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Abstract: The proposed detection algorithms are assigned for the hpq-adaptive finite element analysis
of the solid mechanics problems affected by the locking phenomena. The algorithms are combined
with the M- and hpq-adaptive finite element method, where M is the element model, h denotes the
element size parameter, and p and q stand for the longitudinal and transverse approximation orders
within an element. The applied adaptive scheme is extended with the additional step where the locking
phenomena are a posteriori detected, assessed and resolved. The detection can be applied to shear,
membrane, or shear–membrane locking phenomena. The removal of the undesired influence of the
numerical locking on the problem solution is based on p-enrichment of the mesh. The detection algorithm
is also enriched with the locking assessment algorithm which is capable of determination of the optimized
value of p which is sufficient for the phenomena removal. The detection and assessment algorithms are
based on a simple sensitivity analysis performed locally for the finite elements of the thin-walled domain.
The sensitivity analysis lies in comparison of the element solutions corresponding to two values of the
order p, namely current and potentially eliminating the locking. The local solutions are obtained from the
element residual method. The elaborated algorithms are original, relatively simple, extremely reliable,
and highly effective.

Keywords: solid mechanics; finite elements; hp-adaptivity; numerical locking; detection; assessment;
resolution; equilibrated residual method; sensitivity analysis; p-enrichment

1. Introduction

This paper concerns application of the algorithms for detection, assessment and resolution of
numerical locking in the hpq-adaptive finite element elastic analysis of thin-walled structures or complex
structures which include thin-walled, solid, and transition parts. We consider all cases when the influence
of the locking phenomenon on the problem solution is significant. We focus on the theoretical and
methodological aspects such as the idea and justification of the elaborated algorithms for a posteriori
detection and assessment of the phenomenon. In addition, the necessary modification of the applied
hpq-adaptive algorithms is of our interest. The employed model- and hpq-adaptive method allows for
different element size h, different element longitudinal and transverse orders of approximation, p and
q, and different element model M in each finite element. The paper also presents application of the
introduced detection, assessment, and resolution algorithms in the hpq-adaptive analysis of structural
elements. These algorithms are investigated in the contexts of their generality, reliability, and effectiveness.
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1.1. State-of-the-Art Issues

We address two specific issues dealt with the locking phenomena. The first one concerns some basic
research on the nature of this phenomenon, while the second issue is the existing methods of removal of
the numerical consequences of the phenomenon.

1.1.1. Theoretical and Numerical Research of Locking Phenomena

The numerical locking phenomena concern thin-walled structures in which the true solution is
characterized by bending strains dominance over shear and/or membrane strains. The phenomenon does
not appear in the case of the membrane strains dominance. If, due to poor discretization of the problem,
the shear and/or membrane strains are not equal to zero, as it results from the thin-walled theories for
the thickness t tending to 0, then the shear, membrane, or shear–membrane strain energy numerically
dominates over the bending energy, leading to numerical over-stiffening of the structure, which in turn
results in too low (zero or almost zero) values of displacements (compare the work [1]). This phenomenon
is called the shear, membrane, or shear–membrane locking and is typical for the displacement finite
element method.

Theoretical and numerical studies of the locking phenomena concern one- and two-dimensional
problems, including beams, arcs, plates, and shells. Different kinds of locking are investigated: volume
(Poisson’s) locking present in nearly incompressible materials (ν→ 0.5), deformational locking present
in bending-dominated thin-walled structures within the displacement formulation of the finite element
method, and finally the trapezoidal locking present in hybrid-stress finite elements. The deformational
locking, which is the subject of this work, may be shear (plates), membrane, or shear–membrane (shells).
The significant exemplary theoretical and numerical research results concerning deformational locking are
presented in [1–6], respectively. These works refer to the first-order, higher-order, and hierarchical models
of plates and shells.

1.1.2. Overcoming the Locking Phenomena

We limit this survey to the methods related to the shear and/or membrane locking. This type of
locking results from the thick- or thin-walled character of the plate and shell structures.

The first method of overcoming the locking is based on application of the mixed or hybrid
formulations of the finite element method instead of the displacement formulation. This leads to elements
of the class C1 instead of the class C0. The elements of this group are usually of low-order and may need
stabilization. The examples of the elements of this group are presented in [7–9]. More recent examples of
the mixed and hybrid finite elements resistant to locking are published in [10,11].

The second approach takes advantage of the so-called reduced or reduced selective numerical
integration, sometimes enriched with the stabilization matrix which removes deformation modes of
zero energy. The reduced integration consists in integration of the stiffness matrix with the numerical
integration parameters as for the elements described with the polynomial interpolation of one order lower.
In the selective version of the reduced integration the lower order is applied to a part of the stiffness
matrix, responsible for the locking, i.e., the part corresponding to shear and/or membrane strain energy.
The examples of application of this approach to plate and shell elements can be found in [12–14]. The recent
works dealing with the reduced and reduced selective integration concern either the isogeometric analysis
or the standard finite element methods, for example, in [15,16].

The third way to overcome the phenomenon lies in introduction of the discrete Kirchhoff constraints
into the elements of the class C0. The method is directed towards removal of the shear locking and requires
that the Kirchhoff constraints are imposed on the selected points or lines within C0 element. The prominent



Appl. Sci. 2020, 10, 8247 3 of 41

examples of plate or thick shell elements of this type can be found in [17,18]. Recent examples of the
discrete Kirchhoff and Kirchhoff-Love constraints are presented in the works [19,20].

The fourth method consists in application of the consistent (interdependent) fields of the transverse
displacement and rotations, one order higher in the case of the mentioned displacement. The method leads
to different numbers of unknowns of both types within an element. The surplus displacement degrees of
freedom (dofs) are removed from the model based on the condition of zero transverse shear strains and/or
zero membrane strain condition. The prominent examples of this method of the locking removal can be
found in [21,22].

The fifth approach is based on the assumed shear or membrane strains consistent with the interpolated
transverse displacement at some points. In this method, bending strains result from the interpolated
displacement field, while the transverse shear and/or membrane (in-plane) strains possess the assumed
form resulting from the interpolation based on some chosen points. The significant works, leading to
the current state of this method in relation to quadrilateral plate and shell elements, are found in [23–25].
Two versions of the presented approach, based on either the enhanced assumed strains or assumed natural
strains, are still being developed, for example, in [26,27].

The sixth method lies in application of higher-order elements conforming to the displacement
finite element formulation. The examples of application of such elements in the case of the classical
(non-adaptive) finite element methods, can be found in [28,29]. In the non-adaptive methods, plate or shell
elements conforming to the first-order or higher-order theories are applied. The fixed longitudinal order
of h-approximation up to the fifth order is usually applied within elements of this type. The adaptive
quadrilateral elements, conforming to hierarchical approximations and higher-order shell models, are used
in [30]. The hexahedral elements corresponding to three-dimensional elasticity, equipped with independent
transverse and longitudinal approximations of the higher order, and assigned for plate and shell analysis,
are proposed in [31] and applied in hp-adaptive version in [32], for example. The recent applications
of the higher-order models and approximations to locking removal are presented in the works [33,34].
These proposals are not consistent with the hierarchical approach.

Let us conclude the above survey of the methods of overcoming the locking phenomena in the context
of needs of the hpq-adaptive method for complex structures analysis. Firstly, it should be noticed that only
low-order longitudinal approximations and first-order plate and shell models are possible in the cases
of the mixed and hybrid methods, the uniform or selective reduced integration, and the consistent field
method. In the case of the discrete Kirchhoff constraints, only shear locking can be removed effectively.
Additionally, this method of removal leads to large variability of elements. In the case of the assumed
strains approach, the claimed generalization of the method for high-order in-plane approximations has
not been proved in practice. For the reduced integration and assumed stress method, there are problems
with their application to triangular or prismatic elements. In the case of the discrete Kirchhoff constraint
and consistent field methods of removal, one deals with different number and location of translational and
rotational degrees of freedom. Note that the higher-order elements are free from all these defects. Due to
our earlier choices concerning the applied hierarchical models and hpq-approximations, the displacement
formulation of such elements becomes our obvious choice.

1.1.3. Detection and Assessment of the Locking

The basic method of detection and assessment of the locking phenomena is the a priori theoretical
analysis of the numerical solutions of the model problems potentially suspected to be a subject of locking
(see Section 1.1.1 of this literature survey). Another interesting method of detection and assessment of
the locking in the one- and two-dimensional elements is proposed in [35,36]. It is based on application of
the finite difference operators corresponding to the problem local formulation. In [37–39], the numerical
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methods of detection and assessment of the phenomenon are proposed. These methods are based on the
sensitivity analysis, i.e., two or a sequence of local problems are solved for each element of the potentially
affected domain.

1.2. The Applied Methodology

Two issues are addressed here. The first one deals with the best choice of the method of effective
detection and assessment of the locking phenomena. The second issue is related to the numerical methods
of removing the phenomena.

It results from the above literature survey that the available knowledge on the locking phenomena
allows understanding of the nature and sources of appearance of the phenomena. The accumulated
knowledge on the phenomenon allows also for a priori determination of the solution convergence of the
problems where the phenomena appear. The main difficulty in the direct application of these results in the
numerical analysis of any arbitrary thin-walled structure is that the available results concern the specific
model problems which may differ to the arbitrary problem under consideration.

The second conclusion from the literature survey is that the most effective way of removing the locking
phenomena lies in application of the higher-order longitudinal p-approximation of the displacement field
in the analyzed thin-walled structure or a thin-walled part of the complex structure.

It also results from the literature that some detection methods of the phenomena exist. Among these
methods, the approach proposed in [37–39] seems to be best suited for adaptive analysis. This approach is
based on the same numerical techniques that are applied in the error-controlled adaptivity.

The main feature of the proposed a posteriori detection, assessment and removal of the locking
phenomena is that the adaptation process requires four steps, instead of the standard three steps of the
error-controlled hp-adaptivity proposed in [40]. The additional step of adaptation, which lies in initial
mesh modification, incorporates not only the automatic removal of the locking phenomena but also the
automatic resolution of the boundary layers [38]. The main idea standing behind the additional adaptation
step is to move the numerical solution, obtained with use of hp-approximations [41,42], to the asymptotic
convergence range. Within this range, the standard h- and p-adaptation steps can be made based on the
hp-convergence theorem and upper-bounding values of the global error estimates from the equilibrated
residual method [43,44].

Finally, it should be noted that our detection and assessment tools are based on sensitivity analysis,
not on the estimated error values themselves. Thanks to this, requirements concerning the error estimation
can be relaxed.

1.3. Novelty of the Paper

The novelty of this work consists in the new algorithms for a posteriori detection and assessment of
the numerical locking phenomena. This refers to shear, membrane, or shear–membrane locking. With these
new algorithms, one is able to detect the presence of the phenomenon and assess its strength so that the
adequate numerical means can be used to remove the phenomenon. The proposed numerical means of the
removal consist in introduction of the new adaptation step, called the modification one, into the existing
three-step, model- and hpq-adaptive finite element procedure for analysis of complex structures. The new
step employs the mentioned detection and assessment algorithms and performs modification of the initial
mesh through p-enrichment. The numerical cost of this new step is low as the detection and assessment is
performed on the initial, usually coarse mesh.

The applied adaptive method [38,45,46], the new algorithms are incorporated in, takes advantage
of the hierarchical models proposed in [31,47], hierarchical hp-approximations elaborated in [41,42],
a posteriori error estimation from [30,43,44], and error-controlled adaptive procedure given in [40].



Appl. Sci. 2020, 10, 8247 5 of 41

2. Preliminaries

Two issues are addressed in this section. The first one deals with the model problems considered in
this research. The second one is presentation of the nature of the locking phenomena.

2.1. Model Problems

Let us consider a wide range of problems of linear elasticity covered by the standard local (strong)
formulation

σ
ij
,j + f i = 0

σij = Dijklεkl

εkl =
1
2 (uk,l + ul,k)

 , x ∈ V (1)

composed of the equilibrium, constitutive, and geometrical equations, respectively. Above, i, j, k, l = 1, 2, 3,
while the smooth components f i ∈ L2(V) stand for the known body loading vector, with V representing
volume of the body. The tensor components σij and εkl stand for stresses and strains, while the unknown
vector components uk denote displacements. The terms Dijkl are components of the fourth-order tensor of
elasticities. The elasticities are symmetric Dijkl = Djikl = Dijlk = Dklij and satisfy the strong and uniform
ellipticity condition: Dijklξijξkl ≥ αξijξkl , ξij = ξ ji, where ξij is any real-valued tensor of the second rank
and α is a positive constant. Note that such elasticities may correspond to three-dimensional stress and
strain states or to the constrained, plane stress or plane strain, states. Note also that, for the specific case of
isotropy, the elasticities can be expressed by the Young’s modulus E and Poisson’s ratio ν.

The set (1) has to be completed with the displacement and stress boundary conditions of the form

σijnj = pi, x ∈ SP

ui = wi, x ∈ SW
(2)

where i, j = 1, 2, 3, while the smooth components pi ∈ L2(S) and the terms wi stand for the known values
of stress vector components and displacement vector components on the parts SP and SW of the surface
S ≡ ∂V of the body V, with S = SP ∪ SW and SP ∩ SW = ∅. The vector components nj represent unit
outward normal to the surface part SP = ST ∪ SB composed of the top ST and bottom SB surfaces of the
body. The way they are determined is explained below.

Equation (1) is valid within the body volume V. Such a volume may represent thick- or thin-walled
structures or complex structures containing such parts. Due to the model character of the considerations of
this section, we limit ourselves to the first case. The corresponding thin-walled domain of the volume V is
sufficiently smooth (Lipschitzian or smoother), open, and bounded region. As we apply the 3D Cartesian
description of the problem, i.e., we employ Cartesian coordinates x, the following explicit (curvilinear)
and implicit (Cartesian) definitions of the volume V are appropriate:

V =
{

η∈R3 : (η1, η2) ∈ SM, η3∈ (−t/2, t/2)
}

≡
{

x(η)∈R3 : x = F(η), (η1, η2) ∈ SM, η3∈ (−t/2, t/2)
} (3)

where F is the reversible map converting the curvilinear coordinates η into the Cartesian ones x.
The function t = t(η1, η2) measures the symmetric thickness in the direction η3 normal to the mid-surface
SM. The mid-surface SM, where η3 = 0, of the thin-walled body can be any sufficiently smooth
(Lipschitzian or smoother), two-dimensional, open and bounded region. Formal definition of the
thin-walled body geometry also needs introduction of the lateral part SL of the body boundary S as
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well as the upper (top) ST and lower (bottom) SB parts of this boundary. More details on the applied
definition of the thin-walled geometry can be found in [48].

The considered model problem, described by the local (strong) formulation (1), completed with the
boundary conditions (2), can also be presented in the weak variational form:

B(u, v) = L(v) (4)

where the admissible displacement vector is v ∈ V , while the corresponding space reads V = {v ∈
(H1(V))3 : v = 0 on SW}. The solution function for displacements is u ∈ w + V , with w standing for the
lift of the Dirichlet data (see [41]). This lift is consistent with the second Equation (2). The bilinear form
B(v, u) and linear form L(v) from the above functional represent the virtual strain energy and the virtual
work of the external body and surface loadings, f and p, respectively, i.e.,

B(u, v) =
∫

V
εT(v)D ε(u) dV

L(v) =
∫

V
vT f dV +

∫
SP

vT p dS
(5)

Above, D stands for the matrix representation of the elasticity constant tensor present in the second
Equation (1), while ε is the six-component vectorial representation of the strain tensor defined with the
third Equation (1).

Let us introduce now the finite element approximation of the variational functional (4). The approximation
is based on the general rules of hp approximations [41], applied to 3D-based hierarchical shell models of
order q presented in [38,45]. The approximated variational functional reads

B(uhpq, vhpq) = L(vhpq) (6)

where the approximated admissible displacements vhpq ∈ Vhpq belong to the space Vhpq = {vhpq ∈
(H1(V))3 : vhpq = 0 on SW}. Additionally, uhpq ∈ whpq + Vhpq, with the approximated values whpq of the
lift w.

Note that the approximated variational formulation (6) can also be expressed in the language of
finite elements

Kqhpq = F (7)

where K and F are the global stiffness matrix and the global forces vector, while qhpq stands for the
displacement dofs vector corresponding to the solution field uhpq of displacements.
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2.2. Locking Phenomena

It was demonstrated in a numerous works (see [49,50], for example) that the three-dimensional
elasticity description of the strain energy U ≡ 1

2 B(u, u) of the thin-walled body V tends to the following
limit value when the thickness of the body tends to zero, t→ 0:

U =
1
2

∫
V

σijεij dV ≡ 1
2

∫
V
[σαβεαβ + σ33ε33 + 2σ3βε3β] dV

→ 1
2

t
∫

SM

E
1−ν2 [(1−ν)γαβγαβ+νγααγββ] dSM+

1
2

t
∫

SM

E k
1+ν

(γα3γα3+γ3βγ3β) dSM

+
1
2

t3
∫

SM

E
12(1− ν2)

[(1− ν)καβκαβ + νκαακββ] dSM

= Um + Us + Ub

(8)

Above, the three-dimensional components of the stress and strain tensors, σij and εij, i, j = 1, 2, 3,
of the three-dimensional theory of elasticity can be expressed in the thin limit with the two-dimensional
longitudinal strain components of the mid-surface SM, γαβ, α, β = 1, 2; transverse strain components,
γα3 and γ3β, α, β = 1, 2; and the components of the tensor of curvature variation, καβ, α, β = 1, 2.
Additionally, in the thin limit, the three-dimensional isotropic elasticity constants can be replaced with the
isotropic plane stress constants of the first-order shell theory, expressed by the Young’s modulus E and
the Poisson’s ratio ν and resulting from the plane stress assumption σ33 = 0. In addition, the kinematic
condition of no elongation of the normals to the mid-surface, γ33 = 0, comes into play. The thin limit
strain energy can then be approximated with the limit values of the membrane, shear, and bending parts,
Um, Us, Ub , of the strain energy U. The quantity k is the shear strain correction factor, equal to 5/6 and
resulting from the applied first-order model which leads to false (constant) transverse-shear stresses.

Depending on the geometry, loading and kinematic boundary conditions, one may distinguish
between the bending-dominated problems, when

Ub � Um + Us (9)

and membrane-dominated or shear–membrane-dominated problems, where

Um � Ub, Us ∼= 0

Um + Us � Ub
(10)

respectively. Then, it results from (9) that, in the analytical solution of the bending-dominated problems,
the shear and membrane strains should be equal or very close to zero, i.e.,

γ13 = γ31
∼= 0, γ23 = γ32 ∼= 0 (11)

for the plate and shell structures, and

γ11
∼= 0, γ12

∼= 0, γ22 ∼= 0 (12)

for the shell structures where the coupling of the membrane and bending strains exists. Note that the
decoupling of the membrane and bending strains shown by the limit expression of the relation (8) exists
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only in the thin limit (t → 0) for the first-order shells, while for the first-order plates it holds for any
thickness t.

The shear and shear–membrane lockings are purely numerical phenomena which happen for poor
discretizations and result from insufficiently accurate approximation of the analytical constraints (11)
and/or (12). If such inaccurate approximation occurs then the shear and/or membrane strains are too
large and the shear and membrane strain energies grow. These energies dominate over the bending strain
energy, leading to numerical over-stiffening of the structure, which in turn gives too small (locked) values
of displacements of the numerical solution. Remembering that Uhpq ≡ 1

2 B(uhpq, uhpq) ≡ 1
2 (q

hpq)TKqhpq,
one has

Kqhpq = F, FI = const, KI J ↑ ⇒ qhpq
J ↓ (13)

where KI J , FI are components of the global stiffness matrix and the global forces vector, with I, J =

1, 2, . . . , N and N being the global number of degrees of freedom (dofs). The components qhpq
J represent

the global vector of unknown displacement dofs qhpqcorresponding to the approximated field of
displacements uhpq.

3. Locking Detection, Assessment, and Resolution

The proposed ideas of locking detection, assessment, and resolution are based on application of three
existing numerical techniques. The first one is the equilibrated residual method of error estimation [43,44],
here applied to solution of the local problems of two types. The second idea is sensitivity analysis
based on comparison of the solutions to two local problems which differ with the longitudinal orders of
approximation. The results of such a comparison can be used for the locking detection or assessment. If
the locking is detected, then the mesh can be modified through the increase of the longitudinal order of
approximation, by means of the standard p-enrichment technique [41,42].

The mentioned three techniques can be combined with the three-step hp-adaptive procedure
controlled by the approximation error [51,52] or the automatic, iterative hp-adaptation driven by the
interpolation error [41,42,53].

3.1. The Idea and Algorithm of a Posteriori Phenomenon Detection

The idea of a posteriori detection of the numerical locking was originally proposed by Zboiński [38].
Here, we develop and verify this idea. It consists in solution of two local problems for each element of
the thick- or thin-walled part of the structure. The solutions to these problems are obtained from the
equilibrated residual method. These two problems differ with the longitudinal order of approximation
p. In the first problem, it is equal to its current value from the global problem under consideration.
In the second local problem, its value corresponds to the problem potentially free of locking. For two
mentioned solutions, the strain energy norms are calculated and compared. This corresponds to sensitivity
analysis where the sensitivity of the solutions of the local problems to the change of the longitudinal
order of approximation is assessed. Once the locking is detected, one may modify the mesh by increasing
the current order of the longitudinal approximation to its value corresponding to the problems free of
locking. The similar approach is used also for determination of the optimized value of the longitudinal
approximation order which corresponds to the minimum value sufficient for removal of the phenomenon.

3.1.1. Solutions from the Equilibrated Residual Method

Let us recall now the equilibrated residual method of a posteriori error estimation, invented by
Ainsworth and Oden [43]. All relations of this section are taken from the cited work. Here, we apply
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this method to the estimation of the numerical solutions of the 3D-based hierarchical shell problems [46].
The principal relation of the method is [44]

B(e, v) = B(uHPQ−uhpq, v) = B(uHPQ, v)− B(uhpq, v)

= L(v)− B(uhpq, v), ∀ v ∈ VHPQ(V)
(14)

Above, uHPQ stands for either the exact solution of the problem or sufficiently accurate approximation
of such a solution. The quantity e is the error vector corresponding to the assessed numerical solution uhpq.
The kinematically admissible displacements v ≡ vHPQ belong to the space VHPQ defined in analogy to the
spaces introduced for (4) and (6). The discretization parameters H, P, and Q are the counterparts of h, p,
and q from the relation (6). In the case of the exact solution (uHPQ ≡ u), one deals with 1/H, P, Q → ∞,
while in the case of the approximation, one deals with the finite values of the discretization parameters H,
P and Q.

After noticing that e = uHPQ − uhpq and introduction of this definition into the error functional (14),
the latter simplifies to:

B(uHPQ, v) = L(v), ∀ v ∈ VHPQ(V) (15)

This way one searches for the approximation of the exact solution (displacements) of the problem
instead of the problem error itself. However, once the displacements are determined, the error can
be calculated from the above error definition. The presented approach is applied in the works [30,46],
for example.

Let us now follow the work [43] and divide the domain V into E subdomains Ve, corresponding to
finite elements e = 1, 2, . . . , E. The global functional (15) and its left- and right-hand side components can
now be presented as a sum of the element contributions:

B(uHPQ, v) =
E

∑
e=1

e
B(

e
uHPQ,

e
v)

L(v) =
E

∑
e=1

e
L(

e
v) =

E

∑
e=1

e
L(

e
v)−

E

∑
e=1

e
β(

e
v)

=
E

∑
e=1

[
e
L(

e
v) +

∫
Se\(SP∪SW )

e
vT 〈er(uhpq)〉 dSe

]
(16)

where the element admissible displacements are defined as the global admissible displacements projected
onto elements Ve:

e
v ≡ v|Ve . As demonstrated by Ainsworth and Oden [43], the sum of the auxiliary

element functionals
e
β(

e
v) is equal to 0, as the internal load consistency condition must hold.

Above, the vectors 〈er(uhpq)〉 represent the interelement loading due to equilibrated stresses.
These stresses are defined in [43,44], for example. Their definition is as follows

〈er(uhpq)〉 =
f e
α

e
r(uhpq) +

e f
α

f
r(uhpq) (17)

where
e
r(uhpq) = H(

e
ν)

e
σ(uhpq),

f
r(uhpq) = H(

e
ν)

f
σ(uhpq),

(18)
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and

H(
e
ν) =


ν1 0 0 ν2 0 ν3

0 ν2 0 ν1 ν3 0

0 0 ν3 0 ν2 ν1

 (19)

The components of the unit normal vector
e
ν = [ν1, ν2, ν3]

T are defined on the element surface Se.

The vectorial six-component representations
e
σ and

f
σ of the stress tensors have to be determined for

the element e and any of its neighbours f . The terms
f e
α and

e
r stand for the splitting function diagonal

matrices and stress vectors. These matrices are:
f e
α = diag[α1, α2, α3], with

f e
α = 1−

e f
α , 1 = diag[1, 1, 1] and

directional components αm, m = 1, 2, 3. The algorithms for calculation of the splitting functions in the case
of the internally unconstrained and constrained (e.g., by the Reissner-Mindlin kinematic constraints) are
described in [43,44,46], respectively. The alternative is replacement of the equilibrated stresses with their

averaged counterparts:
f e
α =

e f
α = diag[ 1

2 , 1
2 , 1

2 ].
Comparing relations (15) and (16) one can notice that the minimization of the global energy functional

can be replaced with the minimization of local (element) functionals (see [43,44,46]). The element
functionals read

e
uHPQ∈

e
VHPQ(Ve) :

e
B(

e
uHPQ,

e
v) =

e
L(

e
v) +

∫
Se\(P∪Q)

e
vT 〈er(uhpq)〉 dSe , ∀ e

v∈
e
VHPQ(Ve) (20)

where
e
uHPQ is the element solution function and

e
VHPQ denotes the space of kinematically admissible

element displacements
e
v ≡

e
vHPQ. As shown in [43,44], the solution to the local problems (20) exists and is

either unique or unique up to rigid body motions, for Dirichlet and Neumann boundary value problems,
respectively. The mixed boundary value problems are also possible. Note that one deals with the Dirichlet
problems for clamped elements adjacent to the external boundary of the structure, and with the Neumann
problems for elements not adjacent to this boundary, namely for elements from the interior of the structure.

3.1.2. Check on Bending-Dominance of the Solution

Check on bending-dominance of the solution to the global problems of the type (6) was proposed
by Zboiński [32]. Such a check is necessary as the locking phenomena are present only in the
bending-dominated problems. In the membrane-dominated problems the phenomena do not appear.
In addition, in the case of the mixed dominance, the locking may appear.

Strain Energy Components

In this work, we apply the proposed approach to the local solutions from the equilibrated residual
method and to their sum. To apply this approach, one has to take into consideration that the strain
energy approximation from (8) corresponds to the structures of the infinitely small thickness, for which the
first-order theory can approximate the three-dimensional description. As we intend to check the locking
phenomena in the structures of the finite thickness, described with the hierarchical models corresponding
to higher-order shell theories, the decomposition of the three-dimensional strain energy into component
energies typical for the first-order models can only be done approximately. Let us start with the following
decomposition of the strain vector into its longitudinal, transverse and shear parts

ε = [εl , εn, εs]T (21)
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where εl = [. . . , εαβ, . . . ]T, εn = [ε33]
T, εs = [. . . , ε3α, εα3, . . . ]T and α, β = 1, 2 are the local directions tangent

to longitudinal directions of the thin-walled structure, and the index 3 corresponds to the local transverse
direction. The analogous decomposition of the stress vector σ is also possible. Such decompositions lead to
the division of the density υ of the total strain energy into the following components:

υ = σijεij

= σαβεαβ + σ33ε33 + 2σ3αε3α

= υl + υn + υs

(22)

where i, j = 1, 2, 3 stand for the global Cartesian directions. In the above relation, the symmetries: σ3α = σα3

and ε3α = εα3 were taken into account. The terms υl , υn, υs represent longitudinal, transverse, and shear
components, respectively, of the density function. Consequently, the strain energy can also be divided into
the corresponding energy components Ul , Un, Us:

U =
∫

V
υ dV

= Ul + Un + Us

(23)

Our calculations of the strain components of (21) on the element level correspond to the 3D-based
hierarchical shell formulation proposed and developed in [38,45]. In this formulation local strains (defined
in two longitudinal and the third transverse directions) and the global displacement dofs are applied.
Because of that, the relation defining local strains ε (or their components) by the product of the element

strain-displacement matrix
e
B (or its components) and the element displacement dofs vector

e
qhpq can be

written as follows

ε =
e
B

e
qhpq

= [
e
Bl ,

e
Bn,

e
Bs]T

e
qhpq

= [
e
Bl

e
qhpq,

e
Bn

e
qhpq,

e
Bs

e
qhpq]T

= [εl , εn, εs]T

(24)

where the longitudinal
e
Bl , transverse

e
Bn, and shear

e
Bs blocks of the strain-displacement matrix include the

latter matrix rows corresponding to the in-plane, normal and shear strain components: εl , εn, εs. Note that

the vector of displacement dofs is related to the displacement field
e
uhpq with the standard interpolation

formula of the element e:
e
uhpq =

e
N

e
qhpq, where

e
N stands for the shape function matrix of the element.

Because of the 3D-based shell models applied in our research, further decomposition of the strain
energy will be performed approximately. The exact decomposition is easy for the conventional shell models
with the degrees of freedom defined on the mid-surface. Then, the dofs corresponding to the even and odd
powers of the thickness contribute to the membrane and bending strains, respectively. In the 3D-based
formulation, the dofs are defined along (or through) the thickness, and extracting their membrane and
bending contributions needs much more complex procedure explained in [32]. The approximate procedure
requires replacement of the top and bottom displacements of the symmetric thin-walled structure with
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their sums and differences which contribute to the mid-surface displacements and rotations. This allows
for distinguishing the following components of the in-plane strains

εαβ ≈ γαβ + καβ (25)

where γαβ stand for the mid-surface strains (membrane strains) and καβ are the three-dimensional
counterparts of the change of curvature tensor (bending strains). With the above division, the in-plane
density υl of strain energy can be decomposed into three parts (membrane, bending, and coupling ones):

υl ≈ υm + υb + υc (26)

that contain products of the membrane strains, bending strains, and their combination, respectively.
Consequently, one also has

Ul ≈ Um + Ub + Uc (27)

Calculation of the two components of the right-hand side of (25) on the element level needs adequate
transformation of the numerical representation of element longitudinal strains εl , defined as a matrix
product of the corresponding part of the strain-displacement matrix and the vector of displacement dofs.
For the 3D-based hierarchical shell formulation, presented in [38,45], this transformation reads

εl =
e
Bl

e
qhpq

= [Bt, Bb, Bo]× [qt, qb, qo]
T

= [Bt+Bb, Bt−Bb, Bo]× [
1
2
(qt+qb),

1
2
(qt−qb), qo]

T

= [Bs, Bφ, Bo]× [qs, qφ, qo]
T = Bs qs + Bφ qφ + Bo qo

= γ + κ + r

≈ γ + κ

(28)

where the sub-blocks Bt, Bb, and Bo correspond to the top qt, bottom qb, and all other qo displacement dofs

of the element dofs vector
e
qhpq. Location of the dofs of three types is on the top and bottom surfaces of the

shell element, and apart from these two surfaces, respectively. In turn, the sub-blocks Bs, Bφ correspond to
the mid-surface displacement dofs qs =

1
2 (qt+qb) and rotational dofs qφ = 1

2 (qt−qb). The approximate
character of the performed transformation results from neglecting the mentioned other dofs in the resultant
decomposition into the membrane and bending strain contributions.

The Criterion

In the criterion for detection of the dominance of bending strains, the solutions of two local problems
from the equilibrated residual method are applied. The first solution corresponds to the following local
discretization parameters: H = h, P1 = p, and Q = q. In the second problem, set to be free of the locking
phenomena, one has: H = h, P2 = pmax = 8, and Q = q. The value of pmax = 8 is taken from the
research of Pitkaranta [4] who demonstrated that for such a value the membrane locking disappears
in shell structures regardless of the thickness. For this value also the shear locking in plate structures
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disappears. It is well known that this type of locking is weaker than the membrane one in shells (compare
remarks in [5,32], for example). The proposed criterion reads

E

∑
e=1

e
Um(

e
uHP1Q) +

E

∑
e=1

e
Us(

e
uHP1Q) ≥

E

∑
e=1

e
Ub(

e
uHP1Q)

E

∑
e=1

e
Um(

e
uHP2Q) +

E

∑
e=1

e
Us(

e
uHP2Q) <

E

∑
e=1

e
Ub(

e
uHP2Q)

(29)

The first condition detects dominance of the membrane and shear strains over the bending strains in
the local problems corresponding to the global problem under consideration, while the second condition
reflects the change of the dominance in the local problems. The form of the criterion corresponds to the
shell structures, where coupling between shear, membrane and bending strains exists. In the case of plate
structures, the coupling between the membrane strains and the shear and bending strains disappears and
because of this the membrane strains have to be removed from the above criterion.

Fulfillment of the above criterion means that the true nature of the problem is bending-dominated
and that the locking phenomenon appears in the assessed global problem. As a consequence, the locking
has to be removed through increase of the approximation order p. The above criteria are necessary to
confirm the results from the detection and assessment tools presented in the next sections, as those tools
are not capable of distinguishing between the membrane- (and/or) shear-dominated problems and the
bending-dominated ones.

3.1.3. Sensitivity Analysis of the Local Solutions

The main purpose of the sensitivity analysis performed in this section is detection of the situation
that the assessed global problem solution differs to the solution of the problem potentially free of locking
to such an extent that the difference may suggest the presence of the locking phenomena. Note that
the theoretical ratio of the true bending-dominated solution and locked membrane-dominated (and/or
shear-dominated) solution is C · t2, with C being a constant. This ratio results from the proportionality
of the membrane (and/or shear) part of the strain energy and the bending part of this energy to t and t3,
respectively, as shown in (8).

To compare the above two solutions, the following two local problems for each element of the plate
or shell structure, or such parts of complex structures, has to be solved:

e
B(

e
uHP1Q,

e
vHP1Q)−

e
L(

e
vHP1Q)−

∫
Se\(P∪W)

e
(vHP1Q)T 〈er(uhpq)〉 dSe = 0 (30)

where P1 = p, H = h and Q = q correspond to the global problem under consideration, and:

e
B(

e
uHP2Q,

e
vHP2Q)−

e
L(

e
vHP2Q)−

∫
Se\(P∪W)

e
(vHP2Q)T 〈er(uhpq)〉 dSe = 0 (31)

with P2 = pmax = 8, H = h, and Q = q corresponding to the problem potentially free of locking.
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The following criterion is set to assess sensitivity of the solution to the change of the longitudinal
approximation order from P1 to P2:

E

∑
e=1

1
2

e
B(

e
uHP1Q,

e
uHP1Q) < a

E

∑
e=1

1
2

e
B(

e
uHP2Q,

e
uHP2Q) (32)

where a is the coefficient which determines the ability of the adaptive method to overcome the locking
phenomena with the standard hp-adaptive procedure. In the case of the applied procedure based on
Texas three-step strategy [40] and error estimation based on the equilibrated residual method [43,44],
the reasonable (verified numerically) value is suggested to be equal to a = 0.1. Fulfillment of the above
criterion suggests the possibility of locking appearance. This possibility has to be confirmed by the criterion
(29) of bending-dominance.

3.1.4. The Detection Algorithm

The algorithm of detection of the locking phenomena introduced into the standard three-step adaptive
strategy proposed by Oden [40] is presented in Figure 1. The original part of the standard adaptation
includes three steps: initial (i = 1), intermediate (i = 3) called also h-step, and final (i = 4) called also the
p-step. Either local h-refinement or local p-enrichment is performed within each element of the latter two
steps, based on the estimated approximation error values obtained from the equilibrated residual method
of Ainsworth and Oden [43,44]. The modification of the initial mesh (i = 2) is performed as the second
step when necessary. This additional step is composed of two stages: the detection of the phenomenon,
and the changes in the mesh which consist in the global p-enrichment performed within all elements of
the thin- or thick-walled structure or such a part of the complex structure.

The details of the additional step modifying the initial mesh are presented in Figure 2. At first,
we search for the thick- or thin-walled parts of the generally complex structure. Such a structure can
be composed of thick- and thin-walled parts, solid parts, and transition parts joining the previous two
types of geometries. Of course, simple geometries composed of a single thin- or thick-walled part are
also possible. Then, for each element of such a thin- or thick-walled part, the interelement stresses
on the element boundary have to be calculated. Subsequently, for two local problems described with
Equations (30) and (31), the terms of these equations are generated and the equations are solved. Next,
one has to sum the element energies from (32) and compare two sums for two types of the local problems.
Finally, if the criterion for locking detection is met, one has to confirm this result with the criterion
for bending dominance detection (29). If it is fulfilled, then the modification of the initial mesh is
performed, which is based on p-enrichment of all elements of the thin- or thick-walled part of the structure.
Such elements of the modified structure are all equipped with the longitudinal order of approximation
equal to p = pmax = 8. Next, the standard steps, i = 3 and i = 4, of hp-adaptation can be performed.

It should be underlined that calculation of the interelement stresses, performed in the above algorithm,
is skipped in this paper as it is performed in the standard way presented in [43,44,46,54,55].

We also apply the standard p-enrichment algorithm performed at the modification stage of the
additional adaptation step (i = 2). Such modification does not require any additional actions in comparison
to the standard p-adaptation [41,42].
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Figure 1. Three-step adaptive procedure extended with the fourth modification step.
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Figure 2. Flow diagram of the overall algorithm for the locking detection.
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3.2. Calculation of the Optimized Value of p

The idea presented in this section lies in making an attempt to assess the locking phenomena strength.
This strength is measured with the p value necessary to remove the locking phenomenon. The criterion
(32) assumes that the value of p = 8 is necessary for the removal.

This value corresponds to the coarsest mesh possible, composed of one rectangle (hexahedra) or two
triangles (prisms). However, depending on the structure thickness t and the initial global discretization
characterized by the value of h, the removal may require much lower (more optimal) value of the
longitudinal order p. Moreover, in such circumstances, p = pmax = 8 leads to too rich discretizations.
Note also that setting p = 8 in the modified mesh reduces further hp-adaptation to h-adaptation only as
the maximum value of the longitudinal order of approximation p = pmax = 8 is applied in the modified
mesh. We address both situations in numerical tests presented in the next sections of the paper.

3.2.1. The Idea

The idea lies in solution of the sequence of the local problems for each element e of a thin- or
thick-walled structure or such a part of a complex structure. The sequence can be characterized with

e
B(

e
uHPjQ,

e
vHPjQ)−

e
L(

e
vHPjQ)−

∫
Se\(P∪W)

e
(vHPjQ)T 〈er(uhpq)〉 dSe = 0 (33)

where Pj = P1, . . . , Pmax − 1, with P1 = p and Pmax = 8. The solutions of the above sequence are compared
with the solution to the problem potentially free of locking phenomena, i.e.,

e
B(

e
uHP2Q,

e
vHP2Q)−

e
L(

e
vHP2Q)−

∫
Se\(P∪W)

e
(vHP2Q)T 〈er(uhpq)〉 dSe = 0 (34)

where P2 = Pmax = 8. The comparisons are based on the summary criterion

E

∑
e=1

1
2

e
B(

e
uHPkQ,

e
uHPkQ) ≥ a

E

∑
e=1

1
2

e
B(

e
uHP2Q,

e
uHP2Q) (35)

where, as above, one may set a = 0.1. For all particular orders of approximation Pk, fulfilling the above
criterion, the adaptive algorithm can obtain the global adapted solution with the standard hp-adaptive
algorithm. We choose the solution Pl fulfilling (35), such that:

E

∑
e=1

1
2

e
B(

e
uHPl Q,

e
uHPl Q) = min

Pk

{
. . . ,

E

∑
e=1

1
2

e
B(

e
uHPkQ,

e
uHPkQ), . . .

}
(36)

The solution corresponding to Pl is enough and the most optimal for removal of the phenomenon.
Note that for Pl = P1 removal of the locking is not necessary, as the standard hp-adaptation can be
performed without changing the longitudinal order of approximation. This order is equal to its value from
the assessed global problem, i.e., P1 = p. For Pl = Pmax, one obtains the same result as for the detection
criterion (32). Note that the search for the optimized value of p should be performed if and only if the
bending dominance criterion (29) is fulfilled.

3.2.2. The Algorithm

The structure of the algorithm remains the same as for the locking detection algorithm described in
Section 3.1.4. In the adaptive algorithm presented in Figure 1, the only difference is that the modified mesh
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is generated with the optimized value of the longitudinal order of approximation within each element
of the thin- or thick-walled part of the structure. This optimized value replaces the maximum value
pmax = 8 applied in the case of the detection without optimization. In the algorithm presented in Figure 2,
apart from the problem (31) or (34), the sequence of the local problems (33) is solved instead of the problem
(30). After obtaining the solutions, the summary criteria (35) and (36) are checked, and the optimized value
of the longitudinal order of approximation is established. If the optimized value is greater than the current
value from the initial mesh, the confirmation from the criterion for the detection of bending dominance
(29) has to be checked. If it is met, then the mesh is modified by increasing the longitudinal order in any
element of the thick- or thin-walled part of the structure. Finally, the standard hp-adaptation (i = 3 and
i = 4) can be performed.

4. Verification and Utilization of the Proposed Tools

Our numerical verification of the proposed numerical tools for detection and optimization of the
longitudinal order of approximation is based on comparison of the results obtained from the detection and
optimization tools and the results from the corresponding global solution of the model problems under
consideration. The model problems concern all possible situations of locking existence or not, i.e., shear
locking, membrane-shear locking, and the lack of locking. The performed comparisons should confirm
that the detection and optimization based on the local, element solutions can replace the corresponding
global analysis.

4.1. Model Problems

It is well known from the literature presented in the state-of-the-art section that in the case of the
bending-dominated plates, the shear locking may appear, depending on the plate thickness and the applied
discretization. In the case of the bending-dominated shells, the shear–membrane locking is possible. On the
other hand, in the case of the membrane-dominated shells, the locking phenomena do not appear. This is
the reason for our choice of three model problems introduced below.

The first problem concerns a bending-dominated square plate. The plate longitudinal dimensions are
equal to l = 3.1415× 10−2 m, while its basic thickness is t = 0.03× 10−2 m. A symmetric quarter of the
plate can be seen in the Section 5.2.1. The plate is clamped along its edges. The vertical surface traction
of the value equal to p = 4.0× 106 N/m2 is applied to the upper surface of the plate. The traction acts
downwards. The plate, as well as the next two shell structures, is made of steel. For this material the
Young’s modulus is E = 2.1× 1011 N/m2, while the Poisson’s ratio equals ν = 0.3.

The second model problem is a bending-dominated half-cylindrical shell. Its length is equal to
l = 3.1415× 10−2 m, while its semi-circle circumference is πR ≈ 3.1415× 10−2 m, where R = 1.0× 10−2

m is the radius of the shell middle surface. The shell thickness is t = 0.03× 10−2 m. A symmetric quarter
of the shell is displayed in Section 5.2.3. The shell is clamped along its straight edges, and the curved edges
are free. The shell is loaded with the vertical traction of the value p = 4.0× 106 N/m2, directed downwards.
The third example is a symmetric half of a membrane-dominated cylindrical shell. The shell dimensions
are analogous as for the bending-dominated shell, i.e., l = 3.1415× 10−2 m, πR ≈ 3.1415× 10−2 m,
with R = 1.0× 10−2 m, and t = 0.03× 10−2 m. A symmetric octant of the shell is presented in Section 5.2.4.
The symmetry boundary conditions are applied along the straight edges and one (left) curved edge of
the octant, while there are no rotations along the other (right) curved edge. The shell is loaded with the
internal pressure p = 4.0× 106 N/m2 acting outwards.
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4.2. Local Problems Solutions Versus Global Solutions

In our tests, we applied the results from the algorithms for the detection of the bending dominance.
We calculated sums of elemental strain energy components present in the criterion (29). In the case of the
plate problem, the shear and bending energy components were computed, while, in the shell examples,
the sum of shear and membrane components and the bending component of the energy were determined.
The assessed global plate problem was characterized with p = 1, while in the shell examples the assessed
global problems were characterized with p = 2. Then, the energy components were calculated for the
sequence of problems (30) characterized with P1 = p, p+1, . . . , 8. The averaged values of the interelement
stresses were used in the local problems definition. The transverse order of approximation corresponded to
the second-order hierarchical shell model (Q = q = 2) for all examples. The used mesh was characterized
with H = h = l/2.

The above results from the sequence of the local problems were compared with the results from the
global problems, where q = 2 and h = l/2. In the case of the plate, the following longitudinal orders of
approximation were applied p = 1, 2, . . . , 8 in the global problems, while in the case of two shell examples,
the values of p = 2, 3, . . . , 8 were taken into account. The results of the comparisons are presented in
Figures 3–8 for the plate and bending- and membrane-dominated shells, respectively. The figures present
the ratios of the shear (the plate) or the sum of shear and membrane (the shells) energies to the entire strain
energy and the ratios of the bending energy to the entire strain energy obtained from the local problems
(top) and the global problems (bottom). Values of these ratios are presented versus the longitudinal order
of approximation.

Comparison of the top and bottom figures for the model problems leads to the conclusion that
the detection tools based on solution of the element local problems give practically the same results as
the solutions to the global problems, both qualitatively and quantitatively. In both bending-dominated
problems, the change of the membrane dominance resulting from the locking phenomena to bending
dominance due to removal of the locking is perfectly indicated. In addition, the membrane-dominated
problem has been perfectly identified, as shown by the third couple of figures—the membrane energy
component dominates over the bending one for all values of the longitudinal order of approximation.

Figure 3. The sum of local energies—the bending-dominated plate.
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Figure 4. The global energy—the bending-dominated plate.

Figure 5. The sum of local energies—the bending-dominated shell.

Figure 6. The global energy—the bending-dominated shell.
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Figure 7. The sum of local energies—the membrane-dominated shell.

Figure 8. The global energy—the membrane-dominated shell.

5. Effectivity of the Method in Model Problems

In this section, we present examples of application of the algorithms for detection and/or assessment
of the locking phenomena, and the standard mesh modification algorithms as well, in the adaptive
analysis of model problems. The adaptive procedure is derived from the three-step strategy [40]
composed of the global solution and error estimation for the initial, intermediate (or h-) and final
(or p-) steps. The global problems are based on 3D-based hierarchical modelling and approximations for
complex structures [45]. Our models and approximations are related, based or derived from [30,31,41,42],
respectively. The error estimation is performed using the equilibrated residual method [43,54], adjusted to
the 3D-based formulation of the hierarchical models and approximations [46]. The three-step strategy is
completed with the modification step performed after the initial one. The algorithms from the previous
sections are used within this additional step. The averaged stresses are used instead of the equilibrated
ones in the local problems.
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5.1. Problems and Methodology

The three model problems in Section 4.1 are applied again. Two model bending-dominated plate
examples are considered. In the first one, the data are exactly the same as in the mentioned section. In the
second plate problem, we solve the plate of the same dimensions l/2 and t as for a quarter of the plate from
the first plate. In the second problem, all four lateral sides of the plate are clamped. In the first problem,
two of them correspond to symmetry boundary conditions, and only two sides are clamped. In the second
problem, one deals with the most coarse mesh possible and the lowest longitudinal order of approximation
possible. As a result, the strongest possible locking appears for the assumed plate thickness. The third
example is the bending-dominated shell from Section 4.1. The only difference is the shell thickness which
is now equal to t = 0.003× 10−2 m. The last example concerns the membrane-dominated shell. In this
example, all data are exactly the same as in Section 4.1.

5.2. Numerical Examples

In the analysis of the locking phenomena, the following data were treated as independent: the problem
type (the type of the strain dominance), and the structure length l and thickness t resulting in the thinness
ratio l/t. In the numerical analysis, also the initial mesh data, the relative value of the target admissible
error γT , and the ratio γI/γT of the intermediate (after h-step) error to the target (after p-step) error were
treated as independent quantities.

As results of the analysis, we present the meshes corresponding to three performed courses of
adaptation: standard hp-adaptation and such adaptations preceded by the modification of the initial mesh
with the increased longitudinal order of approximation p, equal either to the maximum or optimized value.
The results are completed with the adaptive convergence curves corresponding to these three courses of
adaptation. The convergence curves present the approximation error as a function of the number N of
degrees of freedom (dofs). The absolute error is defined as a negative difference of the total strain energy
U corresponding to the global solution under consideration and the reference energy Ur replacing the
unknown exact value. The energies are calculated in accordance with the strain energy definition from
Section 2. Due to the exponential character of hp-convergence, the curves are plotted as log(Ur −U) versus
logN. The reference energy Ur is obtained numerically from calculations performed on over-killed meshes
with the global discretization parameters equal to: p = 9, q = 2, m = 9, where m = l/2h. Apart from the
absolute error values, the relative error values (Ur −U)/Ur are also presented and discussed.

5.2.1. A Quarter of a Bending Dominated Plate

Data

The dimensions of a quarter of the plate are such that the thinness ratio of the plate is l/t = 3.1415×
10−2/0.03× 10−2. The initial mesh is coarse. Its data are as follows: the longitudinal approximation order
p = 1, the transverse approximation order q = 2, and the element size h = l/2. This mesh is shown in
Figure 9. In the error analysis, the target error γT = 0.01 and the ratio γI/γT = 3.

Results

Three different courses of the adaptation are presented for this example. The first one corresponds to
the standard hp-adaptivity composed of the h- and p-adaptation steps only. The final mesh for this first
course is presented in Figure 10. The second course is the hp-adaptation preceded by the modification
step based on the detection algorithm from Section 3.1.3, where, after the detection, the modification
of the initial mesh is performed with the maximum setting p = 8 (Figure 11). No further automatic
h-adaptation is performed by the adaptivity control algorithm. In addition, no further p-adaptation
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can be performed due to the maximum value of p applied in the modification step after the detection.
The last course is the hp-adaptation performed after the initial mesh modification based on setting the
longitudinal order of approximation to its optimized value p = 4 (Figure 12) obtained from the algorithm
of Section 3.2.1. The final mesh completing this course of adaptation is presented in Figure 13. The not
presented intermediate mesh possesses the same division pattern as the final mesh but the order of
approximation is uniform and taken from the modified mesh (p = 4).

The adaptive convergence curves for three described cases are presented in Figure 14. In the case of
the standard hp-adaptivity, the curve consists of two sections and three points corresponding to the initial,
intermediate (h-adapted) and final (hp-adapted) meshes. The influence of the shear locking is visible in the
first section of the curve—this section is almost horizontal. In the case of the hp-adaptivity performed after
detection of the locking and based on the modified value of p = 8, two points of the convergence curve
correspond to the initial and modified meshes. The locking has been removed—the only section of the
curve is not horizontal. In the case of the hp-adaptation performed after the detection and optimization of
the value of p, the convergence curve consists of four points (the initial, modified, intermediate, and final
meshes) and three sections. The first not horizontal section of the curve reflects locking removal, while the
next two sections correspond to h-refinement and p-enrichment.

Finally, it is worth mentioning that the automatic choice of the program may be the two courses with
the initial mesh modification. These two automatic courses correspond to either the assumed maximum or
determined optimized value of p applied in the modification step. The enforced course corresponds to the
standard hp-adaptation.

The relations between the number N of degrees of freedom (dofs) and the absolute Ur − U and
relative (Ur −U)/Ur errors are summarized in Table 1 for the consecutive points of the three mentioned
convergence curves. The mesh figure numbers corresponding to these points are also indicated.

Table 1. Result summary—a quarter of the bending-dominated plate.

Adaptive Method Result Quantity
Mesh Type

Initial Modified Intermediate Final

mesh figure no. Figure 9 – – Figure 10
standard dofs number N [1] 36 – 225 9648

hp-adaptivity log(Ur −U) [N/m] 0.459481 – 0.452821 −2.352724
(Ur −U)/Ur [%] * 99.9 – 98.4 0.15

mesh figure no. Figure 9 Figure 11 – –
standard hp dofs number N [1] 36 729 – –

after detection log(Ur −U) [N/m] 0.459481 −1.43770 – –
(Ur −U)/Ur [%] * 99.9 1.27 – –

mesh figure no. Figure 9 Figure 12 – Figure 13
standard hp dofs number N [1] 36 531 3438 7704

after optimization log(Ur −U) [N/m] 0.459481 −0.297250 −1.531051 −2.354113
(Ur −U)/Ur [%] * 99.9 17.5 1.02 0.15

* admissible relative error value γT = 1.0 %.

Discussion

The shear locking has been detected in both cases which include modification of the initial mesh
based on the maximum and optimized values of the longitudinal order p. One can see that the standard
hp-adaptation leads to the final error value below the desired admissible value of γT . The same refers to
the hp-adaptation preceded by the modification based on the optimized value of the longitudinal order
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of approximation p = 4. In the case of the hp-adaptation performed after the modification of the mesh
based on the fixed maximum value of p = 8, the admissible error value has not been reached, even though
the error has been diminished. The reason is the discrete character of the possible h-adaptation. For the
estimated error level, this adaption has not been performed.
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Figure 9. A quarter of a bending-dominated plate—initial mesh.
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Figure 10. A quarter of a bending-dominated plate—hp-adapted (final) mesh.
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Figure 11. A quarter of a bending-dominated plate—after simple detection, no hp-adaptation.
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Figure 12. A quarter of a bending-dominated plate—mesh after optimized modification.
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Figure 13. A quarter of a bending-dominated plate—after optimization and hp-adaptation.

Figure 14. A quarter of a bending-dominated plate—convergence for three adaptation cases.
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5.2.2. A Bending-Dominated Plate

Data

In this example, the entire plate is considered. Thus, the thinness ratio is equal to l/2t = 1.57075×
10−2/0.03× 10−2. The discretization parameters of the coarse initial mesh, i.e., the element longitudinal
and transverse approximation orders and the element size, are p = 1, q = 2, and h = l/2, respectively.
These parameters can be seen in Figure 15. The data for the error analysis are assumed as: the admissible
target error γT = 0.02 and the ratio of the admissible intermediate to admissible target errors γI/γT = 3.
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Figure 15. A bending-dominated plate—initial mesh.

Results

As in the previous test, three courses of adaptation are of our interest. The first course corresponds to
the standard hp-adaptivity where the initial mesh is h- and then p-adapted. The hp-adapted final mesh is
shown in Figure 16. The next course of the adaptation is based on the hp-adaptation which is preceded by
the modification of the initial mesh. This modification (Figure 17) lies in setting the longitudinal order
of approximation as equal to the maximum possible value removing the locking, i.e., p = 8, after the
phenomenon has been detected by means of the algorithm of Section 3.1.3. As in the previous example,
no further adaptive actions have been performed. The h-division has not been made due to the estimated
approximation error level and discretized character of performance of the adaptivity control algorithm.
The p-enrichment has not been possible as the maximum value of p = 8 has already been applied in the
modified mesh. The third course of adaptation consists of the hp-adaptation following the modification
of the initial mesh by adopting the optimized value (p = 5) of the longitudinal order of approximation
(Figure 18). This value was established by the algorithm from Section 3.2.1. The final mesh for this
adaptation is presented in Figure 19. The not displayed intermediate mesh has the same division pattern
as the final mesh and the longitudinal approximation order as in the modified mesh, i.e., p = 5.
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Figure 16. A bending-dominated plate—hp-adapted (final) mesh.
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Figure 17. A bending-dominated plate—mesh after simple detection, no hp-adaptation.
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Figure 18. A bending-dominated plate—mesh after optimized modification.
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Figure 19. A bending-dominated plate—mesh after optimization and hp-adaptation.

The convergence curves corresponding to the performed adaptations are displayed in Figure 20.
In the case of the standard hp-adaptivity, the curve consists of three points and two section. These three
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points correspond to three meshes generated within this course: the initial, intermediate (or h-adapted),
and final (or hp-adapted) ones. The presence of the shear locking is reflected by the first horizontal section
of the curve. In the case of the hp-adaptivity performed after detection of the locking and applying the
modified maximum value of the longitudinal order of approximation, i.e., p = 8, the convergence curve
consists of two points and one section. These two points correspond to the initial and modified meshes.
In the only section of the curve that is not horizontal, he locking has been removed. In the third course of
adaptation, based on the modification of the initial mesh by the optimized value of the approximation
order p = 5, the convergence curve consists of three sections and four points—the initial, modified,
intermediate, and final meshes have been generated. It can be seen that the locking has been removed as
the first section is not horizontal.

Figure 20. A bending-dominated plate—convergence for three adaptation cases.

It should be stressed that the modes including modification step are the automatic choice of the
adaptive algorithm, while the standard hp-adaptivity is the enforced mode.

In Table 2, the relations between the number N of degrees of freedom and the absolute and relative
errors, respectively, Ur −U and (Ur −U)/Ur, are presented for the consecutive points of the convergence
curves of three adaptation modes. The mesh figure numbers corresponding to these points are also
indicated in the table.

Discussion

Firstly, as expected, the shear locking has been detected. Secondly, the adaptation based on
modification of the initial mesh by the optimized value of the longitudinal order of approximation
leads to final error value below the admissible error value, in contrast to the modification based on the
maximum value of the longitudinal order of approximation p = 8. Again, the discrete values of parameters
controlling the adaptation process have resulted in no further adaptation after the initial mesh modification.
One can see, however, that the standard hp-adaptation leads to the final error level below the admissible
value again. We show in the next example that this is not the rule.
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Table 2. Result summary—the bending-dominated plate.

Adaptive Method Result Quantity
Mesh Type

Initial Modified Intermediate Final

mesh figure no. Figure 15 – – Figure 16
standard dofs number N [1] 36 – 225 6381

hp-adaptivity log(Ur −U) [N/m] 1.060969 – 1.059175 −1.010223
(Ur −U)/Ur [%] * 100. – 99.6 0.85

mesh figure no. Figure 15 Figure 17 – –
standard hp dofs number N [1] 36 729 – –

after detection log(Ur −U) [N/m] 1.060969 −0.527871 – –
(Ur −U)/Ur [%] * 100. 2.58 – –

mesh figure no. Figure 15 Figure 18 – Figure 19
standard hp dofs number N [1] 36 324 5265 9279

after optimization log(Ur −U) [N/m] 1.060969 0.927962 −0.817269 −1.338752
(Ur −U)/Ur [%] * 100. 73.6 1.32 0.40

* admissible relative error value γT = 2.0 %.

5.2.3. A Quarter of a Bending-Dominated Shell

Data

This example concerns a symmetric quarter of the half-cylindrical shell. The thinness ratio for this
structure is equal to l/t = 3.1415× 10−2/0.003× 10−2. We assume the following discretization parameters:
the longitudinal order of approximation p = 2, the transverse one q = 2, and the element size h = l/2.
The shell quarter and its initial discretization is illustrated in Figure 21. The error analysis is based on the
following assumptions: γT = 0.007 and γI/γT = 3.
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Figure 21. A quarter of a bending-dominated shell—initial mesh.
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Results

As in the previous two bending-dominated examples, also here three courses of the adaptation are
performed. The first adaptation is the standard procedure composed of h- and p-steps. The mesh after
hp-adaptation can be seen in Figure 22. The second and third types of the adaptation are composed of the
hp-adaptation which follows the modification of the initial mesh. In the second type, the modification is
based on the maximum possible value of the longitudinal order of approximation p = 8 (the corresponding
figure is not displayed). In the case of the second type of adaptation, the modified mesh has been h-adapted
further (see Figure 23). In the third type, the modification takes advantage of the optimized value of p = 5
(Figure 24). In the second type, the p-adaptation has not been possible as the maximum value of p = 8 has
already been applied. In the third type of adaptation, the modified mesh has been hp-adapted. The final
mesh is presented in Figure 25. The not revealed intermediate mesh possesses the same division pattern as
the final mesh and the uniform order of approximation as in the modified mesh, namely p = 5.
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Figure 22. A quarter of a bending-dominated shell—hp-adapted (final) mesh.

Three convergence curves resulting from the described adaptations are presented in Figure 26.
The standard hp-adaptivity convergence curve consists of two sections and three points indicating the
estimated error level for the initial, intermediate, and final meshes. In the case of the hp-adaptation
following the modification based on the maximum value of p = 8, the curve consists of two
sections and three points corresponding to the initial, modified, and h-adapted (intermediate) meshes.
The shear–membrane locking has been removed—the first section of the curve is not horizontal. In the last
case of the hp-adaptivity following the modification based on the optimized value of p = 5, the curve is
composed of three sections and four points—the initial, modified, intermediate, and final meshes have
been generated. The locking has not been removed from the modified mesh, however the value of p = 5
has appeared sufficient for removal of the locking from the h-adapted (intermediate) mesh—the second
section of the convergence curve is not horizontal.
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Figure 23. A quarter of a bending-dominated shell—after simple detection and h-adaptation
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Figure 24. A quarter of a bending-dominated shell—mesh after optimized modification.

Note that the adaptations including the described mesh modifications, based on either the maximum
(p = 8) or optimized (p = 5) values of the longitudinal order of approximation, may be performed
automatically by the program, while the standard hp course has to be enforced by a user.
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Figure 25. A quarter of a bending-dominated shell—after optimization and hp-adaptation.

Figure 26. A quarter of a bending-dominated shell—convergence for three adaptation cases.

As in the previous numerical examples, the absolute and relative error values, respectively, log(Ur −
U) and (Ur −U)/Ur, are presented in Table 3 versus the number N of degrees of freedom (dofs). For the
points of three adaptive convergence curves, the corresponding mesh figure numbers are included in
the table.
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Table 3. Result summary—a quarter of the bending-dominated shell.

Adaptive Method Result Quantity
Mesh Type

Initial Modified Intermediate Final

mesh figure no. Figure 21 – – Figure 22
standard dofs number N [1] 81 – 918 8145

hp-adaptivity log(Ur −U) [N/m] 8.015996 – 8.014184 6.184208
(Ur −U)/Ur [%] * 99.9 – 99.5 1.47

mesh figure no. Figure 21 – Figure 23 –
standard hp dofs number N [1] 81 729 3294 –

after detection log(Ur −U) [N/m] 8.015996 6.330842 5.930839 –
(Ur −U)/Ur [%] * 99.9 2.06 0.82 –

mesh figure no. Figure 21 Figure 24 – Figure 25
standard hp dofs number N [1] 81 324 5265 10,512

after optimization log(Ur −U) [N/m] 8.015996 7.978775 6.039104 5.449802
(Ur −U)/Ur [%] * 99.9 91.73 1.05 0.27

* admissible relative error value γT = 0.7 %.

Discussion

The anticipated shear–membrane locking has been detected in two adaptation modes including
modification of the initial mesh. In the case of the standard hp-adaptation, the admissible error value
has not been achieved. This is because the estimated error level and the discretization parameters in
the adapted meshes have not been determined accurately due to the locking. In the adaptation with
modification based on the maximum p possible, the admissible error value has not been achieved. This is
because only further h-adaptation has been performed and further p-adaptation has not been possible as
the maximum value of p = 8 has already been adopted. However, the admissible error value has been
confidently achieved in the adaptation with the modification of the initial mesh based on the optimized
value of p.

5.2.4. An Octant of a Membrane-Dominated Shell

Data

A symmetric octant of the cylindrical shell and its initial discretization, based on p = 2, q = 2,
and h = l/2, are presented in Figure 27. A very coarse initial mesh can be seen in this figure. The thinness
ratio equals l/t = 3.1415 × 10−2/0.03 × 10−2. The error data controlling the hp-adaptation are the
admissible relative error value on the final mesh γT = 0.01 and the ratio of the admissible error values on
the intermediate and final meshes γI/γT = 2.

Results

As expected, the automatic tools for detection and/or assessment of the locking have not indicated
the appearance of the phenomenon. Because of this, the automatic mode of adaptation corresponds to
standard hp-approach. The final, hp-adapted mesh is presented in Figure 28. Note that the intermediate
(h-adapted) mesh is not presented but it can easily be obtained from the results in Figures 27 and 28 by
taking approximation orders p and h-division pattern from these two figures, respectively. It can be seen
in the presented figure that, in the vicinity of the curved edge with the rotations constrained, the higher
error level and the resultant higher approximation orders are present due to the local bending along
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the constrained boundary. The membrane and bending strain energies are of the same order along this
boundary. In the rest of the shell octant, the membrane strains dominate over bending ones and the error
level is lower and evenly distributed. Because of this, the resultant approximation orders are also lower
and evenly distributed.
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Figure 27. An octant of a membrane-dominated shell—initial mesh.
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Figure 28. An octant of a membrane-dominated shell—hp-adapted (final) mesh.
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The convergence curve corresponding to the standard three-step hp-adaptivity is shown in Figure 29.
The first point on the curve corresponds to the initial mesh. The second point of the curve is for the
intermediate mesh, while the third point for the final mesh. The admissible error value was confidently
achieved in the corresponding three steps.

Finally, in Table 4, the summarizing results of the absolute error Ur − U and the relative error
(Ur −U)/Ur are presented versus the number N of degrees of freedom (dofs) for three points of the
convergence curve. The mesh figure numbers corresponding to these points are also included in the
presented table.

Figure 29. An octant of a membrane-dominated shell—convergence for hp-adaptation.

Table 4. Result summary—an octant of the membrane-dominated shell.

Adaptive Method Result Quantity
Mesh Type

Initial Modified Intermediate Final

mesh figure no. Figure 27 – – Figure 28
standard dofs number N [1] 27 – 306 606

hp-adaptivity log(Ur −U) [N/m] 3.017413 – 1.898823 0.086034
(Ur −U)/Ur [%] * 16.9 – 1.29 0.02

* admissible relative error value γT = 1.0 %.

Discussion

It can seen that the locking detection and/or assessment tools are capable of not only detecting the
phenomena but also recognizing the problems where the phenomenon is not present. Such a result of the
detection is consistent with theory presented in the literature (compare [32]). In situations such as this,
performance of the standard hp-approach is enough to achieve the admissible error value as shown in
this example.
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5.2.5. Generalizations

Based on the above representative examples, and other analogous examples performed by the authors
and not presented here due to their qualitative and quantitative similarity, one can state that:

• The adaptation mode based on standard hp-adaptivity may fail when applied to the problems where
the locking phenomena are present.

• The adaptation mode which allows modification of the initial mesh with the maximum possible
longitudinal order of approximation may lead to underestimation of the final error value.

• The course of adaptation with the modification of the initial mesh by means of the optimized value of
the longitudinal order of approximation is more effective in achieving the admissible error value than
the previous two courses of adaptation.

6. Conclusions

The proposed tools for detection and/or assessment of the locking phenomena are capable of the
detection of the shear locking and shear–membrane locking as well. These tools are also capable of
recognizing the problems without locking phenomena present.

The removal of the locking phenomena by modification of the initial mesh, based on the optimized
value of the longitudinal order of approximation p, can effectively lead to the admissible error value in the
final mesh. This may be possible neither in the case of mesh modification based on the maximum value of
p nor in the case of the standard hp-adaptivity.

The elaborated tools are perfectly suited to the adaptation based on approximation error control
employing, e.g., the equilibrated residual method of error estimation and the three-step hp-adaptive
strategy. One may also consider application of these tools as the first step of the adaptation based on
iterative diminishing the interpolation error.
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