
applied
sciences

Article

A MBSE Application to Controllers of Autonomous
Underwater Vehicles Based on Model-Driven
Architecture Concepts

Ngo Van Hien 1,* , Ngo Van He 1,* , Van-Thuan Truong 1,* and Ngoc-Tam Bui 2,3,*
1 School of Transportation Engineering, Hanoi University of Science and Technology, Hanoi 10000, Vietnam
2 College of Systems Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
3 School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi 10000, Vietnam
* Correspondence: hien.ngovan@hust.edu.vn (N.V.H.); he.ngovan@hust.edu.vn (N.V.H.);

thuan.truongvan@hust.edu.vn (V.-T.T.); tambn@shibaura-it.ac.jp (N.-T.B.)

Received: 30 September 2020; Accepted: 21 November 2020; Published: 23 November 2020 ����������
�������

Abstract: In this paper, a hybrid realization model is proposed for the controllers of autonomous
underwater vehicles (AUVs). This model is based on the model-based systems engineering (MBSE)
methodology, in combination with the model-driven architecture (MDA), the real-time unified
modeling language (UML)/systems modeling language (SysML), the extended/unscented Kalman
filter (EKF/UKF) algorithms, and hybrid automata, and it can be reused for designing controllers
of various AUV types. The dynamic model and control structure of AUVs were combined with
the specialization of MDA concepts as follows. The computation-independent model (CIM) was
specified by the use-case model combined with the EKF/UKF algorithms and hybrid automata to
intensively gather the control requirements. Then, the platform-independent model (PIM) was
specialized using the real-time UML/SysML to design the capsule collaboration of control and its
connections. The detailed PIM was subsequently converted into the platform-specific model (PSM)
using open-source platforms to promptly realize the AUV controller. On the basis of the proposed
hybrid model, a planar trajectory-tracking controller, which allows a miniature torpedo-shaped AUV
to autonomously track the desired planar trajectory, was implemented and evaluated, and shown to
have good feasibility.

Keywords: autonomous underwater vehicle (AUV); AUV control; extended/unscented Kalman filter
(EKF/UKF); model-based systems engineering (MBSE); model-driven architecture (MDA); real-time
UML/SysML; hybrid automata

1. Introduction

Underwater vehicles have been extensively developed for many military applications in recent
decades. In particular, autonomous underwater vehicles (AUVs) are of interest with respect
to developing civil applications for enhancing economic effectiveness, e.g., ocean exploration,
environmental monitoring, mapping, and disaster and tsunami warnings [1–8].

Controller design for AUVs has been a challenge because controllers are closely linked to AUV
dynamics in complex underwater environments [9–11]. The AUV controller can consist of discrete
models, continuous models, and their interaction in a hybrid dynamic system (HDS), as modeled by
hybrid automata (HA) [12–15]. Traditional control methods have often been used for implementing
complex systems to make them more effective for their controllers [16–18]. They have also been used
for building AUV controllers. Some traditional control techniques applied for AUV applications are
described below.

Appl. Sci. 2020, 10, 8293; doi:10.3390/app10228293 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-6623-8252
https://orcid.org/0000-0003-1263-6703
https://orcid.org/0000-0003-1760-9149
https://orcid.org/0000-0003-0437-6104
http://dx.doi.org/10.3390/app10228293
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/22/8293?type=check_update&version=2

Appl. Sci. 2020, 10, 8293 2 of 20

Lyapunov stability [19–22] was demonstrated to be very reactive. However, the stability
of the desired waypoint was not suitable enough to track horizontal planar trajectories.
The proportional–integral–derivative (PID) regulator [23–26] proved to be well suited for use in
AUVs when tracking horizontal planar trajectories. It was possible to successfully perform the first
autonomous trip using this method. Nevertheless, the PID controller was implemented to control
the AUV in the absence of large disturbances. The linear quadratic (LQ) [27,28] controller presented
average stabilization results. Backstepping methods [29,30] were shown to be able to control the
Euler roll, pitch, and yaw (RPY) angles in conditions of high environmental noise. The sliding-mode
controller (SMC) [31–33] did not give good results when applied alone, as it seemed to be short of
adaptation for the dynamics of AUVs. Hence, in some studies investigating backstepping [34,35], neural
networks [36–39], the computed torque method [40,41], and digital filters such as extended/unscented
Kalman filters (EKF/UKF), the SMC has been improved by using control techniques to improve its
performance for AUVs.

The above assessment led to us choosing a combination of PID and backstepping to perform a
continuous model evolution of the AUV controller, called the integral backstepping (IB) technique.

Reusability must also be considered in the development of new AUV applications with respect to
their lifecycle in an effort to reduce their cost and resources. The Object Management Group (OMG) [42]
standardized the unified modeling language (UML), which is as an industry standard used to visualize,
specify, construct, and document the artefacts of a software-intensive system. The system modeling
language (SysML) [43] was standardized by the OMG for systems engineering. SysML is a UML profile
that can provide simple but powerful constructs for modeling a wide range of systems engineering
problems. However, the drawback of UML and SysML is that they lack the ability to model the
evolution of internal continuous behavior for developed systems.

On the other hand, the model-based systems engineering (MBSE) approach was formalized by
INCOSE [44,45] to robustly model whole artefacts in the development lifecycle of unintelligible systems.
Examples of systems engineering methods [46] were identified in a survey of MBSE methodologies [47],
including Harmony for systems engineering (Harmony-SE) [48,49], the object-oriented systems
engineering method (OOSEM) [50,51], the rational unified process for systems engineering
(RUP-SE) [52], the state analysis method [53], and the object process methodology (OPM) [54,55].
The model-driven architecture (MDA) [56,57] was standardized by the OMG for separating the
specification of system operations from the details of how a system uses the capabilities of its
platform. The three main goals of MDA are portability, interoperability, and reusability through
an architectural separation of concerns. Here, portability allows the same solution to be realized
on new or multiple platforms, while interoperability creates systems that can easily integrate and
communicate with other systems and use a variety of resource applications, and reusability builds
solutions that can be reused in many different applications in different contexts [56]. Sebastián et al. [58]
investigated MDA applications by conducting a systematic mapping of MDA literature in software
engineering between 2008 and 2018. Actually, the principle of MDA can be used within the unified
architecture framework (UAF) [59] to strengthen the interoperability of a system. In many commercial
applications, real-time SysML/UML has been combined with the above model-based methods for
systems engineering [57,60–67]. Hence, the MBSE approach and the features of MDA can be used in
combination with real-time UML [68–71] and SysML (for example, real-time UML/SysML) to describe,
in detail, the artefacts of the developed system.

On the basis of the above-assessed points, this work focuses on the construction of a hybrid
control model based on the MBSE methodology, in combination with the MDA concept, real-time
UML/SysML, and HA, permitting us to intensively realize an AUV controller. The control artefacts
designed can be customized and reused for deployment on various AUV platforms. In this
study, the dynamic models of AUV for control were combined with the specialization of MDA
features, composed of the platform-specific model (PSM), platform-independent model (PIM),
and computation-independent model (CIM). Lastly, a planar trajectory-tracking controller for a

Appl. Sci. 2020, 10, 8293 3 of 20

miniature torpedo-shaped autonomous underwater vehicle running on a free surface was deployed
and evaluated through simulation experiments.

The three main contributions of this research are as follows:

(1) The MBSE methodology, together with MDA components, was adapted for usability in the
lifecycle development of AUV controllers.

(2) The designed control capsules are customizable and reusable for many kinds of AUVs.
(3) A planar trajectory-tracking controller of a miniature AUV running on the free surface was

developed and evaluated through simulation experiments.

This manuscript is structured as follows. Section 2 presents the adapted dynamics and control
structure of AUVs, while Section 3 proposes the details of MBSE-driven development aimed at
intensively realizing AUV controllers, consisting of the CIM, PIM, and PSM components. A case study
on application of the specialized model is discussed in Section 4, followed by the paper’s conclusions
and future prospects.

2. AUV Dynamics and Control Architecture

2.1. AUV Dynamic Model for Controlling

The six motions of the AUV are defined as sway, surge, roll, heave, yaw, and pitch by the Society
of Naval Architects and Marine Engineers (SNAME [72] (Table 1).

Table 1. Society of Naval Architects and Marine Engineers (SNAME) notations for underwater vehicles
(data from [64]).

Degree of
Freedom Motions Force and Moment Linear and

Angular Velocity
Position and Euler

Angles

1 Surge X u x
2 Sway Y v y
3 Heave Z w z
4 Roll K p φ
5 Pitch M q θ
6 Yaw N r ψ

According to the guidance, navigation, and control of underwater vehicles [9,73–77], the kinematic
model in the inertial frame and the dynamic model in the main frame of AUVs can be written as
Equations (1) and (2), respectively.

.
η=J(η)ν, (1)

M
.
ν+ C(ν)ν+ D(ν)ν+ g(η) = τ(v, u), (2)

where η = [η1
T,η2

T]T consists of the position η1 = [x,y,z]T and the orientation η2 = [φ,θ,ψ]T of the
vehicle expressed in the inertial frame, while ν = [v1

T,v2
T]T includes the linear v1= [u,v,w]T and the

angular v2 = [p,q,r]T velocities of the vehicle expressed in the body frame. The model matrices M,
C(ν), and D(ν) denote inertia, Coriolis, and damping, respectively, while g(η) is a vector of gravity and
buoyancy forces. On the right-hand side of Equation (2), τ(v,u) is the vector of resultant forces and
moments acting on the AUV, and u represents the control inputs.

A model of state-space discreteness can be used to model the control evolution of an AUV that is
used to estimate the states of an AUV by using the EKF or UKF [78–82] methodologies; the motion of
the control system can be described as shown in Equation (3).{

xk = fk−1(xk−1, uk−1) + wk−1
yk = hk(xk) + vk

(3)

Appl. Sci. 2020, 10, 8293 4 of 20

where x =

[
η
ν

]
, xk is the state variable vector at the k-th instant of x, uk and yk are the system’s

inputs and outputs, respectively, and hk, wk, and vk are the measurement function, additive process,
and measurement noise, respectively.

2.2. General Control Architecture for an AUV

The physical architecture of an AUV consists of the following subsystems: the guidance subsystem;
the navigation subsystem; and the control subsystem. These subsystems have their own tasks, yet they
must also cooperate to permit the vehicle to complete its mission. Figure 1 shows a block definition
diagram in SysML that depicts the interactions of the subsystems.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 21

2.2. General Control Architecture for an AUV

The physical architecture of an AUV consists of the following subsystems: the guidance
subsystem; the navigation subsystem; and the control subsystem. These subsystems have their own
tasks, yet they must also cooperate to permit the vehicle to complete its mission. Figure 1 shows a
block definition diagram in SysML that depicts the interactions of the subsystems.

Figure 1. Autonomy architecture block definition diagram for an autonomous underwater vehicle
(AUV).

According to the above AUV dynamic and control architecture, and the definition of an HDS
described in [13–15], AUV controllers can, thus, be considered HDSs whose dynamic behaviors can
be modeled by HA [12] and implemented by line-of-sight (LOS) navigability, as described in [83–87].

3. MBSE-Driven Development for an AUV Controller

3.1. CIM for an AUV Controller

On the basis of the dynamics and control frame of AUVs described in Section 2, the main use
case model of AUV controllers is shown in Figure 2. Figure 3a,b describes a case study of path-
tracking scenarios, where the state machine of the “Track a desired trajectory” use case is shown
using the sequence and state diagrams of real-time UML/SysML conventions.

The system/human actors and use cases of the AUV controller are defined as follows:

- MDS is the measurement display system actor, which includes the guidance subsystem and
navigation subsystem.

- MES is the marine environment system actor, which represents the marine environmental
noises.

- Maintainer is a human actor who has authority to check the physical AUV components and
configure system parameters AUV for running AUV tasks.

- “Track a desired trajectory” is a use case study for tracking the target of a predefined path.
- “Ensure safety” is a use case for ensuring system safety.
- “Configure control parameters of the AUV” is a use case for configuring and updating system

parameters.
- “Maintain the physical components” is a use case for servicing the whole physical system.

Figure 1. Autonomy architecture block definition diagram for an autonomous underwater
vehicle (AUV).

According to the above AUV dynamic and control architecture, and the definition of an HDS
described in [13–15], AUV controllers can, thus, be considered HDSs whose dynamic behaviors can be
modeled by HA [12] and implemented by line-of-sight (LOS) navigability, as described in [83–87].

3. MBSE-Driven Development for an AUV Controller

3.1. CIM for an AUV Controller

On the basis of the dynamics and control frame of AUVs described in Section 2, the main use case
model of AUV controllers is shown in Figure 2. Figure 3a,b describes a case study of path-tracking
scenarios, where the state machine of the “Track a desired trajectory” use case is shown using the
sequence and state diagrams of real-time UML/SysML conventions.

The system/human actors and use cases of the AUV controller are defined as follows:

- MDS is the measurement display system actor, which includes the guidance subsystem and
navigation subsystem.

- MES is the marine environment system actor, which represents the marine environmental noises.
- Maintainer is a human actor who has authority to check the physical AUV components and

configure system parameters AUV for running AUV tasks.
- “Track a desired trajectory” is a use case study for tracking the target of a predefined path.
- “Ensure safety” is a use case for ensuring system safety.
- “Configure control parameters of the AUV” is a use case for configuring and updating

system parameters.

Appl. Sci. 2020, 10, 8293 5 of 20

- “Maintain the physical components” is a use case for servicing the whole physical system.
Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 21

Figure 2. Use case model of the developed AUV.

(a) (b)

Figure 3. (a) Desired trajectory-tracking scenario, and (b) local state machine for performing the “track
a desired trajectory” use case.

In this work, an implemented functional block diagram (Figure 4) is proposed for the kinematic
and dynamic models of an AUV, described in Equations (1) and (2), to obtain the internal continuous
evolutions for the controller, where Ωdi, 𝑖 = 1, 𝑛 are desired rotational speeds, which are applied to
the n actuators of the AUV, and ΣT and τφ,θ,Ψ are the overall output forces and moments acting on the
actuators of the AUV.

Figure 2. Use case model of the developed AUV.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 21

Figure 2. Use case model of the developed AUV.

(a) (b)

Figure 3. (a) Desired trajectory-tracking scenario, and (b) local state machine for performing the “track
a desired trajectory” use case.

In this work, an implemented functional block diagram (Figure 4) is proposed for the kinematic
and dynamic models of an AUV, described in Equations (1) and (2), to obtain the internal continuous
evolutions for the controller, where Ωdi, 𝑖 = 1, 𝑛 are desired rotational speeds, which are applied to
the n actuators of the AUV, and ΣT and τφ,θ,Ψ are the overall output forces and moments acting on the
actuators of the AUV.

Figure 3. (a) Desired trajectory-tracking scenario, and (b) local state machine for performing the “track
a desired trajectory” use case.

In this work, an implemented functional block diagram (Figure 4) is proposed for the kinematic
and dynamic models of an AUV, described in Equations (1) and (2), to obtain the internal continuous
evolutions for the controller, where Ωdi, i = 1, n are desired rotational speeds, which are applied to the
n actuators of the AUV, and ΣT and τφ,θ,Ψ are the overall output forces and moments acting on the
actuators of the AUV.

Appl. Sci. 2020, 10, 8293 6 of 20
Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 21

Figure 4. Functional block diagram for implementing the continuous evolution of an AUV controller.

As previously assessed, the IB expansion combined with the control Lyapunov function (CLF)
can be used in many AUV control applications. This was also applied to the functional blocks of deep
control, position control, and attitude control (Figure 4), which participate in the continuous
evolutions. PID regulators were also used for the functional block of motor control. This study did
not focus on the decomposition of these control techniques for an AUV because they were developed
in many AUV applications [23–26,34,35,88–90].

In addition, the discrete state-space models in Equation (3), in combination with the EKF or UKF
[78–82] implementations, allowed the estimation of the states of the developed AUV, as introduced
in Section 4.

Furthermore, hybrid automata (HA), presented by Henzinger, Kopke, Puri, and Varaiya [12],
provide a mathematical model for digital computer systems that interact with an analog environment
in real time. In the CIM, HA are established as shown in Equation (4).

HAUV = (Q, X, , A, Inv, F, qo, xco), (4)

where Q is a set of running cases of the AUV, qo ∈ Q is the starting situation, X is the continuous
state-space of continuous elements, xco ∈ X is the initial value, is a set of external events, A is a set
of transitions between running cases corresponding to events σ ∈ , Inv is an application tool, which
is used to check xc ∈ inv(q), and F is the continuous global model issued from the kinematic and
dynamic models in Equations (1) and (2).

3.2. PIM for an AUV Controller

The PIM’s goal is to implement real-time capsule collaboration, which allows capturing, in
detail, the design model for control. From the above-identified CIM, the five primary control capsules
were specialized to implement the HA for an AUV controller: the discrete part’s capsule, the
continuous part’s capsule, the external interface’s capsule, the internal interface’s capsule, and the
instantaneous global continuous behavior (IGCB)’s capsule. Figures 5 and 6 indicate the real-time
capsule collaboration for an AUV controller using real-time UML cooperation and class diagrams.

Figure 4. Functional block diagram for implementing the continuous evolution of an AUV controller.

As previously assessed, the IB expansion combined with the control Lyapunov function (CLF) can
be used in many AUV control applications. This was also applied to the functional blocks of deep
control, position control, and attitude control (Figure 4), which participate in the continuous evolutions.
PID regulators were also used for the functional block of motor control. This study did not focus on
the decomposition of these control techniques for an AUV because they were developed in many AUV
applications [23–26,34,35,88–90].

In addition, the discrete state-space models in Equation (3), in combination with the EKF or
UKF [78–82] implementations, allowed the estimation of the states of the developed AUV, as introduced
in Section 4.

Furthermore, hybrid automata (HA), presented by Henzinger, Kopke, Puri, and Varaiya [12],
provide a mathematical model for digital computer systems that interact with an analog environment
in real time. In the CIM, HA are established as shown in Equation (4).

HAUV = (Q, X,Σ, A, Inv, F, qo, xco), (4)

where Q is a set of running cases of the AUV, qo ∈ Q is the starting situation, X is the continuous
state-space of continuous elements, xco ∈ X is the initial value, Σ is a set of external events, A is a set of
transitions between running cases corresponding to events σ ∈ Σ, Inv is an application tool, which is
used to check xc ∈ inv(q), and F is the continuous global model issued from the kinematic and dynamic
models in Equations (1) and (2).

3.2. PIM for an AUV Controller

The PIM’s goal is to implement real-time capsule collaboration, which allows capturing, in detail,
the design model for control. From the above-identified CIM, the five primary control capsules were
specialized to implement the HA for an AUV controller: the discrete part’s capsule, the continuous part’s
capsule, the external interface’s capsule, the internal interface’s capsule, and the instantaneous global
continuous behavior (IGCB)’s capsule. Figures 5 and 6 indicate the real-time capsule collaboration for
an AUV controller using real-time UML cooperation and class diagrams.

Appl. Sci. 2020, 10, 8293 7 of 20
Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 21

Figure 5. Collaboration diagram of real-time capsules for an AUV controller (data from [63]).

Here, the discrete part’s capsule consists of situations Q and transitions A in HA of the AUV
controller; the continuous part’s capsule contains the continuous state-space X; the IGCB’s capsule
implements concrete global continuous behaviors as f∈F, where f is directly derived from Equation
(3) and the implemented functional block diagram (Figure 4) can be implemented in f for the
estimation of AUV states; the external interface’s capsule is an intermediary, which receives/sends
events/signals between the AUV controller and the MES/MDS; the internal interface’s capsule
permits the Inv tool to generate internal events in the HA evolution. The detailed specification of this
capsule collaboration can be found in the author’s previous report [63].

Figure 6. Class diagram of real-time capsules for an AUV controller (data from [63]).

Figure 5. Collaboration diagram of real-time capsules for an AUV controller (data from [63]).

Here, the discrete part’s capsule consists of situations Q and transitions A in HA of the AUV
controller; the continuous part’s capsule contains the continuous state-space X; the IGCB’s capsule
implements concrete global continuous behaviors as f∈F, where f is directly derived from Equation (3)
and the implemented functional block diagram (Figure 4) can be implemented in f for the estimation
of AUV states; the external interface’s capsule is an intermediary, which receives/sends events/signals
between the AUV controller and the MES/MDS; the internal interface’s capsule permits the Inv tool to
generate internal events in the HA evolution. The detailed specification of this capsule collaboration
can be found in the author’s previous report [63].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 21

Figure 5. Collaboration diagram of real-time capsules for an AUV controller (data from [63]).

Here, the discrete part’s capsule consists of situations Q and transitions A in HA of the AUV
controller; the continuous part’s capsule contains the continuous state-space X; the IGCB’s capsule
implements concrete global continuous behaviors as f∈F, where f is directly derived from Equation
(3) and the implemented functional block diagram (Figure 4) can be implemented in f for the
estimation of AUV states; the external interface’s capsule is an intermediary, which receives/sends
events/signals between the AUV controller and the MES/MDS; the internal interface’s capsule
permits the Inv tool to generate internal events in the HA evolution. The detailed specification of this
capsule collaboration can be found in the author’s previous report [63].

Figure 6. Class diagram of real-time capsules for an AUV controller (data from [63]). Figure 6. Class diagram of real-time capsules for an AUV controller (data from [63]).

Appl. Sci. 2020, 10, 8293 8 of 20

Reusability is essential in the operator of controllers for different AUV applications because it
reduces manufacturing time and equipment costs. Moreover, this can allow the capsule collaboration
of a developed AUV to be customized and reused in a new control application for many types of AUVs,
as shown in Table 2.

Table 2. The customizability and reusability of designed control capsules in new control applications
for many types of AUVs. IGCB, instantaneous global continuous behavior.

Designed Control
Capsules

Specialization Rules

Generic Artifacts the New
AUV Controller

Specialized Artifacts the New
AUV Controller

IGCB The state machine, ports, and protocols of
this capsule are not changed.

The specifications of the IGCB’s capsule make
up the new IGCB model and are formed by the

new continuous components.

Continuous part The ports and protocols of this capsule are
not changed.

It is specialized by adding or removing down
continuous elements.

Discrete capsule This is not changed. None.

External interface The state machine, ports, and protocols of
this capsule are not changed.

It is specialized by adding/removing
inputs/outputs events issued from the outside.

Internal interface The state machine and ports of this
capsule are not changed.

It is specialized by adding/removing Inv
in/from the new IGCB.

The real-time capsule collaborations shown in Figures 5 and 6 are not changed for new control applications of AUVs.

3.3. PSM for an AUV Controller

In the construction of the AUV controller, the above-designed PIM was converted into the PSM
using IBM Rational Software Architect Real Time, IBM Rational Rose Real Time [91], or Papyrus
for Real Time (Papyrus-RT) [92]. These tools are effectively used to develop complex real-time and
embedded systems and software applications. They act as implementations of real-time UML/SysML
for C++, Java, Ada, and runtime system supports.

Hence, the PIM could be converted into the PSM using different implementation development
environments (IDEs) to ultimately realize a controller with suitable microcontrollers. The MDA’s
features also support model transformation. This transformation model could be rapidly applied
through round-trip engineering. The transformation rules, which can be used to convert the PIM into
PSM and vice versa through round-trip engineering of the intermediate codes of an object-oriented
programming language, were presented in the authors’ previous report [1].

Furthermore, the above-defined HA could be automatically implemented using the state pattern
described in [93,94]. According to this pattern, the HA’s structure implementation to display the
meaningful programming usefulness of the control program of an AUV is shown in Figure 7.
An example of HA implementation based on the state pattern was performed and compiled using
Arduino’s IDE [95] to fit into ATMEGA32-U2 and STM32 Cortex-M4 microcontrollers for an AUV
controller, as shown in Appendix A.

Appl. Sci. 2020, 10, 8293 9 of 20

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 21

Figure 7. State pattern structure of hybrid automata (HA) for the AUV controller.

4. Application

4.1. Physical Application Configurations

Following the above-proposed model, a planar trajectory-tracking controller, which allowed a
low-cost AUV possessing a torpedo shape to reach and follow a predetermined trajectory on the free
surface, was deployed. This case study represents one element of our long-term research project
funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED)
under grant number 107.03-2019.302. The torpedo-shaped AUV’s main operating parameters are
summarized in Table 3.

Table 3. The torpedo-shaped AUV’s main operating parameters (data from [63]).

Parameters Values
Size (L × H × W) (1.50 × 0.20 × 0.20) m

Weight 11.50 kg
Autonomous duration 25 min

2× Li–Po battery 22.2 V, 20,000 mAh
Ultimate capacity 285 W

Maximum submersing/rising speed 0.70 m/s
Maximum horizontal moving speed 1.80 m/s

Maximum operation depth 1.20 m
Maximum radius of operation 400 m
Inertia moment on x-axis, Ixx 0.057 kg·m2

Inertia moments on y-axis and z-axis, Iyy = Izz 1.271 kg·m2

4.2. Control Implementation and Test Results

According to the functional block diagram for performance describing the continuous evolution
of the AUV controller, the environmental disturbance caused by a wave was only considered as sea
state code 1 [96], i.e., slight ripples on the free surface.

Figure 7. State pattern structure of hybrid automata (HA) for the AUV controller.

4. Application

4.1. Physical Application Configurations

Following the above-proposed model, a planar trajectory-tracking controller, which allowed a
low-cost AUV possessing a torpedo shape to reach and follow a predetermined trajectory on the free
surface, was deployed. This case study represents one element of our long-term research project
funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED)
under grant number 107.03-2019.302. The torpedo-shaped AUV’s main operating parameters are
summarized in Table 3.

Table 3. The torpedo-shaped AUV’s main operating parameters (data from [63]).

Parameters Values

Size (L × H ×W) (1.50 × 0.20 × 0.20) m
Weight 11.50 kg

Autonomous duration 25 min
2× Li–Po battery 22.2 V, 20,000 mAh
Ultimate capacity 285 W

Maximum submersing/rising speed 0.70 m/s
Maximum horizontal moving speed 1.80 m/s

Maximum operation depth 1.20 m
Maximum radius of operation 400 m
Inertia moment on x-axis, Ixx 0.057 kg·m2

Inertia moments on y-axis and z-axis, Iyy = Izz 1.271 kg·m2

4.2. Control Implementation and Test Results

According to the functional block diagram for performance describing the continuous evolution
of the AUV controller, the environmental disturbance caused by a wave was only considered as sea
state code 1 [96], i.e., slight ripples on the free surface.

Appl. Sci. 2020, 10, 8293 10 of 20

The state-space models shown in Equation (3) were implemented to calculate the current states of
the AUV using the installed sensors, e.g., the inertial measurement unit (IMU) MPU6000 [97] and the
global positioning system (GPS) Ublox Neo 6M [98]. The state estimations in both cases were based on
the EKF (Algorithm 1) and the UKF (Algorithm 2). In Algorithms 1 and 2, .̂ denotes an estimation, P is
the state covariance, and Q and R represent the covariance matrices of the process and measurement

noise, respectively. The state was estimated starting from the following initial conditions:
^
x0|0 = x0

and P0|0 = 012×12.

Algorithm 1. Navigation filter based on the extended Kalman filter (EKF).

Function EKF algorithm
Step EKF predict

Data:
^
xk−1|k−1, Pk−1|k−1, fk−1(.)

Result:
^
xk|k−1, Pk|k−1

Fk−1 = ∂fk−1
∂x

∣∣∣∣^
xk−1|k−1uk−1

;
^
xk|k−1 = fk−1

(
^
xk−1|k−1

)
;

Pk|k−1 = Fk−1, Pk−1|k−1FT
k−1 + Qk−1;

end
Step EKF update

Data:
^
xk|k−1, Pk|k−1, hk(.)

Result:
^
xk|k, Pk|k

Hk = ∂hk
∂x

∣∣∣∣^
xk|k−1

;

Sk = Rk + HkPk|k−1HT
k ;

Lk = Pk|k−1HT
kS−1

k ;

ek = yk − hk

(
^
xk|k−1

)
;

^
xk|k =

^
xk|k−1 + Lkek;

Pk|k = Pk|k−1 − LkSkLT
k−1;

end

Algorithm 2. Navigation filter based on the unscented Kalman filter (UKF).

Function UKF algorithm
Step UKF predict

Data:
^
xk−1|k−1, Pk−1|k−1, fk−1(.)

Result:
^
xk|k−1, Pk|k−1(

^
xk|k−1, P k|k−1

)
= UT

(
^
xk−1|k−1, P k−1|k−1, fk−1(.)

)
;

Pk|k−1 = P k|k−1 + Qk−1;
end
Step UKF update

Data:
^
xk|k−1, Pk|k−1, hk(.)

Result:
^
xk|k, Pk|k (

^
yk|k−1, S k, Pxy

k

)
= UT

(
^
xk|k−1, Pk|k−1, hk−1(.)

)
;

Sk = Rk + S k;
Lk = Pxy

k S−1
k ;

ek = yk −
^
yk|k−1;

^
xk|k =

^
xk|k−1 + Lkek;

Pk|k = Pk|k−1 − LkSkLT
k ;

end

Appl. Sci. 2020, 10, 8293 11 of 20

We used the OpenModelica tool [99], which is an open-source simulation environment, to perform
the simulation of an AUV controller. OpenModelica is an object-oriented modeling environment of
Modelica [100] and C/C++ for hybrid systems. A case study in which the MDS was assumed to address
an event in the transferring state to the AUV controller with a desired course angle of 020◦ and average
speed of 1.5 m/s is shown in Figure 8. Here, the average transient durations, which correspond to the
cases using EKF and UKF, were 6.8 and 6.2 s for the AUV’s stabilized course.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 21

L୩ = P୩୶୷S୩ି ଵ; 𝐞୩ = 𝐲୩ − 𝐲ො୩|୩ିଵ; 𝐱ො୩|୩ = 𝐱ො୩|୩ିଵ + L୩𝐞୩; P୩|୩ = P୩|୩ିଵ − L୩S୩L୩;
end

We used the OpenModelica tool [99], which is an open-source simulation environment, to
perform the simulation of an AUV controller. OpenModelica is an object-oriented modeling
environment of Modelica [100] and C/C++ for hybrid systems. A case study in which the MDS was
assumed to address an event in the transferring state to the AUV controller with a desired course
angle of 020° and average speed of 1.5 m/s is shown in Figure 8. Here, the average transient durations,
which correspond to the cases using EKF and UKF, were 6.8 and 6.2 s for the AUV’s stabilized course.

Figure 8. Average transient response time in a desired course of 020o from the current position for the
cases using EKF and UKF.

The ATMEGA32-U2 and STM32 Cortex-M4 microcontrollers [95] were installed on the
mainboard. The AUV installation for trial trips is shown in Figure 9. The test scenarios were based
on different desired courses, for various desired shape-based paths and average velocities. Some of
the main planar course-tracking test results are shown in Table 4. Figures 10a,b and 11a,b respectively
show that the AUV reached and followed the desired rectangle- and triangle-shaped trajectories.

Figure 8. Average transient response time in a desired course of 020◦ from the current position for the
cases using EKF and UKF.

The ATMEGA32-U2 and STM32 Cortex-M4 microcontrollers [95] were installed on the mainboard.
The AUV installation for trial trips is shown in Figure 9. The test scenarios were based on different
desired courses, for various desired shape-based paths and average velocities. Some of the main planar
course-tracking test results are shown in Table 4. Figure 10a,b and Figure 11a,b respectively show that
the AUV reached and followed the desired rectangle- and triangle-shaped trajectories.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 21

Figure 9. AUV installation for trial trips.

Table 4. Testing results for the course-tracking of the torpedo-shaped AUV.

No. Desired Course
Angle (°)

Average
Velocity (m/s)

Stabilized Interval (s),
(with the EKF)

Stabilized Interval
(s), (with the UKF)

1 010 0.5 7.1 6.4
2 010 1.5 5.7 5.2
3 020 0.5 7.6 7.1

4 * 020 1.5 6.9 6.2
5 030 0.5 9.3 8.8
6 030 1.5 8.3 7.9

* This test scenario corresponds to the simulation case shown in Figure 8.

On the basis of comparison with the test results obtained in the literature [1,63], this current
AUV controller was superior in terms of the stabilized interval and trajectory error, which decreased
by about 0.7 s and 0.90 m, respectively. The UKF enabled more accurate estimations. Although
operations in UKF such as the unscented transform (UT), i.e., the UT function in Algorithm 2, may
appear more complex than those for the EKF, the assessments of actual computational complexity
and optimizations for the application of various Kalman filter extensions were studied intensively by
Zhang, et al. [101] and Raitoharju and Piché [102].

Figure 9. AUV installation for trial trips.

Appl. Sci. 2020, 10, 8293 12 of 20

Table 4. Testing results for the course-tracking of the torpedo-shaped AUV.

No. Desired Course
Angle (◦)

Average Velocity
(m/s)

Stabilized Interval
(s), (with the EKF)

Stabilized Interval
(s), (with the UKF)

1 010 0.5 7.1 6.4
2 010 1.5 5.7 5.2
3 020 0.5 7.6 7.1

4 * 020 1.5 6.9 6.2
5 030 0.5 9.3 8.8
6 030 1.5 8.3 7.9

* This test scenario corresponds to the simulation case shown in Figure 8.

On the basis of comparison with the test results obtained in the literature [1,63], this current AUV
controller was superior in terms of the stabilized interval and trajectory error, which decreased by
about 0.7 s and 0.90 m, respectively. The UKF enabled more accurate estimations. Although operations
in UKF such as the unscented transform (UT), i.e., the UT function in Algorithm 2, may appear more
complex than those for the EKF, the assessments of actual computational complexity and optimizations
for the application of various Kalman filter extensions were studied intensively by Zhang, et al. [101]
and Raitoharju and Piché [102].Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 21

(a) (b)

Figure 10. The AUV reached and followed a desired rectangle-shaped trajectory: (a) with the extended
Kalman filter (EKF) algorithm; (b) with the unscented Kalman filter (UKF) algorithm.

(a) (b)

Figure 11. The AUV reached and followed a desired triangle-shaped trajectory: (a) with the EKF
algorithm; (b) with the UKF algorithm.

Figure 10. The AUV reached and followed a desired rectangle-shaped trajectory: (a) with the extended
Kalman filter (EKF) algorithm; (b) with the unscented Kalman filter (UKF) algorithm.

Appl. Sci. 2020, 10, 8293 13 of 20

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 21

(a) (b)

Figure 10. The AUV reached and followed a desired rectangle-shaped trajectory: (a) with the extended
Kalman filter (EKF) algorithm; (b) with the unscented Kalman filter (UKF) algorithm.

(a) (b)

Figure 11. The AUV reached and followed a desired triangle-shaped trajectory: (a) with the EKF
algorithm; (b) with the UKF algorithm.
Figure 11. The AUV reached and followed a desired triangle-shaped trajectory: (a) with the EKF
algorithm; (b) with the UKF algorithm.

An assessment of the above-described AUV application using MBSE methodology combined with
MDA components is described in Table 5.

Table 5. Assessment of the torpedo-shaped AUV control application of model-based systems
engineering (MBSE) methodology combined with the model-driven architecture (MDA). CIM,
computation-independent model; PIM, platform-independent model; PSM, platform-specific model;
IDE, implementation development environments; OMG, Object Management Group; XML, extensible
markup language; MOF, Meta Object Facility; UML, unified modeling language; SysML, systems
modeling language.

Proposed Models Advantages Disadvantages

CIM
This model focuses on a global model of
top level, which can combine discrete
models and continuous models.

An implemented functional block diagram
must be supplemented in the CIM to depict
internal continuous behaviors for the control
system developed.

PIM

The PIM–PSM separation and its model
transformation allow the designed
control elements to be customizable and
reusable for various kinds of AUVs.

This can influence the performance effort of
projects.

PSM

The control capsules can be transformed
into various PSM IDEs (e.g., Java, Net,
or Ada IDEs).Arduino microcontrollers
are used to deploy the real-time and
embedded control system using
open-source solutions.

Within the OMG, the XML Metadata
Interchange (XMI) specification [103]
supports the exchange of model data when
using an MOF-based language such as
real-time UML/SysML. However,
development engineers may need training to
develop the required skills in different IDEs.

Appl. Sci. 2020, 10, 8293 14 of 20

5. Conclusions and Future Work

This paper introduced an application of MBSE methodology to intensively deploy controllers
for AUVs whose dynamics can be considered an HDS. This application model is based on the MBSE
methodology, combined with MDA concepts, real-time UML/SysML, EKF/UKF algorithms, and HA to
systematically realize the controller. The dynamic models and control structure of AUV were first used
for control combined with MDA components such as the CIM, PIM, and PSM. In the CIM, the use case
model was defined with continuous behaviors, EKF/UKF algorithms, and HA to closely control the
requirements. The PIM was established to establish the design model by constructing a real-time capsule
pattern. This pattern can be customized and reused in new AUV control applications (Table 2). The PIM
designed was then converted into the PSM through round-trip engineering of the intermediate C++

codes to form an AUV controller with suitable microcontrollers. On the basis of the proposed model,
a planar trajectory-tracking controller of a miniature torpedo-shaped AUV running on the free surface
was implemented and evaluated using the ATMEGA U2 and STM32-Cortex-M4 microcontrollers.
Lastly, the advantages and disadvantages of the MBSE/MDA approach were discussed with respect to
this AUV control application (Table 5).

In this case study, the above-described MBSE methodology, combined with MDA concepts,
was only applied to simple test scenarios for a miniature torpedo-shaped AUV running on the free
surface. We are yet to fine-tune parameters with respect to the process and measurement noise and the
evolutionary optimization for noise parameters for this application. Thus, these important further
developments are scheduled for the future. Firstly, the EKF/UKF-based navigation filters will be
simulated online within a complete AUV combined with depth control and a suitable environment.
Then, the new controller will be implemented on the AUV and tested online through fast frequency
disturbances. The performances of the different Kalman filter extensions in terms of accuracy will
be carefully investigated in different scenarios. In further MBSE/MDA studies, we will also follow
our application strategy to specify, in detail, the patterns of model transformations using the different
MDA transformation types, and we will compare them to cases using OPM, such as those described
in [54,55].

Author Contributions: Conceptualization, N.V.H. (Ngo Van Hien), N.V.H. (Ngo Van He), V.-T.T. and N.-T.B.;
methodology, N.V.H. (Ngo Van Hien), N.V.H. (Ngo Van He), V.-T.T. and N.-T.B.; software, N.V.H. (Ngo Van Hien),
N.V.H. (Ngo Van He), and V.-T.T.; validation, N.V.H. (Ngo Van Hien), N.V.H. (Ngo Van He), V.-T.T. and N.-T.B.;
writing—original draft preparation, N.V.H. (Ngo Van Hien), N.V.H. (Ngo Van He), and V.-T.T.; writing—review
and editing N.V.H. (Ngo Van Hien), N.V.H. (Ngo Van He), V.-T.T. and N.-T.B.; visualization, N.V.H. (Ngo Van
Hien), N.V.H. (Ngo Van He), V.-T.T. and N.-T.B.; supervision, N.V.H. (Ngo Van Hien); project administration,
N.V.H. (Ngo Van He); funding acquisition, N.-T.B. All authors have read and agreed to the published version of
the manuscript.

Funding: Vietnam National Foundation for Science and Technology Development (NAFOSTED).

Acknowledgments: This research was funded by the Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under grant number 107.03-2019.302. The authors would like to warmly express their
thanks for the support.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AUV Autonomous underwater vehicle MES Marine environment system
CIM Computation independent model MOF Meta Object Facility
CLF Control Lyapunov functions OMG Object Management Group
DoF Degrees of freedom OOSEM Object-Oriented Systems Engineering Method
EKF Extended Kalman filter OPM Object Process Methodology
GPS Global positioning system PID Proportional–integral–derivative
HA Hybrid automata PIM Platform independent model
Harmony-SE Harmony for systems engineering PSM Platform specific model
HDS Hybrid dynamic system RPY Roll, pitch, and yaw

Appl. Sci. 2020, 10, 8293 15 of 20

IB Integral backstepping RUP-SE
Rational Unified Process for Systems
Engineering

INCOSE
International Council on Systems
Engineering

SMC Sliding-mode control

IDE
Implementation development
environment

SNAME
Society of Naval Architects and Marine
Engineers

IGCB
Instantaneous global continuous
behavior

SysML Systems modeling language

IMU Inertial measurement unit UAF Unified architecture framework
LQ Linear quadratic UKF Unscented Kalman filter
LOS Line-of-sight UML Unified modeling language
MBSE Model-based systems engineering UT Unscented transform
MDA Model-driven architecture XMI XML metadata interchange
MDS Measurement display system XML Extensible markup language

Appendix A

An example of HA implementation based on the state pattern (Figure 7) and C++ codes is shown as
Figure A1.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 21

Figure A1. An example of HA implementation based on the state pattern.

References

1. Hien, N.V.; He, N.V.; Truong, V.T.; Diem, P.G. Specifying the Model-Driven Architecture and Real-Time Unified
Modeling Language to Implement an AUV Controller. Research Project Report, Funded by State of Vietnam,
KC03.TN05/11-15; Hanoi University of Science and Technology: Hanoi, Vietnam, 2013.

2. Sivčev, S.; Coleman, J.; Omerdić, E.; Dooly, G.; Toal, D. Underwater manipulators: A review. Ocean Eng.
2018, 163, 431–450, doi:10.1016/j.oceaneng.2018.06.018.

3. Wynn, R.B.; Huvenne, V.A.I.; Bas, T.P.L.; Murton, B.J.; Connelly, D.P.; Bett, B.J.; Ruhl, H.A.; Morris, K.J.;
Peakall, J.; Parsons, D.R.; et al. Autonomous Underwater Vehicles (AUVs): Their past, present and future
contributions to the advancement of marine geoscience. Mar. Geol. -Int. J. Mar. Geol. Geochem. Geophys. 2014,
352, 451–468, doi:10.1016/j.margeo.2014.03.012.

4. Petillot, Y.R.; Antonelli, G.; Casalino, G.; Ferreira, F. Underwater Robots: From Remotely Operated Vehicles
to Intervention-Autonomous Underwater Vehicles. IEEE Robot. Autom. Mag. 2019, 26, 94–101,
doi:10.1109/MRA.2019.2908063.

Figure A1. An example of HA implementation based on the state pattern.

Appl. Sci. 2020, 10, 8293 16 of 20

References

1. Hien, N.V.; He, N.V.; Truong, V.T.; Diem, P.G. Specifying the Model-Driven Architecture and Real-Time Unified
Modeling Language to Implement an AUV Controller. Research Project Report, Funded by State of Vietnam,
KC03.TN05/11-15; Hanoi University of Science and Technology: Hanoi, Vietnam, 2013.

2. Sivčev, S.; Coleman, J.; Omerdić, E.; Dooly, G.; Toal, D. Underwater manipulators: A review. Ocean Eng.
2018, 163, 431–450. [CrossRef]

3. Wynn, R.B.; Huvenne, V.A.I.; Bas, T.P.L.; Murton, B.J.; Connelly, D.P.; Bett, B.J.; Ruhl, H.A.; Morris, K.J.;
Peakall, J.; Parsons, D.R.; et al. Autonomous Underwater Vehicles (AUVs): Their past, present and future
contributions to the advancement of marine geoscience. Mar. Geol. Int. J. Mar. Geol. Geochem. Geophys. 2014,
352, 451–468. [CrossRef]

4. Petillot, Y.R.; Antonelli, G.; Casalino, G.; Ferreira, F. Underwater Robots: From Remotely Operated Vehicles
to Intervention-Autonomous Underwater Vehicles. IEEE Robot. Autom. Mag. 2019, 26, 94–101. [CrossRef]

5. Han, M.; Lyu, Z.; Qiu, T.; Xu, M. A Review on Intelligence Dehazing and Color Restoration for Underwater
Images. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 1820–1832. [CrossRef]

6. Bao, J.; Li, D.; Qiao, X.; Rauschenbach, T. Integrated navigation for autonomous underwater vehicles in
aquaculture: A review. Inf. Process. Agric. 2020, 7, 139–151. [CrossRef]

7. Eiler, J.H.; Grothues, T.M.; Dobarro, J.A.; Shome, R. Tracking the Movements of Juvenile Chinook Salmon
Using an Autonomous Underwater Vehicle under Payload Control. Appl. Sci. 2019, 9, 2516. [CrossRef]

8. Sheng, M.; Tang, S.; Qin, H.; Wan, L. Clustering Cloud-Like Model-Based Targets Underwater Tracking for
AUVs. Sensors 2019, 19, 370. [CrossRef]

9. Sabet, M.T.; Daniali, H.M.; Fathi, A.; Alizadeh, E. Identification of an Autonomous Underwater Vehicle
Hydrodynamic Model Using the Extended, Cubature, and Transformed Unscented Kalman Filter. IEEE J.
Ocean. Eng. 2018, 43, 457–467. [CrossRef]

10. Gibson, S.B.; Stilwell, D.J. Hydrodynamic Parameter Estimation for Autonomous Underwater Vehicles. IEEE
J. Ocean. Eng. 2020, 45, 385–394. [CrossRef]

11. Yao, F.; Yang, C.; Zhang, M.; Wang, Y. Optimization of the Energy Consumption of Depth Tracking Control
Based on Model Predictive Control for Autonomous Underwater Vehicles. Sensors 2019, 19, 162. [CrossRef]

12. Henzinger, T.A.; Kopke, P.W.; Puri, A.; Varaiya, P. What‘s Decidable about Hybrid Automata? J. Comput.
Syst. Sci. 1998, 57, 94–124. [CrossRef]

13. Hien, N.V.; Soriano, T. Implementing hybrid automata for developing industrial control systems.
In Proceedings of the 8th IEEE-ETFA, Antibes-Juan les Pins, France, 15–18 October 2001; Volume 2,
pp. 129–137, ISBN 0-7803-7241-7.

14. Carloni, L.P.; Passerone, R.; Pinto, A.; Sangiovanni, V.A. Languages and Tools for Hybrid Systems Design;
Now Publishers Inc.: Boston, MA, USA, 2006.

15. Fishwick, P.A. (Ed.) Handbook of Dynamic System Modeling; Taylor & Francis Group: New York, NY, USA,
2007.

16. Qing, X.; Karimi, H.R.; Niu, Y.; Wang, J. Decentralized unscented Kalman filter based on a consensus
algorithm for multi-area dynamic state estimation in power systems. Int. J. Electr. Power Energy Syst. 2015,
65, 26–33. [CrossRef]

17. Karimi, H.R. A sliding mode approach to H∞ synchronization of master–slave time-delay systems with
Markovian jumping parameters and nonlinear uncertainties. J. Frankl. Inst. 2012, 349, 1480–1496. [CrossRef]

18. Pettersen, K.Y.; Fossen, T.I. Guidance of Autnomous Underwater Vehicles. In Encyclopedia of Robotocs;
Ang, M.A., Khatib, O., Sicilano, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2018.

19. Lei, M. Nonlinear diving stability and control for an AUV via singular perturbation. Ocean Eng. 2020, 197,
11. [CrossRef]

20. Khalaji, A.K.; Tourajizadeh, H. Nonlinear Lyapounov based control of an underwater vehicle in presence of
uncertainties and obstacles. Ocean Eng. 2020, 198, 9. [CrossRef]

21. Li, S.; Wang, X.; Zhang, L. Finite-Time Output Feedback Tracking Control for Autonomous Underwater
Vehicles. IEEE J. Ocean. Eng. 2015, 40, 727–751. [CrossRef]

22. Zhang, L.; Liu, L.; Zhang, S.; Cao, S. Saturation Based Nonlinear FOPD Motion Control Algorithm Design
for Autonomous Underwater Vehicle. Appl. Sci. 2019, 9, 4958. [CrossRef]

http://dx.doi.org/10.1016/j.oceaneng.2018.06.018
http://dx.doi.org/10.1016/j.margeo.2014.03.012
http://dx.doi.org/10.1109/MRA.2019.2908063
http://dx.doi.org/10.1109/TSMC.2017.2788902
http://dx.doi.org/10.1016/j.inpa.2019.04.003
http://dx.doi.org/10.3390/app9122516
http://dx.doi.org/10.3390/s19020370
http://dx.doi.org/10.1109/JOE.2017.2694470
http://dx.doi.org/10.1109/JOE.2018.2877489
http://dx.doi.org/10.3390/s19010162
http://dx.doi.org/10.1006/jcss.1998.1581
http://dx.doi.org/10.1016/j.ijepes.2014.09.024
http://dx.doi.org/10.1016/j.jfranklin.2011.09.015
http://dx.doi.org/10.1016/j.oceaneng.2019.106824
http://dx.doi.org/10.1016/j.oceaneng.2020.106998
http://dx.doi.org/10.1109/JOE.2014.2330958
http://dx.doi.org/10.3390/app9224958

Appl. Sci. 2020, 10, 8293 17 of 20

23. Valluru, S.K.; Kaur, M.; Kartikeya, K.; Goel, A.; Dobhal, D. Experimental Investigation of Fully Informed
Particle Swarm Optimization tuned Multi Loop L-PID and NL-PID Controllers for Gantry Crane System.
Procedia Comput. Sci. 2020, 171, 130–138. [CrossRef]

24. Sarhadi, P.; Noei, A.R.; Khosravi, A. Model reference adaptive PID control with anti-windup compensator
for an autonomous underwater vehicle. Robot. Auton. Syst. 2016, 83, 87–93. [CrossRef]

25. Guerrero, J.; Torres, J.; Creuze, V.; Chemori, A.; Campos, E. Saturation based nonlinear PID control for
underwater vehicles: Design, stability analysis and experiments. Mechatron. Sci. Intell. Mach. 2019, 61,
96–105. [CrossRef]

26. Kong, F.; Guo, Y.; Lyu, W. Dynamics Modeling and Motion Control of an New Unmanned Underwater
Vehicle. IEEE Access 2020, 8, 30119–30126. [CrossRef]

27. Makdah, A.A.R.A.; Daher, N.; Asmar, D.; Shammas, E. Three-dimensional trajectory tracking of a hybrid
autonomous underwater vehicle in the presence of underwater current. Ocean Eng. 2019, 185, 115–132.
[CrossRef]

28. Alaeddini, A.; Morgansen, K.A.; Mesbahi, M. Augmented state feedback for improving observability of
linear systems with nonlinear measurements. Syst. Control Lett. 2019, 133, 8. [CrossRef]

29. Cho, G.R.; Park, D.G.; Kang, H.; Lee, M.J.; Li, J.H. Horizontal Trajectory Tracking of Underactuated AUV
using Backstepping Approach. IFAC-PapersOnLine 2019, 52, 174–179. [CrossRef]

30. Ellenrieder, K.D.V. Stable Backstepping Control of Marine Vehicles with Actuator Rate Limits and Saturation.
IFAC-PapersOnLine 2018, 51, 262–267. [CrossRef]

31. Guerrero, J.; Antonio, E.; Manzanilla, A.; Torres, T.; Lozano, R. Autonomous Underwater Vehicle Robust
Path Tracking: Auto-Adjustable Gain High Order Sliding Mode Controller. IFAC-PapersOnLine 2018, 51,
161–166. [CrossRef]

32. Zhang, G.C.; Huang, H.; Qin, H.D.; Wan, L.; Li, Y.M.; Cao, J.; Su, Y.M. A novel adaptive second order sliding
mode path following control for a portable AUV. Ocean Eng. 2018, 151, 82–92. [CrossRef]

33. Xu, H.; Zhang, G.C.; Sun, Y.S.; Pang, S.; Ran, X.R.; Wang, X.B. Design and Experiment of a Plateau
Data-Gathering AUV. J. Mar. Sci. Eng. 2019, 7, 376. [CrossRef]

34. Wang, X.; Zhang, G.; Sun, Y.; Cao, J.; Wan, L.; Sheng, M.; Liu, Y. AUV near-wall-following control based on
adaptive disturbance observer. Ocean Eng. 2019, 190, 17. [CrossRef]

35. Guerrero, J.; Torres, J.; Creuze, V.; Chemori, A. Adaptive disturbance observer for trajectory tracking control
of underwater vehicles. Ocean Eng. 2020, 200, 13. [CrossRef]

36. Wang, J.; Wang, C.; Wei, Y.; Zhang, C. Sliding mode based neural adaptive formation control of underactuated
AUVs with leader-follower strategy. Appl. Ocean Res. 2020, 94, 9. [CrossRef]

37. Elhaki, O.; Shojaei, K. A robust neural network approximation-based prescribed performance output-feedback
controller for autonomous underwater vehicles with actuators saturation. Eng. Appl. Artif. Intell. 2020, 88,
16. [CrossRef]

38. Kumar, N.; Rani, M. An efficient hybrid approach for trajectory tracking control of autonomous underwater
vehicles. Appl. Ocean Res. 2020, 95, 10. [CrossRef]

39. Yan, Z.; Wang, M.; Xu, J. Robust adaptive sliding mode control of underactuated autonomous underwater
vehicles with uncertain dynamics. Ocean Eng. 2019, 173, 802–809. [CrossRef]

40. Han, S.; Wang, H.; Tian, Y.; Christov, N. Time-delay estimation based computed torque control with robust
adaptive RBF neural network compensator for a rehabilitation exoskeleton. ISA Trans. 2020, 97, 171–181.
[CrossRef] [PubMed]

41. Alvarez, J.; Arceo, J.C.; Armenta, C.; Lauber, J.; Bernal, M. An Extension of Computed-Torque Control for
Parallel Robots in Ankle Reeducation. IFAC-PapersOnLine 2019, 52, 1–6. [CrossRef]

42. OMG. Documents Associated with Unified Modeling Language™ (UML® Version 2.5.1): OMG Formal/17-12-05;
OMG: Needham, MA, USA, 2017. Available online: http://www.omg.org/spec/UML/ (accessed on 19 April
2019).

43. OMG. SysML Specifications Version 1.6: OMG Formal/19-11-01; OMG: Needham, MA, USA, 2019. Available
online: https://www.omg.org/spec/SysML/ (accessed on 22 March 2020).

44. INCOSE. Systems Engineering Vision 2025; INCOSE: San Diego, CA, USA, 2014.
45. INCOSE. Model-Based Systems Engineering (MBSE). Available online: https://www.incose.org/ (accessed on

22 January 2020).

http://dx.doi.org/10.1016/j.procs.2020.04.014
http://dx.doi.org/10.1016/j.robot.2016.05.016
http://dx.doi.org/10.1016/j.mechatronics.2019.06.006
http://dx.doi.org/10.1109/ACCESS.2020.2972336
http://dx.doi.org/10.1016/j.oceaneng.2019.05.030
http://dx.doi.org/10.1016/j.sysconle.2019.104520
http://dx.doi.org/10.1016/j.ifacol.2019.11.774
http://dx.doi.org/10.1016/j.ifacol.2018.09.513
http://dx.doi.org/10.1016/j.ifacol.2018.07.272
http://dx.doi.org/10.1016/j.oceaneng.2017.12.054
http://dx.doi.org/10.3390/jmse7100376
http://dx.doi.org/10.1016/j.oceaneng.2019.106429
http://dx.doi.org/10.1016/j.oceaneng.2020.107080
http://dx.doi.org/10.1016/j.apor.2019.101971
http://dx.doi.org/10.1016/j.engappai.2019.103382
http://dx.doi.org/10.1016/j.apor.2020.102053
http://dx.doi.org/10.1016/j.oceaneng.2019.01.008
http://dx.doi.org/10.1016/j.isatra.2019.07.030
http://www.ncbi.nlm.nih.gov/pubmed/31399252
http://dx.doi.org/10.1016/j.ifacol.2019.09.109
http://www.omg.org/spec/UML/
https://www.omg.org/spec/SysML/
https://www.incose.org/

Appl. Sci. 2020, 10, 8293 18 of 20

46. Board, B.E. The Guide to the Systems Engineering Body of Knowledge (SEBoK), V2.2. Available online:
https://www.sebokwiki.org/ (accessed on 10 September 2020).

47. Estefan, J.A. Survey of Model-Based Systems Engineering (MBSE) Methodologies. Rev B INCOSE Technical
Publication, Document No. INCOSE-TD-2007-003-01; INCOSE: San Diego, CA, USA, 2008.

48. Douglass, B.P. The Telelogic Harmony/ESW process for realtime and embedded development,
IBM Corporation Software Group Somers, NY 10589, USA. White Pap. 2008, 2008, 12.

49. Douglass, B.P. Real-Time Agility: The Harmony/ESW Method for Real-Time and Embedded Systems Development,
1st ed.; Pearson Education: Boston, MA, USA, 2009.

50. Lykins, H.; Friedenthal, S.; Meilich, A. Adapting UML for an Object Oriented Systems Engineering Method
(OOSEM). In Proceedings of the INCOSE International Symposium, Minneapolis, MN, USA, 16–20 July 2020;
pp. 490–497.

51. INCOSE. Object-Oriented SE Method. Available online: https://www.incose.org/incose-member-resources/
working-groups/transformational/object-oriented-se-method (accessed on 12 September 2020).

52. Cantor, M. Rational Unified Process® for Systems Engineering: RUP SE Version 2.0. Ibm Ration. EdgeWhite
Pap. 2003, 2003, 17.

53. Ingham, M.D.; Rasmussen, R.D.; Bennett, M.B.; Moncada, A.C. Generating requirements for complex
embedded systems using State Analysis. Acta Astronaut. 2006, 58, 648–661. [CrossRef]

54. Dori, D. Object-Process Methodology: A Holistic Systems Paradigm; Springer: New York, NY, USA, 2002.
55. Dori, D. Model-Based Systems Engineering with OPM and SysML; Springer: New York, NY, USA, 2016.
56. OMG. Model Driven Architecture (MDA): Guide Revision 2.0 of MDA Guide Version 1.0.1 (12 June 2003); OMG

Document ormsc/2014-06-01; OMG: Needham, MA, USA, 2014. Available online: http://www.omg.org/cgi-
bin/doc?ormsc/14-06-01 (accessed on 25 July 2019).

57. OMG. MDA Success Stories. Available online: https://www.omg.org/mda/products_success.htm (accessed
on 24 April 2020).

58. Sebastián, G.; Gallud, J.A.; Tesoriero, R. Code generation using model driven architecture: A systematic
mapping study. J. Comput. Lang. 2020, 56, 11. [CrossRef]

59. OMG. Unified Architecture Framework, Version 1.1: Formal/19-11-07; OMG: Needham, MA, USA, 2020. Available
online: https://www.omg.org/spec/UAF (accessed on 12 August 2020).

60. Agner, L.T.W.; Soares, I.W.; Stadzisz, P.C.; Simão, J.M. A Brazilian survey on UML and model-driven practices
for embedded software development. Syst. Softw. 2013, 86, 997–1005. [CrossRef]

61. Rashid, M.; Anwar, M.W.; Khan, A.M. Toward the tools selection in model based system engineering for
embedded systems—A systematic literature review. J. Syst. Softw. 2015, 106, 150–163. [CrossRef]

62. Freire, L.O.; Oliveira, L.M.; Vale, R.T.S.; Medeiros, M.; Diana, R.E.Y.; Lopes, R.M.; Pellini, E.L.; Barros, E.A.
Development of an AUV control architecture based on systems engineering concepts. Ocean Eng. 2018, 151,
157–169. [CrossRef]

63. Hien, N.V.; He, N.V.; Diem, P.G. A model-driven implementation to realize controllers for Autonomous
Underwater Vehicles. Appl. Ocean Res. 2018, 78, 307–319. [CrossRef]

64. Soriano, T.; Hien, N.V.; Tuan, K.M.; Anh, T.V. An object-unified approach to develop controllers for
autonomous underwater vehicles. Mechatron. Sci. Intell. Mach. 2016, 35, 54–70. [CrossRef]

65. Anwar, M.W.; Rashid, M.; Azam, F.; Kashif, M. Model-based design verification for embedded systems
through SVOCL: An OCL extension for SystemVerilog. Des. Autom. Embed. Syst. 2017, 21, 1–36. [CrossRef]

66. Anwar, M.W.; Rashid, M.; Azam, F.; Kashif, M.; Butt, W.H. A model-driven framework for design and
verification of embedded systems through SystemVerilog. Des. Autom. Embed. Syst. 2019, 23, 179–223.
[CrossRef]

67. Soriano, T.; Pham, H.A.; Hien, N.V. Analysis of coordination modes for multi-UUV based on Model Driven
Architecture. In Proceedings of the 12th France-Japan and 10th Europe-Asia Congress on Mechatronics, Tsu,
Japan, 10–12 September 2018.

68. OMG. UML Profile for MARTE: UML for Model-Driven Development of Real Time and Embedded Systems (RTES);
OMG formal/19-04-02; OMG: Needham, MA, USA, 2019. Available online: https://www.omg.org/spec/

MARTE/:OMG (accessed on 26 May 2020).
69. Douglass, B.P. Real-Time UML Workshop for Embedded Systems, 2nd ed.; Elsevier: Oxford, UK, 2014.
70. Selic, B.; Gerard, S. Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE; Elsevier:

Amsterdam, The Netherlands, 2014.

https://www.sebokwiki.org/
https://www.incose.org/incose-member-resources/working-groups/transformational/object-oriented-se-method
https://www.incose.org/incose-member-resources/working-groups/transformational/object-oriented-se-method
http://dx.doi.org/10.1016/j.actaastro.2006.01.005
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/mda/products_success.htm
http://dx.doi.org/10.1016/j.cola.2019.100935
https://www.omg.org/spec/UAF
http://dx.doi.org/10.1016/j.jss.2012.11.023
http://dx.doi.org/10.1016/j.jss.2015.04.089
http://dx.doi.org/10.1016/j.oceaneng.2018.01.016
http://dx.doi.org/10.1016/j.apor.2018.06.020
http://dx.doi.org/10.1016/j.mechatronics.2015.12.011
http://dx.doi.org/10.1007/s10617-017-9182-z
http://dx.doi.org/10.1007/s10617-019-09229-y
https://www.omg.org/spec/MARTE/:OMG
https://www.omg.org/spec/MARTE/:OMG

Appl. Sci. 2020, 10, 8293 19 of 20

71. Selic, B. Using UML for modeling complex real-time systems. Lect. Notes Comput. Sci. 1998, 1474, 250–260.
[CrossRef]

72. SNAME. Nomenclature for Treating the Motion of a Submerged Body through a Fluid; SNAME: New York, NY,
USA, 1950.

73. Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Hoboken, NJ,
USA, 2011.

74. Figueiredo, A.B.; Matos, A.C. MViDO: A High Performance Monocular Vision-Based System for Docking A
Hovering AUV. Appl. Sci. 2020, 10, 2991. [CrossRef]

75. Martínez, N.L.; Ortega, J.F.M.; Castillejo, P.; Martínez, V.B. Survey of Mission Planning and Management
Architectures for Underwater Cooperative Robotics Operations. Appl. Sci. 2020, 10, 1086. [CrossRef]

76. García, J.G.; Espinosa, A.G.; Urquizo, E.C.; Valdovinos, L.G.G.; Jiménez, T.S.; Cabello, J.A.E. Autonomous
Underwater Vehicles: Localization, Navigation, and Communication for Collaborative Missions. Appl. Sci.
2020, 10, 1256. [CrossRef]

77. Yao, F.; Yang, C.; Liu, X.; Zhang, M. Experimental Evaluation on Depth Control Using Improved Model
Predictive Control for Autonomous Underwater Vehicle (AUVs). Sensors 2018, 18, 2321. [CrossRef]

78. Wan, E.A.; Merwe, R.V.D. The Unscented Kalman Filter. In Kalman Filtering and Neural Networks; Haykin, S.,
Ed.; Wiley: New York, NY, USA, 2001; pp. 221–280.

79. Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation-Theory Algorithms
and Software; John Wiley & Sons: Hoboken, NJ, USA, 2001.

80. Allotta, B.; Caitib, A.; Costanzi, R.; Fanelli, F.; Fenucci, D.; Meli, E.; Ridolfi, A. A new AUV navigation system
exploiting unscented Kalman filter. Ocean Eng. 2016, 113, 121–132. [CrossRef]

81. Allotta, B.; Chisci, L.; Costanzi, R.; Corato, F.D.; Fantacci, C.; Fenucci, D.; Meli, E.; Ridolfi, A. An unscented
Kalman filter based navigation algorithm for autonomous underwater vehicles. Mechatron. Sci. Intell. Mach.
2016, 39, 185–195. [CrossRef]

82. Dong, L.; Xu, H.; Feng, X.; Han, X.; Yu, C. An Adaptive Target Tracking Algorithm Based on EKF for AUV
with Unknown Non-Gaussian Process Noise. Appl. Sci. 2020, 10, 3413. [CrossRef]

83. Lekkas, A.M.; Fossen, T.I. Integral LOS Path Following for Curved Paths Based on a Monotone Cubic Hermite
Spline Parametrization. IEEE Trans. Control Syst. Technol. 2014, 22, 2287–2301. [CrossRef]

84. Shojaei, K.; Dolatshahi, M. Line-of-sight target tracking control of underactuated autonomous underwater
vehicles. Ocean Eng. 2017, 133, 244–252. [CrossRef]

85. Zheng, Z.; Zou, Y. Adaptive integral LOS path following for an unmanned airship with uncertainties based
on robust RBFNN backstepping. ISA Trans. 2016, 65, 210–219. [CrossRef]

86. Liu, F.; Shen, Y.; He, B.; Wan, J.; Wang, D.; Yin, Q.; Qin, P. 3DOF Adaptive Line-Of-Sight Based Proportional
Guidance Law for Path Following of AUV in the Presence of Ocean Currents. Appl. Sci. 2019, 9, 3518.
[CrossRef]

87. Lantos, B.; Márton, L. Nonlinear Control of Vehicles and Robots; Springer: London, UK, 2011.
88. Wan, J.; He, B.; Wang, D.; Yan, T.; Shen, Y. Fractional-Order PID Motion Control for AUV Using

Cloud-Model-Based Quantum Genetic Algorithm. IEEE Access 2019, 7, 124828–124843. [CrossRef]
89. Zhou, J.; Zhao, X.; Chen, T.; Yan, Z.; Yang, Z. Trajectory Tracking Control of an Underactuated AUV Based on

Backstepping Sliding Mode with State Prediction. IEEE Access 2019, 7, 181983–181993. [CrossRef]
90. Yan, Z.; Yang, Z.; Zhang, J.; Zhou, J.; Jiang, A.; Du, X. Trajectory Tracking Control of UUV Based on

Backstepping Sliding Mode with Fuzzy Switching Gain in Diving Plane. IEEE Access 2019, 7, 166788–166795.
[CrossRef]

91. IBM. IBM Rational’s Methodology, Software, Online Documentation and Training Kits. Available
online: https://my15.digitalexperience.ibm.com/b73a5759-c6a6-4033-ab6b-d9d4f9a6d65b/dxsites/151914d1-
03d2-48fe-97d9-d21166848e65/academic/home (accessed on 20 April 2020).

92. Papyrus. Eclipse Papyrus for Real-Time (“Papyrus-RT”). Available online: https://www.polarsys.org/

papyrus-ic/products (accessed on 20 April 2020).
93. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software;

Addison-Wesley: Oxford, UK, 1995.
94. Douglass, B.P. Design Patterns for Embedded Systems in C: An Embedded Software Engineering Toolkit, 1st ed.;

Elsevier: Oxford, UK, 2011.

http://dx.doi.org/10.1007/BFb0057795
http://dx.doi.org/10.3390/app10092991
http://dx.doi.org/10.3390/app10031086
http://dx.doi.org/10.3390/app10041256
http://dx.doi.org/10.3390/s18072321
http://dx.doi.org/10.1016/j.oceaneng.2015.12.058
http://dx.doi.org/10.1016/j.mechatronics.2016.05.007
http://dx.doi.org/10.3390/app10103413
http://dx.doi.org/10.1109/TCST.2014.2306774
http://dx.doi.org/10.1016/j.oceaneng.2017.02.007
http://dx.doi.org/10.1016/j.isatra.2016.09.008
http://dx.doi.org/10.3390/app9173518
http://dx.doi.org/10.1109/ACCESS.2019.2937978
http://dx.doi.org/10.1109/ACCESS.2019.2958360
http://dx.doi.org/10.1109/ACCESS.2019.2953530
https://my15.digitalexperience.ibm.com/b73a5759-c6a6-4033-ab6b-d9d4f9a6d65b/dxsites/151914d1-03d2-48fe-97d9-d21166848e65/academic/home
https://my15.digitalexperience.ibm.com/b73a5759-c6a6-4033-ab6b-d9d4f9a6d65b/dxsites/151914d1-03d2-48fe-97d9-d21166848e65/academic/home
https://www.polarsys.org/papyrus-ic/products
https://www.polarsys.org/papyrus-ic/products

Appl. Sci. 2020, 10, 8293 20 of 20

95. Arduino. Open-Source Electronics Prototyping Platform for Hardware and Software. Available online:
http://www.arduino.cc/ (accessed on 19 January 2020).

96. Price, W.G.; Bishop, R.E.D. Probalistic Theory of Ship Dynamics; Chapman and Hall.: London, UK, 1974.
97. InvenSense. Sensor System on Chip. Available online: http://www.invensense.com/ (accessed on 22 March

2020).
98. u-blox. Product Selector. Available online: https://www.u-blox.com/en/product-search (accessed on 18

February 2020).
99. OpenModelica. OpenModelica Software, Version 1.14. Available online: https://www.openmodelica.org/

(accessed on 20 April 2020).
100. Fritzson, P. Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach,

2nd ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2015.
101. Zhang, B.; Chu, H.; Sun, T.; Jia, H.; Guo, L.; Zhang, Y. Error Prediction for SINS/GPS after GPS Outage Based

on Hybrid KF-UKF. Math. Probl. Eng. 2015, 2015, 10. [CrossRef]
102. Raitoharju, M.; Piché, R. On Computational Complexity Reduction Methods for Kalman Filter Extensions.

IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 2–19. [CrossRef]
103. OMG. XML Metadata Interchange Version 2.5.1: OMG Formal/15-06-07; OMG: Needham, MA, USA, 2015.

Available online: https://www.omg.org/spec/XMI/ (accessed on 17 May 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.arduino.cc/
http://www.invensense.com/
https://www.u-blox.com/en/product-search
https://www.openmodelica.org/
http://dx.doi.org/10.1155/2015/239426
http://dx.doi.org/10.1109/MAES.2019.2927898
https://www.omg.org/spec/XMI/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	AUV Dynamics and Control Architecture
	AUV Dynamic Model for Controlling
	General Control Architecture for an AUV

	MBSE-Driven Development for an AUV Controller
	CIM for an AUV Controller
	PIM for an AUV Controller
	PSM for an AUV Controller

	Application
	Physical Application Configurations
	Control Implementation and Test Results

	Conclusions and Future Work
	
	References

