13 | 36.75 | |
140~150 | 0.01 | 0.20 | 54.02 | 40.14 | |
150~160 | 0.03 | 0.22 | 54.95 | 46.08 | |
160~170 | 0.08 | 0.21 | 59.75 | 41.82 | |
Type 4 | 120~130 | 0.03 | 0.11 | 97.27 | 28.75 |
130~140 | 0.04 | 0.13 | 86.46 | 32.42 | |
140~150 | 0.03 | 0.15 | 96.30 | 31.27 | |
150~160 | 0.01 | 0.16 | 89.09 | 33.72 | |
160~170 | 0.06 | 0.18 | 98.69 | 34.74 | |
Type 5 | 120~130 | 0.03 | 0.15 | 80.58 | 38.61 |
130~140 | 0.04 | 0.17 | 89.25 | 39.57 | |
140~150 | 0.04 | 0.16 | 93.45 | 42.81 | |
150~160 | 0.02 | 0.21 | 78.68 | 40.63 | |
160~170 | 0.06 | 0.20 | 74.40 | 41.52 |
Track Structures | Wheel Load Fluctuation (Max: 0.8) (%) | Derailment Coefficient (Max: 1.2) (%) | TSS (Peak TSS) (kN/mm) | Stress (Max 200 MPa) (%) |
---|---|---|---|---|
Type 1 | 57 | 19 | 142.88 | 28 |
Type 2 | 66 | 19 | 174.46 | 32 |
Type 3 | 36 | 14 | 140.96 | 30 |
Type 4 | 15 | 18 | 113.35 | 33 |
Type 5 | 24 | 18 | 166.07 | 30 |
Track Structures | Wheel Load Fluctuation (Max: 0.8) (%) | Derailment Coefficient (Max: 1.2) (%) | TSS (Peak TSS) (kN/mm) | Stress (Max 200 MPa) (%) |
---|---|---|---|---|
Type 1 | 6 | 14 | 66.35 | 24 |
Type 2 | 7 | 20 | 74.71 | 20 |
Type 3 | 10 | 22 | 95.13 | 23 |
Type 4 | 7 | 18 | 98.69 | 17 |
Type 5 | 8 | 17 | 93.45 | 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, K.; Lee, J.; Choi, J.; Park, Y. Study on the Applicability of Dynamic Stability Evaluation Criteria by Comparison of Trackside Measurement Results of Different Track Structures. Appl. Sci. 2020, 10, 8245. https://doi.org/10.3390/app10228245
Oh K, Lee J, Choi J, Park Y. Study on the Applicability of Dynamic Stability Evaluation Criteria by Comparison of Trackside Measurement Results of Different Track Structures. Applied Sciences. 2020; 10(22):8245. https://doi.org/10.3390/app10228245
Chicago/Turabian StyleOh, Kyuhwan, Jaeik Lee, Junhyeok Choi, and Yonggul Park. 2020. "Study on the Applicability of Dynamic Stability Evaluation Criteria by Comparison of Trackside Measurement Results of Different Track Structures" Applied Sciences 10, no. 22: 8245. https://doi.org/10.3390/app10228245
APA StyleOh, K., Lee, J., Choi, J., & Park, Y. (2020). Study on the Applicability of Dynamic Stability Evaluation Criteria by Comparison of Trackside Measurement Results of Different Track Structures. Applied Sciences, 10(22), 8245. https://doi.org/10.3390/app10228245