
applied
sciences

Article

Train Scheduling with Deep Q-Network:
A Feasibility Test

Intaek Gong 1, Sukmun Oh 2 and Yunhong Min 1,*
1 Graduate School of Logistics, Incheon National University, Incheon 22012, Korea; itgong87@inu.ac.kr
2 Transport System Research Team, Korea Railroad Research Institute, Gyeonggi 16105, Korea; smoh@krri.re.kr
* Correspondence: yunhong.min@inu.ac.kr; Tel.: +82-32-835-8185

Received: 1 November 2020; Accepted: 23 November 2020; Published: 25 November 2020
����������
�������

Abstract: We consider a train scheduling problem in which both local and express trains are to be
scheduled. In this type of train scheduling problem, the key decision is determining the overtaking
stations at which express trains overtake their preceding local trains. This problem has been successfully
modeled via mixed integer programming (MIP) models. One of the obvious limitation of MIP-based
approaches is the lack of freedom to the choices objective and constraint functions. In this paper, as an
alternative, we propose an approach based on reinforcement learning. We first decompose the problem
into subproblems in which a single express train and its preceding local trains are considered. We, then,
formulate the subproblem as a Markov decision process (MDP). Instead of solving each instance of
MDP, we train a deep neural network, called deep Q-network (DQN), which approximates Q-value
function of any instances of MDP. The learned DQN can be used to make decision by choosing the action
which corresponds to the maximum Q-value. The advantage of the proposed method is the ability to
incorporate any complex objective and/or constraint functions. We demonstrate the performance of the
proposed method by numerical experiments.

Keywords: train scheduling; reinforcement learning; deep Q-network

1. Introduction

Urban metro has played the role of a sustainable transportation mode in the sense that it provides
a reliable and mass transportation service to commuters and has a relatively higher energy efficiency
than other transportation modes. To achieve the desired level of customer service as well as minimizing
operating costs, various aspects of operating issues need to be considered in the planning process of
urban metro. As many different decisions and their levels are involved in the planning process, instead
of considering these decisions simultaneously, the sequential decision making strategies are typically
adopted. These strategies commonly consists of the line planning, timetabling, rolling stock circulation,
and crew scheduling stages [1,2].

In the line planning stage, we want to find the operating frequencies of trains and a set of their stopping
stations to satisfy travel demand in a given railway network. The decisions for the timetabling stage
include the arrival and departure times of trains at each station it stops. Rolling stock circulation includes
the decisions such as train composition (locomotives and carriages), vehicle circulation, maintenance
policies, and so on. In the crew scheduling stage, the crew duties are allocated to train services while
satisfying operational requirements. Note that decisions for a particular stage become a part of the input
for the next stages.

Appl. Sci. 2020, 10, 8367; doi:10.3390/app10238367 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app10238367
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/23/8367?type=check_update&version=2

Appl. Sci. 2020, 10, 8367 2 of 14

In this paper, we focus on train timetabling for metro assuming that the decisions in the stage of
line planning are given in advance. More specifically, we are interested in timetabling for Seoul metro’s
Line 9 in South Korea. A distinguished feature of Line 9 is that there exist two types of trains: local trains
and express trains. To provide a regular service for passengers, local trains stop every station in the line.
When the trains stop at all stations, however, the travel times of passengers, in particular, of long-distance
commuters, increase. Therefore, another type of train, express trains, which stop only at a predefined
set of stations, is introduced. When these two types of trains are simultaneously run in the line, it is
important to allow express trains to pass local trains. However, Line 9 consists of a single track for each
direction between two consecutive stations and hence additional infrastructures at some stations are
required through which overtaking between trains is possible. In Line 9, there is a set of stations, called
overtaking stations, at which express trains are allowed to pass local trains through another track.

In this paper, we assume that the departure sequence of trains at their common initial station is given
as input. To solve the timetabling problem, we decompose the problem into several smaller problems
involving smaller number of trains and by combining the results of subproblems we can obtain the
timetable for all trains. The decomposition is based on the the departure sequence of trains at the initial
station and each subproblem considers a single express train and its preceding local trains. Assuming that
overtaking between the same type of trains is not allowed, the result of one subproblem is independent
of those of other subproblems. Thus, our problem is reduced to the timetabling problem involving local
trains and a single express train in which the express train is the last train departing at the initial station.

One of the promising approaches to solve the reduced timetabling problem is to construct a mixed
integer programming model for the problem and solve it using commercial solvers such as Gurobi, Cplex,
and so on. In this paper, instead, we consider a reinforcement learning approach in which an optimal
policy is learned. Note that due to small size of the reduced problem, MIP solvers can give an optima
solutions in reasonable times. However, MIP solvers rely on the mathematical model for the problem and
it is not easy to incorporate complex objectives and/or constraints which cannot be represented as linear
functions on decision variables into the model. Reinforcement learning approaches, on the other hand, can
incorporate complex objectives and/or constraints in the form of reward functions, and therefore have
more applicability for diverse situations (e.g., considering energy consumption or passenger crowdedness).

This paper is organized as follows. In Section 2, we introduce the relevant literature including the
recent applications of reinforcement learning to train scheduling. A formal definition of our problem and
its mathematical model are presented in Section 3. The reinforcement learning framework for our problem
is introduced in Section 4, and its performance is demonstrated in Section 5. Finally, Section 6 presents the
concluding remarks and possible directions for future research.

2. Literature Review

Train scheduling in metro systems has been studied for a long time. These studies can be broadly
categorized into macroscopic and microscopic levels. The former considers the arrival and departure times
of trains at stations ignoring some detailed information such as signaling systems and routing within
stations [3]. On the contrary, at the microscopic level, more detailed information such as routing in a station
is taken into account [4]. Another categorization can be made with respect to the variables representing
the times (arrival/departure times of trains). In the discrete-time train scheduling, times are discretized
and train schedules are defined on the time-space network where nodes represent the locations of a train
at specified times [5,6]. In the continuous-time train scheduling, however, continuous variables are used to
represent the arrival and departure times of trains [7,8].

Due to the intractability of the problem, both the exact algorithms and heuristics have been proposed
to solve the train scheduling problem. Many of these approaches rely on mixed integer linear/nonlinear

Appl. Sci. 2020, 10, 8367 3 of 14

programming formulations. Some of them are solved via efficient enumeration schemes such as
branch-and-bound and branch-and-cut algorithms [8,9]. Various metaheuristics have been also proposed.
For example, Dundar and Sahin [10] and Niu and Zhou [11] proposed a genetic algorithm to solve the train
scheduling problem. In particular, Dundar and Sahin [10] combine an artificial neural network (ANN)
into the genetic algorithm so that ANN is trained to mimic the decision behavior of train dispatchers.

As a relatively new approach, approximate dynamic programming (ADP), or reinforcement learning
(RL), has also been used to solve train scheduling problems. This approach relies on formulating the
problem as Markov decision processes (MDPs). To obtain an MDP formulation, it is necessary to recast the
problem as a multi-stage decision process. There are two types of train scheduling problems to which ADP
or RL approach has been applied: timetabling and rescheduling problem. Essentially, these two types of
problems want to decide the optimal values of the same decision variables such as arrival/departure times
of trains at stations. However, two problems lie in the different stages in the planning process. Timetabling
is solved in the basic planning process introduced in Section 1. On the other hand, rescheduling problem
arises when the planned schedule resulted from solving timetabling problem is infeasible due to unplanned
train delays or infrastructure failures. Thus, both problems can have different objectives and requirement
for solution approaches.

Khadilkar [12] and Liu, Li, Yang, and Yin [13] consider the timetabling problems at a macroscopic
level. Khadilkar [12] considers the timetabling problem for bidirectional railway lines and therefore track
allocations need to be also considered as well as arrival/departure times for trains at stations. The goal
is to minimize the total priority-weighted delay. Liu et al. [13] consider the timetabling problem for
energy-efficient management of subway trains. It considers train headway for safety, train passenger loads,
and the energy consumption along the subway line simultaneously.

In the rescheduling problem, both macroscopic [14,15] and microscopic [16,17] approaches exist. Jiang,
Gu, Fan, Liu, and Zhu [14] and Yin, Tang, Yang, Gao, and Ran [15] want to minimize the inconvenience
of passengers due to train delays, measured by waiting times of passengers at stations. In the case
of Yin et al. [15], minimizing the energy consumption is additionally considered as well as the waiting
times of passengers. On the other hand, Ghasempour and Heydecker [16] and Semrov, Marsetic, Zura,
Todorovski, and Srdic [17] try to minimize the train delays which are determined by the difference between
the planned arrival/departure times of trains and the rescheduled arrival/departure times.

In the scheduling problem considered in this paper, we are only interested in the arrival and departure
times of trains, and therefore we consider a train scheduling problem of a macroscopic level. The objective
is to find a schedule which is as close as possible to some reference schedule. This objective is similar
to the one used in Ghasempour and Heydecker [16] and Semrov et al. [17], but, as explained later, the
reference schedule is not a feasible train schedule. Our approach is based on MDP formulation which will
be solved via deep Q-learning technique (DQN [18]) similar to Jiang et al. [14]. As explained in Section 4.1,
however, our MDP formulation is different to those proposed in the previous literature. More precisely,
our MDP formulation has different sets of states and actions. In particular, in our MDP formulation
the schedule of only one train is directly handled through the choice of actions and the schedules of
remaining trains are indirectly changed through the transition function. This contrasts with the previous
works in which the schedules of all trains are sequentially handled by the choice of actions. Another
distinction of our formulation is the use of linear programming (LP) model for the transition function.
In our formulation, the choice of action corresponds to the determination of integer variables in the mixed
integer programming (MIP) formulation of the problem. Thus, the resulting change of schedules can be
obtained by solving LP model.

Appl. Sci. 2020, 10, 8367 4 of 14

3. Problem Description

We consider a train scheduling problem on single-track unidirectional railway. Let S = {1, . . . , S}
be the set of stations, and all trains are assumed to begin their trips from station 1 and end at station
S. There are two types of trains—local trains and express trains—denoted by Tl and Te, respectively.
The difference in type is due to the stopping patterns of trains. Local trains stop at every station, while
express trains stop only at the predetermined set of stations, denoted by S̄ ⊆ S . We assume that all express
trains have the same set of stopping stations. If there are only local trains, no overtaking is occurred. If not,
an express trains can overtake its preceding normal trains at a predefined set of stations, denoted by So, in
which a sidetrack is prepared.

We consider the following operational environment.

(E1) There exists a safety headway, say h. Therefore, a train arriving (departing) at a station can arrive at
(depart from) the station h time units after its immediate predecessor.

(E2) For two consecutive stations s and s′, where s′ = s + 1, there are minimum transit times between s
and s′ for local and express trains, denoted by ll

ss′ and le
ss′ , respectively.

(E3) If a train stops at station, it should stay at least d time units.
(E4) Overtaking only occurs between local and express trains. Any overtaking between the same type of

trains is not allowed.

We assume that the departing sequence π of trains at station 1 is given. Thus, π(g) ∈ T := Tl ∪ Te is
the train which departs the initial station gth for g = 1, 2, . . . , |T |. Conversely, π−1(i) is the departing order
of train i ∈ T at the initial station. We also assume that there are departure times D̄i1 for i = 1, . . . , |T |
after which train i can depart from station 1. Let us consider the departure times D̄is and arrival times Āis
for i = 1, . . . , |T | and s = 2, . . . ,S obtained by scheduling all trains separately. This schedule is possibly
infeasible as it can violate (E1) and (E4). However, this schedule is the most desirable one and is easily
obtainable, and therefore we regard it as our target schedule, i.e., we want to find a schedule which is as
close as possible to the target schedule.

MIP Formulation

For a more precise description of our scheduling problem and later use for its LP relaxation, we
introduce a mixed integer programming (MIP) model. The model uses the following decision variables.

• Ai,s: the arrival time of train i at station s for all i ∈ T and s ∈ S
• Di,s: the departure time of train i at station s for all i ∈ T and s ∈ S
• Yi,j,s: the binary variable of which value is 1 if train i arrives at station s earlier than train j, and 0

otherwise for all i, j ∈ T and s ∈ S
• Zi,j,s: the binary variable of which value is 1 if train i departs from station s earlier than train j, and 0

otherwise for all i, j ∈ T and s ∈ S

To define objective function and constraints, the planned arrival and departure times (or the target
arrival and departure times) are needed, and we use Āi,s and D̄i,s to denote these parameters, respectively.

The objective function is

min ∑
i∈T

∑
s∈S
|Āi,s − Ai,s|+ |D̄i,s − Di,s| (1)

which represents the total difference with the target schedule.
Regarding (E1)–(E4) and other operational considerations, we consider the following constraints.

Appl. Sci. 2020, 10, 8367 5 of 14

• The departing order at the initial station given by π should be observed:

Di,1 ≥ Dj,1, for all i 6= j, i, j ∈ T such that π−1(i) > π−1(j) (2)

• The departure times of a train at stations should be later than the planned departure times.

Di,s ≥ D̄i,s, for all i ∈ T and s ∈ S (3)

• The trains which stops at stations should dwell at least d time units.

Di,s − Ai,s ≥ d, for all i ∈ Tl and s ∈ S (4)

Di,s − Ai,s ≥ d, for all i ∈ Te and s ∈ S̄ (5)

• Each train cannot move faster than its maximum speed.

Ai,s+1 − Di,s ≥ ll
ss+1, for all i ∈ Tl and s ∈ S \ {S} (6)

Ai,s+1 − Di,s ≥ le
ss+1, for all i ∈ Te and s ∈ S \ {S} (7)

• The arrival headway between two trains at the same station should be observed.

Aj,s − Ai,s ≥ hYi,j,s −M× (1−Yi,j,s), for all i 6= j ∈ T and s ∈ S (8)

• The departure headway between two trains at the same station should be observed.

Dj,s − Di,s ≥ hZi,j,s −M× (1− Zi,j,s), for all i 6= j ∈ T and s ∈ S (9)

• The arrival sequences of two trains of the same type at all stations should be same as those in π.

Ai,s ≥ Aj,s, for all i 6= j ∈ Tl and s ∈ S such that π−1(j) < π−1(i) (10)

Ai,s ≥ Aj,s, for all i 6= j ∈ Te and s ∈ S such that π−1(j) < π−1(i) (11)

• The departure sequences of two trains of the same type at all stations should be same as those in π.

Di,s ≥ Dj,s, for all i 6= j ∈ Tl and s ∈ S such that π−1(j) < π−1(i) (12)

Di,s ≥ Dj,s, for all i 6= j ∈ Te and s ∈ S such that π−1(j) < π−1(i) (13)

• For any trains i ∈ T and j ∈ T , train i arrives at station s either before train j or after train j.

Yi,j,s + Yj,i,s = 1 (14)

• For any trains i ∈ T and j ∈ T , train i departs station s either before train j or after train j.

Zi,j,s + Zj,i,s = 1 (15)

4. The Proposed Method

The basic idea of the proposed method is to decompose a given instance of scheduling problem and
then solve each subproblem separately. The solution of the problem is obtained simply by merging the
solutions of subproblems.

Appl. Sci. 2020, 10, 8367 6 of 14

In a typical daily schedule of metro, a number of local trains are arranged between two consecutive
express trains. For example, in Seoul metro, 2–3 local trains are serviced between two express trains at
peak times, while there are 4–5 local trains at non-peak times. The particular pattern of trains is determined
by the sequence of local and express trains, for example, (L, L, E, L, L, L, E, L, L, E) is a service pattern of 7
local trains and 3 express trains where L and E denote the normal and rapid trains, respectively.

The decomposition is based on the service pattern of the trains given as π. Each subproblem
consists of a single express train and its preceding local trains. Thus, for example, if a service pattern
is (L, L, E, L, L, L, E, L, L, E), we obtain three subproblems, (L, L, E), (L, L, L, E), and (L, L, E). Note that
according to the service pattern π, we can order the subproblems. Let us consider the ith subproblem. By
the operational environment (E4), the last local train in the ith subproblem cannot overtake the first local
train in the (i + 1)th subproblem. Moreover, the express train in the ith subproblem usually moves faster
than any local trains; the first local train in the (i + 1)th subproblem also cannot overtake the express train
in the ith subproblem. Thus, if we assume that the express train in the ith subproblem cannot overtake any
local trains in the (i− 1)th subproblem, subproblems can be assumed to be independent to each other.
Therefore, in the remaining part of this section we focus on the method to solve the subproblem.

4.1. MDP Formulation

The subproblem consisting of an express train and its preceding local trains is essentially same as the
original problem with smaller number of trains. Thus, it has the same MIP formulation as the original one,
and its MIP formulation involves smaller number of variables and constraints than the original problem.
In particular, integer variables only appear between a single express train and local trains at the overtaking
stations. A key observation is that if we specify the overtaking stations at which the express train overtakes
its immediate predecessor, we can determine the values of all integer variables in the MIP formulation
of subproblem. In addition, an optimal solution with the corresponding set, say O, of chosen overtaking
stations can be represented as the increasing sequence of sets of overtaking stations which ends with O.
For example, an optimal solution with O = {4, 11, 19} can be represented as (∅, {4}, {4, 11}, {4, 11, 19})
and each schedule corresponding the subset of O in the sequence can be obtained by solving LP problem
by fixing all integer variables.

Based on these observations, we reformulate the subproblem as a sequential decision-making problem
such that at each stage we determine the next overtaking station at which the express train overtakes its
immediate predecessor. This sequential decision making problem can be modeled as a Markov decision
process (MDP) in which the state space, the action space, the reward, and the transition function are
defined as follows (also represented in Figure 1).

Figure 1. The proposed Markov decision process (MDP) framework.

Appl. Sci. 2020, 10, 8367 7 of 14

• State space: A state represents the schedule of trains, that is, the arrival and departure times of trains
at every station. Thus, a state can be represented by a vector s ∈ R2×|S|×|T |.

• Action space: At each time a decision is made, that is, at each state, the number of possible actions is
equal to the number of overtaking stations plus 1. For each action corresponding to an overtaking
station, a new state is determined by the transition function introduced later. These actions are called
overtaking actions. A single additional action is reserved for the decision for stopping the further
exploration of states or schedules, and it is called the finishing action.

• Transition function: For each overtaking action, a new overtaking station is added to the current set of
overtaking stations used by the current schedule. There are two cases: (1) a new overtaking station is
either already chosen previously or just passed in the current schedule, and (2) a new feasible schedule
is generated by using the resulting set of overtaking stations. For case (1), the current schedule is not
changed, and therefore actions corresponding to this case are called the infeasible actions. The other
actions are called the feasible actions. For each feasible action, a new set of overtaking stations is well
defined and values for integer decision variables for the MIP formulation of the subproblem can be
fixed. Thus, we can obtain linear programming (LP) model for the subproblem which is efficiently
solvable. An optimal solution of LP can provide a new schedule of trains, i.e., a new state s′. When
the finishing action is chosen, an agent stops exploring the states with declaring the current state or
schedule is the final one.

• Reward: For any state s, feasible actions generate the rewards of zero but for an infeasible action small
negative reward is given to the agent. For the finishing action, the difference of qualities between the
initial schedule and the current schedule is given as the reward. Thus, if the final state or schedule
is better than the initial schedule a positive reward is awarded and the magnitude of the reward
represents the level of improvement.

Figure 2 illustrates the process of the agent in the proposed MDP framework. Figure 2 describes
four steps of the agent’s decision-making. Step 1 is the initial schedule of four trains in which the first
three trains (blue, yellow, and green lines) are local trains and the last train is an express train (red line).
According to the decision of overtaking station the agent makes, the express train overtakes its preceding
local train as shown in Step 2. Following the decisions shown in Step 3 and Step 4, the agent returns the
schedule in Step 4 as a result of its finishing action.

Figure 2. An example of sequential decision-making. (a) Initial step, (b) Step 2, (c) Step 3, (d) Final step.

Appl. Sci. 2020, 10, 8367 8 of 14

4.2. Deep Q-Learning

Each instance of subproblem is defined by specifying the number of local trains preceding the express
train and the target schedule of trains. In this paper, instead of trying to solve each instance whenever it is
necessary, we try to learn an agent or a policy which can make near-optimal decisions for all instances.
There has been several methods to learn such an agent (see, e.g., in [19]). Among them, we use deep neural
networks, i.e., deep Q-network (DQN) [18], which we estimate Q-values defined as

Q∗(s, a) = max
π

E
[
rt + γrt+1 + γ2rt+2 + · · · |st = s, at = a, π

]
which is the maximum sum of rewards rt discounted by γ at each time step t after making an observation s
and action a is chosen a policy π = P(a|s) is used. The idea is to represent Q-value function as a recursive
equations, known as Bellman equation, and iteratively update Q-values with these equations, i.e.,

Qi+1(s, a) = E
[

r + γ max
a′

Qi(s′, a′)
]

.

Q(s, a) is parameterized by θ in the form of the deep neural network. The loss function which guides
the update of θ is

L(θ) = E
[(

r + γ max
a′

Q(s′, a′; θ)−Q(s, a; θ)

)2
]

. (16)

To train the neural network, random scenarios, i.e., instances of the subproblem are generated.
For each scenario, the agent choose an action following the ε-greedy policy in which most of the time
the agent choose the action of the large Q-value but there exists a small chance, ε, of choosing a random
action. Then, the obtained experiences, (si

t, ai
t, ri

t, si
t+1) for scenario i and time t, are used for defining the

loss function L(θ), which is then minimized with respect to θ. The learned Q-network can be used to make
a decision by choosing the action which attains the largest Q-value.

We also adopt two strategies proposed in [18] to prevent a possible divergence of learning. The first
strategy is using the experience replay memory which stores experiences (s, a, r, s′) during the training
and whenever updates of θ are performed several experiences are randomly chosen in the memory to
form the loss function. In the second strategy, we maintain two neural networks, called the target network
and the behavior network. The target network, parameterized by θ−, is used to compute the target value
in (16) and the behavior network is used to explore the scenarios. Thus, at each iteration i, the loss function
is defined as

Li(θ) = E
[(

r + γ max
a′

Q(s′, a′; θ−i)−Q(s, a; θi)

)2
]

where the expectation is taken over the random experience in the memory. The parameters θ− of the target
network are updated to the parameter θ of the behavior network according to the predefined schedule.

5. Experiments

5.1. Instances

In our experiments, we generate instances for the subproblem consisting of a single express train and
multiple local trains preceding the express train. These trains are assumed to run Seoul metro’s Line 9 in
South Korea. There are 30 stations from station 1 to station 30, and all express trains stop at 12 of them:
stations 1, 6, 9, 12, 14, 16, 19, 22, 24, 26, 28, and 29. Overtaking between local trains and express train can
occur at stations 4, 6, 11, 15, 19, 23, and 27. Therefore, the number of actions is equal to 8, i.e., the number of

Appl. Sci. 2020, 10, 8367 9 of 14

overtaking stations plus 1. The dwell time of each train at its stopping station is equal to 30 s and safety
headway is given as 60 s. The minimal transit times of each type of trains between two consecutive stations
are given in Table 1.

Table 1. Minimum transit times (seconds) of local and express trains.

(From, To) Local Train Express Train (From, To) Local Train Express Train

1–2 291 291 16–17 112 83
2–3 91 60 17–18 100 76
3–4 85 57 18–19 102 78
4–5 102 68 19–20 137 105
5–6 132 88 20–21 100 66
6–7 127 84 21–22 84 56
7–8 93 66 22–23 88 58
8–9 203 173 23–24 111 82

9–10 99 67 24–25 104 77
10–11 94 67 25–26 89 66
11–12 118 84 26–27 87 65
12–13 103 74 27–28 100 70
13–14 121 104 28–29 98 69
14–15 89 75 29–30 124 124
15–16 91 67 - - -

For a given departure time of a train at the initial station (station 1), the target schedule of the trains
consists of the optimal schedules of each train ignoring other trains, that is, each train moves the line
according to its minimum transit times between stations and staying for 30 s if it stops at stations. The
aggregation of such schedules for each train possibly results in an infeasible schedule, but it is enough to
take a role of the target schedule. Other choices of target schedules are also possible. On the other hand,
for a given instance, the initial schedule is obtained by solving MIP of which integer variables are fixed by
assuming that the orders of two trains are same with one at their initial station.

We assume that the subproblem consists of at most 4 trains, and therefore the number of local trains
ranges from 1 to 3. For a given number of local trains and a single express train, the intervals of departure
times at the initial station are randomly chosen between 120 s and 600 s.

5.2. Q-Learning

To train the agent, represented by a single neural network explained in the next subsection, we
randomly generate an instance and this instance is solved by the agent. Random instances of a particular
number of trains can vary according to the departure interval at their initial station. This process is called
an episode. The experiences of the agent, consisting of the state, action, and the next state, will be used
to train the neural network. The size of the experience memory is set to 200,000. To accumulate enough
experiences, the update of the behavior network is postponed until 4000 episodes were explored. When
the train begins, we randomly choose 8 experiences, and the weights of the neural network are updated
whenever the agent takes an action. In addition, the parameter ε, initially set to 1, is diminished according
to the factor of 0.9999 after each update of weights of the neural network. When ε is less than or equal to
0.01, the entire process of train ends. The target network is updated to the behavior network whenever an
episode ends.

As explained earlier, for a given state s and the action a taken by the agent, the new state s′ is
obtained by solving the corresponding LP. LP is solved by PuLP. The optimal objective value is the
absolute difference between the target schedule and the current schedule (the optimal solution of LP).

Appl. Sci. 2020, 10, 8367 10 of 14

Thus, the performance measure used in our experiments is the objective value of LP defined by the final
state, i.e., the final schedule.

5.3. Deep Q-Network

The neural network representing the agent consists of 4 layers with 512, 256, 128, and 64 units,
respectively. These 4 layers are fully connected. All layers use the rectified linear activation. The output
layer consists of the units of which number is same as the number of actions, i.e., 8. The linear activation
is used for the output layer. The neural network is randomly initialized with respect to the normal
distribution with mean of zero and standard deviation of 1.

The input of the network is the state and therefore it is (2× 30× n)-dimensional vector where n is the
number of trains. As our instances can have training up to 4 and therefore we can fix n to 4. Whenever an
instance has trains less than 4, the remaining entries of the input are filled with zeros.

As stated earlier, 8 experiences randomly chosen from the experience memory constitute a mini-batch
of size 8. We use Adam [20] with a learning rate of 0.00001 as the training algorithm for the neural network
and 16 epochs are repeated with the same mini-batch.

The neural network and its training algorithm are implemented with Keras library with TensorFlow
backend. All experiments are performed with a single NVDIA Quadro P500.

5.4. Results

We train the neural network with 19, 264 episodes and it takes 29, 878.40 s to finish training. We first
evaluate the learned neural network with 50 random instances consisting of only two trains: one local
train and one express train. Table 2 demonstrates the result. The columns of the table indicate the instance
number (#), the optimal objective value (MIP), the objective value from the learned agent (DQN), and
optimality gap (Gap), respectively. The optimal gap is computed by (DQN−MIP)/MIP× 100.

Table 2. Comparison on 50 2-train instances.

MIP DQN Gap (%) # MIP DQN Gap (%)

1 5976 5976 0.00 26 7755 7755 0.00
2 7406 7406 0.00 27 8510 8510 0.00
3 5822 5822 0.00 28 8162 8162 0.00
4 9658 9658 0.00 29 6502 6502 0.00
5 5742 5742 0.00 30 7512 7512 0.00
6 5318 5318 0.00 31 6273 6273 0.00
7 5266 5266 0.00 32 6528 6528 0.00
8 10,666 10,666 0.00 33 7446 7446 0.00
9 10,610 10,610 0.00 34 7003 7003 0.00

10 7905 7905 0.00 35 5902 5902 0.00
11 9112 9112 0.00 36 8415 8415 0.00
12 4662 4662 0.00 37 8178 8178 0.00
13 8466 8466 0.00 38 9112 9112 0.00
14 8036 8036 0.00 39 8204 8204 0.00
15 6466 6466 0.00 40 4622 4622 0.00
16 5822 5822 0.00 41 6681 6681 0.00
17 8084 8084 0.00 42 6439 6439 0.00
18 6422 6422 0.00 43 6579 6579 0.00
19 9170 9170 0.00 44 9490 9490 0.00
20 5640 5640 0.00 45 6783 6783 0.00
21 7191 7191 0.00 46 8454 8454 0.00
22 9274 9274 0.00 47 6520 6520 0.00
23 8160 8160 0.00 48 6792 6792 0.00
24 5994 5994 0.00 49 8211 8211 0.00
25 9714 9714 0.00 50 8211 8211 0.00

Appl. Sci. 2020, 10, 8367 11 of 14

As observed in Table 2, the learned policy successfully finds optimal schedules for all 50 instances.
Table 3 demonstrates the result tested on 50 random instances consisting of 3 trains, that is, 2 local

trains. The structure of Table 3 is same as that of Table 2.

Table 3. Comparison on 50 3-train instances.

MIP DQN Gap (%) # MIP DQN Gap (%)

1 12,592 15,352 21.92 26 14,336 14,336 0.00
2 12,626 12,626 0.00 27 17,746 17,746 0.00
3 15,562 15,562 0.00 28 14,048 14,048 0.00
4 6444 6444 0.00 29 12,342 15,640 26.72
5 15,220 15,220 0.00 30 14,624 14,624 0.00
6 6600 6600 0.00 31 9713 9713 0.00
7 12,800 12,800 0.00 32 15,262 15,262 0.00
8 13,464 13,464 0.00 33 12,650 12,650 0.00
9 13,289 13,289 0.00 34 12,666 12,666 0.00

10 5944 5944 0.00 35 13,649 13,649 0.00
11 9640 10,396 7.84 36 8912 9668 8.48
12 6444 6444 0.00 37 12,691 13,178 3.84
13 14,882 14,882 0.00 38 12,249 12,249 0.00
14 12,134 12,629 4.08 39 13,058 13,058 0.00
15 6144 6144 0.00 40 9288 9288 0.00
16 8628 9276 7.51 41 8599 9220 7.22
17 12,452 12,452 0.00 42 11,708 11,708 0.00
18 11,354 11,354 0.00 43 11,174 11,930 6.77
19 12,644 12,644 0.00 44 13,092 15,490 18.32
20 8548 8548 0.00 45 12,597 12,597 0.00
21 15,031 15,031 0.00 46 11,708 11,708 0.00
22 12,566 12,636 0.56 47 13,289 13,289 0.00
23 13,092 15,490 18.32 48 9136 9892 8.27
24 17,594 17,594 0.00 49 9756 9756 0.00
25 7328 7328 0.00 50 8253 8550 3.60

Among 50 instances, the learned policy succeeds at finding the optimal solutions for 36 instances.
The gaps for the instances for which the learned policy fails to give optimal solutions are relatively
low (within 10%), except for instances #1, #23, #29, and #44. However, the schedules obtained by the
learned policy turn out to be largely improved from their initial schedules of which objective values
are 28, 112, 28, 412, 28, 712, and 28, 412, respectively. Furthermore, the sequences of overtaking stations
determined by two schedules are quite similar, for example, (6, 15) for optimal schedule and (4, 15) for the
schedule by the learned policy.

Finally, we tested on random instances consisting of 4 trains, that is, three local trains. The structure
of Table 4 is again same as the previous two.

Appl. Sci. 2020, 10, 8367 12 of 14

Table 4. Comparison on 50 4-train instances.

MIP DQN Gap (%) # MIP DQN Gap (%)

1 11,186 11,942 6.76 26 11,278 12,034 6.70
2 9248 9248 0.00 27 19,554 29,198 49.32
3 18,492 18,492 0.00 28 20,148 21,424 6.33
4 11,460 16,561 44.51 29 10,542 11,298 7.17
5 10,529 10,529 0.00 30 10,276 10,330 0.53
6 24,530 35,364 44.17 31 22,158 33,090 49.34
7 19,665 22,278 13.29 32 12,442 12,442 0.00
8 16,589 16,589 0.00 33 25,260 36,034 42.65
9 19,803 22,034 11.26 34 12,194 12,194 0.00

10 10,529 10,529 0.00 35 20,079 21,546 7.31
11 7796 7796 0.00 36 14,656 17,552 19.76
12 17,125 17,125 0.00 37 10,162 10,162 0.00
13 20,186 21,058 4.31 38 24,092 34,962 45.12
14 7536 7536 0.00 39 10,694 10,694 0.00
15 12,736 14,592 14.57 40 18,853 23,766 26.06
16 13,556 18,267 34.75 41 16,059 17,919 11.58
17 13,656 18,202 33.29 42 12,644 13,062 3.31
18 16,907 16,907 0.00 43 7172 7172 0.00
19 18,618 18,618 0.00 44 14,656 17,552 19.76
20 12,210 16,311 33.59 45 9080 9080 0.00
21 8172 8388 2.64 46 11,610 16,511 42.21
22 11,954 11,954 0.00 47 25,698 36,436 41.79
23 5694 5694 0.00 48 19,805 29,582 49.37
24 19,018 19,016 0.46 49 7983 8010 0.34
25 8367 8772 4.84 50 22,632 33,622 48.56

Table 4 shows that the performance of the learned policy is quite poor compared with the previous
two results. The average gap over 50 instances is 14.51% (0.00% and 2.87% for the previous two results,
respectively). Four-train instances are more difficult than the 2- and 3-train instances. In particular, during
the training phase of the neural network, the agent has little experiences on the cases of 2 and more
overtaking stations. Indeed, by investigating the experience memory which stores the experience the agent
used during training, we found that the proportions of the experiences considering 0, 1, 2, and 3 overtaking
stations are about 10%, 45% 25%, and 20%, respectively. Therefore, there exists a severe imbalance of
experiences if a simple ε-greedy exploration strategy is adopted. We conjectured that this phenomena can
be avoided when we design more sophisticated strategies for the exploration during training.

6. Conclusions

In this paper, we consider a train scheduling problem in which both local and express trains are
scheduled. For a given target schedule on a unidirectional single-track railway, we decompose the problem
into separate subproblems in which a single express train and its preceding local trains are to be scheduled.
We formulate each subproblem as a Markov decision problem and solve it with deep reinforcement
learning technique.

We demonstrated the performance of the proposed method over 150 instances which are further
divided into three groups with respect to the number of local trains. For the instances with a
small number (2 and 3) of local trains, the proposed method is compatible with the exact algorithm
(e.g., branch-and-bound or branch-and-cut methods). However, for larger instances, it still requires an
improvement to obtain better schedules.

Appl. Sci. 2020, 10, 8367 13 of 14

The advantage of the proposed method is that the learned policy can be used for any instances
regardless of the number of local trains. Another advantage is its possible extension to use more complex
objective function (e.g., energy consumption, passenger crowdedness, etc.) with alternative forms of
rewards. However, this possibility is still conceptual and therefore empirical validations are needed as one
of the future studies.

The obvious next step for future research is to devise an effective exploration strategy by which the
agent can approximate the Q-value for diverse states. Furthermore, we do not have enough experiments
on possible values of hyperparameters such as the architecture of the neural network and the parameters
related to its training (e.g., learning rate). Therefore, more careful investigations, for example, Bayesian
optimization, are required.

Author Contributions: Conceptualization, S.O. and Y.M.; methodology, Y.M.; software, I.G. and Y.M.; validation, I.G.,
S.O., and Y.M.; formal analysis, Y.M.; investigation, I.G.; resources, S.O.; data curation, I.G.; writing—Original draft
preparation, I.G.; writing—Review and editing, Y.M.; visualization, I.G.; supervision, Y.M.; project administration,
S.O.; funding acquisition, S.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Korea Railroad Research Institute grant number PK2002B2.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish
the results.

References

1. Corman, F.; D’Ariano, A.; Marra, A.D.; PAcciarelli, D.; Sama, M. Integrating train scheduling and delay
management in real-time railway traffic control. Transp. Res. Part Logist. Transp. Rev. 2017, 105, 213–239.
[CrossRef]

2. Lusby, R.M.; Larsen, J.; Ehrgott, M.; Ryan, D. Railway track allocation: Models and methods. OR Spectr. 2011,
33, 843–883. [CrossRef]

3. Brannlund, U.; Lindberg, P.O.; Nou A.; Nilsson, J.E. Railway timetabling using Lagrangian relaxation. Transp. Sci.
1998, 32, 358–369. [CrossRef]

4. Caimi, G.; Fuchsberger, M.; Laumanns, M.; Schupbach, K. Periodic railway timetabling with event flexibility.
Networks 2011, 57, 3–18. [CrossRef]

5. Cacchiani, V.; Furini, F.; Kidd, M.P. Approaches to a real-world train timetabling problem in a railway node.
Omega 2016, 58, 97–110. [CrossRef]

6. Jiang, F.; Cacchiani, V.; Toth, P. Train timetabling by skip-stop planning in highly congested lines. Transp. Res.
Part B Methodol. 2017, 42, 553–570. [CrossRef]

7. Fischetti, M.; Salvagnin, D.; Zanette, Z. Fast approaches to improve the robustness of a railway timetable.
Transp. Sci. 2009, 43, 321–335. [CrossRef]

8. Zhou, X.; Zhong, M. Single-track train timetabling with guaranteed optimality: Branch-and-bound algorithms
with enhanced lower bounds. Transp. Res. Part Methodol. 2007, 41, 320–341. [CrossRef]

9. Wang, Y.; De Schutter, B.; van den Boom, T.J.J.; Ning, B.; Tang, T. Efficient bilevel approach for urban rail transit
operation with stop-skipping. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2658–2670. [CrossRef]

10. Dundar, S.; Sahin, I. Train re-scheduling with genetic algorithms and artificial neural networks for single-track
railways. Transp. Res. Part C Emerg. Technol. 2013, 27, 1–15. [CrossRef]

11. Niu, H.; Zhou, X. Optimizing urban rail timetable under time-dependent demand and oversaturated conditions.
Transp. Res. Part Emerg. Technol. 2013, 36, 212–230. [CrossRef]

12. Khadilkar, H. A scalable reinforcement learning algorithm for scheduling railway lines. IEEE Trans. Intell.
Transp. Syst. 2019, 20, 727–736. [CrossRef]

13. Liu, R.; Li, S.; Yang, L.; Yin, J. Energy-efficient subway train scheduling design with time-dependent demand
based on an approximate dynamic programming approach. IEEE Trans. Syst. Man Cybern. Syst. 2018,
50, 2475–2490. [CrossRef]

http://dx.doi.org/10.1016/j.tre.2016.04.007
http://dx.doi.org/10.1007/s00291-009-0189-0
http://dx.doi.org/10.1287/trsc.32.4.358
http://dx.doi.org/10.1002/net.20379
http://dx.doi.org/10.1016/j.omega.2015.04.006
http://dx.doi.org/10.1016/j.trb.2017.06.018
http://dx.doi.org/10.1287/trsc.1090.0264
http://dx.doi.org/10.1016/j.trb.2006.05.003
http://dx.doi.org/10.1109/TITS.2014.2323116
http://dx.doi.org/10.1016/j.trc.2012.11.001
http://dx.doi.org/10.1016/j.trc.2013.08.016
http://dx.doi.org/10.1109/TITS.2018.2829165
http://dx.doi.org/10.1109/TSMC.2018.2818263

Appl. Sci. 2020, 10, 8367 14 of 14

14. Jiang, Z.; Gu, J.; Fan, W.; Liu, W.; Zhu, B. Q-learning approach to coordinated optimization of passenger inflow
control with train skip-stopping on a urban rail transit line. Comput. Ind. Eng. 2019, 127, 1131–1142. [CrossRef]

15. Yin, J.; Tang, T.; Yang, L.; Gao, Z.; Ran, B. Energy-efficient metro train rescheduling with uncertain time-variant
passenger. Transp. Res. Part Methodol. 2016, 91, 178–210. [CrossRef]

16. Ghasempour, T.; Heydecker, B. Adaptive railway traffic control using approximate dynamic programming.
Transp. Res. Part C Emerg. Technol. 2019, 38, 201–221. [CrossRef]

17. Semrov, D.; Marsetic, R.; Zura, M.; Todorovski, L.; Srdic, A. Reinforcement learning approach for train
rescheduling on a single-track railway. Transp. Res. Part B Methodol. 2016, 86, 250–267. [CrossRef]

18. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.;
Fidjeland, A.K.; Ostrovski, G. et al. Human-level control through deep reinforcement learning. Nature 2015, 518,
529–533. [CrossRef] [PubMed]

19. Sutton, R.; Barto, A. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998.
20. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cie.2018.05.050
http://dx.doi.org/10.1016/j.trb.2016.05.009
http://dx.doi.org/10.1016/j.trpro.2019.05.012
http://dx.doi.org/10.1016/j.trb.2016.01.004
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Problem Description
	The Proposed Method
	MDP Formulation
	Deep Q-Learning

	Experiments
	Instances
	Q-Learning
	Deep Q-Network
	Results

	Conclusions
	References

