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Abstract: Glycobiology is gaining paramount importance for its influence on diseases as a consequence
of a fundamental understanding of the underlying processes involved in them. Cancer is still posing
threats to human health and welfare and therapies are perpetually being sought. Glycans are
selectively attached to proteins and lipids during glycosylation, and these hold anchorage positions
in many important biological processes involved in cancer through their altered expression or activity
upon malignant transformation. Aberrant glycosylation is well established as a hallmark of cancer,
linked to tumor development and metastasis. The analytical inputs and milestones achieved and the
characterization and detection of glycosylation in cancer have been summarized in this review. The
milestones achieved in cancer research through inputs from glycosylation have been highlighted.
With almost 70% of biopharmaceuticals being glycoproteins and almost 80% of cancer biomarkers
being glycan in origin, glycosylation has a lot of say in cancer prognosis and diagnosis. The future of
glycosylation in cancer and the lacunae in the smooth channelization of state-of-the-art technologies
for taking this research knowledge from bench top to bedside (actual clinical settings) is speculated
upon. The incorporation of cross-disciplinary integrated approaches and nano-instrumentation
sophistications are proposed for achieving scaling up.
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1. Introduction

Cancer is the second most common cause of mortality in developed countries. The reason for
the high mortality is that mostly cancers are discovered at advanced stages [1–3]. Enhanced survival
rates depend on early detection and delayed detection can have serious consequences. Owing to the
absence of early symptoms and inhibition to seek medical investigation, most cases are diagnosed very
late [4,5]. Survival rate depends on the stage when the disease is initially diagnosed. Early diagnosis
and the inclusion of minimally invasive screening methods are crucial for enhancing the survival rates
of cancer patients. Biomarkers are reported as an alternative/complementary strategy to histopathology
or imaging techniques, providing minimally invasive predictive information [6]. In addition to these,
novel biomarkers with superior diagnostic and prognostic characteristics are also in play.

Carbohydrates were considered as mere metabolites with no significant functionality. A paradigm
shift is said to have occurred in the 20th century, when the action of a lectin, ricin from castor beans,
was discovered to bring about agglutination of red blood cells [7]. Nowadays, it is established
that other than immunogenicity, carbohydrates also impart crucial functions on the biomolecules
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they are attached to. Glycosylation is an essential co- and post-translational modification (PTM)
occurring in cells. Glycans, carbohydrate molecules, are selectively attached to proteins and lipids
during glycosylation, exhibiting control over protein folding and clearance rates, inflammation and
metastasis, while functioning as biomarkers of diseases [8]. Glycosylation is involved in cell signaling,
immune recognition and cell–cell interaction and plays a key role in cancer-related aspects such as cell
adhesion, cell signaling, migration, interactions with the cell matrix, immune surveillance and cellular
metabolism. Glycan modifications in cells or tissues take place through the synchronized action of
numerous glycosylation enzymes inside the Golgi and the endoplasmic reticulum. Glycans are linked
to lipids and proteins through two mechanisms namely O- and N-linked glycosylation [9–11].

The synthesis of aberrant glycan chains is now an established hallmark of cancer. This is a
consequence of distinct alterations in the microenvironment-metabolism and in glycoprocessing
enzymes [12]. These aberrations become more apparent as the tumor becomes more aggressive and
translate to function as biomarkers of the disease. In this way, aberrant protein glycosylation has
now become a promising source of glycobiomarkers for diagnosis and prognosis. Glycoproteins
enter the circulatory system through leakage, rendering serum as a biomarker pool from a diagnostic
perspective. A lot more prospective developments leading to cancer vaccines is also anticipated as a
challenging perspective.

The existence of complex truncated or novel glycan structures influences ligand–receptor
interactions. This further interferes with the regulation of various biological processes in the cell.
Aberrant glycosylation, thus reflects cancer-inflicted alterations in glycan biosynthesis. This is rendered
possible through altered expression of glycosyltransferases, glycosidases, fucosylation and sialylation.
Being able to distinguish differences in the glycosylation of proteins within cancer and controls,
glycobiology is established as a potential biomarker identifier [13].

This review highlights the achievements of glycosylation in cancer, diagnosis, prognosis and
therapy. The analytical inputs for cancer diagnosis in the area of glycosylation and the progress
from glycan-based cancer biomarkers have been summarized. The challenges against the progress
of glycosylation in cancer research have been speculated upon and the future goals for exponential
application-based upgrades discussed.

2. Milestones of Glycosylation in Cancer

2.1. Analytical Milestones on Glycosylation for Cancer

Conventional methods like lectin histochemistry, like traditional immunohistochemistry, have
been proven as the established method for glycobiomarker identification [14]. Both techniques have
been popularly used to study glycoconjugates involved in progression and metastasis of cancer. These
classical methods have been successful in analyzing glycan biomarkers. However, they have limited
scope when it comes to large-scale applications and are unable to cope with the developments in
genomics and proteomics.

Wang et al., 2019 have elaborately reviewed analytical inputs in glycomics-based biomarker
studies using: mass spectrometry (MS), capillary electrophoresis (CE), high-performance
liquid chromatography (HPLC), ultra-performance liquid chromatography (UPLC) and liquid
chromatography (LC-MS) [14]. We briefly present the milestones achieved in glycosylation in
cancer diagnosis and prognosis through the use of these state-of-the-art technologies. LC-MS has
been reported as being used to evaluate the changes in glycoproteins in the serum of cancer patients:
α1-antitrypsin (A1AT) [15], α1-acid glycoprotein [16], haptoglobin (Hp) [17–19] and immunoglobulin
G (IgG) [20]. These altered glycosylations can be correlated with cancer progression. Glycan separation
prior to MS analysis, is achieved using LC coupled with MS for the characterization of the entire
glycome. Hydrophilic interaction chromatography (HILIC)-LC, reverse phase (RP)-LC and porous
graphitized carbon (PGC)-LC have been successfully used. Lubman et al., detected fucosylated
N-glycan structures to be upregulated in hepatocellular carcinoma (HCC) in serum Hp using the
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HILIC-LC-MS method [21]. The same group also detected core fucosylation (CF) levels in serum
α2-macroglobulin (A2MG) [22] and serum ceruloplasmin (CP) [23] using RP-LC-MS/MS, differentiating
between HCC and cirrhosis patients. Iliopoulos et al., using RP-LC-MS/MS, evaluated the site-specific
N-glycan changes in renal carcinoma patients prior to and subsequent to nephrectomy [24]. Using
PGC-LC- tandem mass spectrometry (PGC-LC-MS/MS), Lebrilla et al., identified and determined
the relative abundance of N-glycans released from human serum [25]. Rudd et al., characterized the
total serum N-glycans from advanced breast cancer patients using HPLC coupled with MS. They
proved that there was a distinct increase in the sialyl-Lewis X epitope (CESLEX). The sialyl-Lewis X
epitope is reported to be a better indicator for breast cancer than the currently used biomarker, CA15-3,
since CA15-3 is not a standalone marker [26]. CESLEX in combination with CA15-3 is reported to
be useful for monitoring breast cancer patients. The Li group reported the use of HILIC-LC-MS for
quantification of N-glycans in human serum proteins. This significantly improved quantification of
the N-glycome compared to the existing traditional quantification methods, making it feasible for
quantitative glycomics analysis for biomarker discovery [27]. A novel antibody microarray was used
to analyze cancer-related epitopes sLex and sLea in the serum of colon cancer patients [28]. LC-MS
determined site specific -linked oligosaccharide alterations in oesophageal cancers [29]. HPLC-based
analysis of serum glycosylation revealed differences in fucosylation and sialylation in prostate cancer
patients [30]. These alterations in serum glycosylation have been used to differentiate different stages
of prostate cancer.

Using only 10 µL of patient serum employing quantitative matrix assisted laser
desorption/ionization–quadrupole ion trap mass spectrometry (MALDI-QITMS/MS), the Lubman group
reported elevated fucosylated N-glycans in Hp in pancreatic cancer [31]. They also found a distinct
bi-fucosylated tetra-antennary N-glycan in HCC patients, which outperformed alpha-fetoprotein
(AFP) in differentiating HCC from cirrhosis [31]. Nakagawa et al., used MALDI- time of flight-MS
(MALDI-TOF-MS) to detect N-glycan structures of AFP in HCC patients [32]. The Rudd group combined
HILIC-UPLC with capillary electrophoresis-laser-induced fluorescence (CE-LIF) for characterizing
N-glycan serum samples rapidly within 20 min [33]. The same group used HILIC-UPLC, assigning
140 N-glycans in human serum. They reported that increased sialylation, branching, and outer-arm
fucosylation and decreased high-mannosylated and bi-antennary core-fucosylated glycans could
help in identifying breast cancer patients from normal patients [34]. Knezevic et al. designed a
UPLC method that analyzed 864 plasma samples per day, facilitating serum-based glyco-biomarker
discovery [35]. An alternative N-glycomic profiler combined DNA sequencer method was developed
by Callewaert et al. [36,37], for characterizing 9-aminopyrene-1,4,6-trisulfonic acid (APTS) labeled
N-glycome in bio-fluids [38–40] and purified proteins [41]. Gao et al., modified this method to study
the N-glycan-based biomarkers in HCC, CRC, multiple myeloma, gastric cancer and extrahepatic
cholangiocarcinoma [42–46]. They have constructed diagnostic models for the same. Several analytical
techniques based on lectins including lectin blot [47,48] lectin histochemistry/cytochemisty [49,50],
lectin-antibody sandwich enzyme-linked immunosorbent assay (ELISA) [51–53], lectin affinity
chromatography [54,55], lectin microarray [56–58] and lectin microfluidics [59] have been used
to capture specific glycans of glycoproteins [56,60–62]. The Gao group analyzed the diagnostic and
prognostic application of fucosylated fetuin A in HCC patients using aleuria aurantia lectin (AAL)-based
ELISA [63]. The Lubman group reported abnormal sialylation levels in the serum of ovarian cancer
patients using sambucus nigra lectin (SNA)-based ELISA [64] and using reverse AAL-based ELISA,
Lubman et al., evaluated fucosylated Hp combined CA125 in ovarian cancers, to distinguish early-stage
ovarian cancer [53]. This was more accurate than CA 125 standalone. This is a brief overview of the
cancer milestones attained availing of the various analytical expertise available. It is evident that
the reported analytical techniques have impacted this area of research significantly and have led to
noteworthy achievements. Figure 1 gives an overall outlook of the mass spectrometry-based variants
that have been used for biomarker analysis.
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2.2. Glycosylation for Cancer Biomarkers

Cellular glycosylation is coordinated by glycosyltransferases and glycosidases to bring about
addition/modification of glycans on proteins and lipids [65]. Glycomics unravels the impact of
glycosylation in cancer [66–68]. Enzymes may be altered because of cancer and can be linked to tumor
development. 1-6-N-acetyl-glucosaminyltransferase (GnT-V) is overexpressed in various cancers and is
interconnected with higher invasive potential [69], metastasis [70], vascular remodeling [71] and tumor
growth [72]. Biomarkers that can result in early diagnosis and can be used to design new therapeutic
strategies are now needed. This has been accomplished by targeting cancer-associated glycans.

Munkley et al., in their exhaustive and excellent review have elaborately discussed how aberrant
glycosylation is closely interrelated with protein glycoforms which can be used as cancer biomarkers [73].
Aberrant glycosylation is reported to play a key role in cancer progression according to Munkley
and Elliott, 2016. The same group has also documented the initiation and progression of cancer
bringing about fundamental changes in the glycome [74]. Munkley et al. 2016 have reported aberrant
glycosylation and have established the link between aberrant glycan composition of prostate cancer
cells and disease progression [74]. Glycosylation is reported as the global target for androgen control
in the case of patients suffering from prostate cancer. Aberrant CD43 has been established as a cancer
biomarker. UN1 monoclonal antibodies (UN1 mAb) have been reported to be able to identify aberrant
CD43 glycoforms [75]. Serological assays in clinical practices detect and quantify glycans in cancer
patient’s serum. Circulating glycoconjugates are used for diagnosis, therapy monitoring, detecting
disease recurrence and prognosis. Glycoconjugates, such as sialyl-Lewis A (SLea) (CA19-9), STn (sialyl
Tn) (CA72-4) and mucin glycoproteins MUC1 (CA15-3) and MUC16 (CA125) [76–79], are crucial serum
cancer markers. CA125, a transmembrane mucin, is currently the best biomarker for ovarian cancer.
Elevated levels of CA125 have been reported in the serum of stage I ovarian cancer patients, 60 months
prior to actual diagnosis [80]. High CA125 serum levels have been reported in about 80% of epithelial
ovarian cancer patients [78,81]. CA125 preoperative levels help in the prognosis of ovarian cancer
patients, relating to the progression or regression of cancer in the system. CA125 is also ideal for
monitoring chemotherapy responses, detecting recurrence and for prognosis [82–84]. MUC1 is also a
transmembrane mucin overexpressed in 90% of breast cancers, and it is evaluated using the CA15-3
assay. CA15-3 is useful in understanding response to anticancer therapy, and prognosis for breast
cancer [85–88]. Increase in CA15-3 prior to treatment can be correlated with inadequate prognosis,
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pointing out a failure in treatment [85,89]. The CA19-9 assay detects sLeA in colorectal, gastric,
pancreatic or biliary cancer patients, and it is most sensitive and specific with respect to pancreatic
cancer [90,91]. In the case of colon cancer, patients with high CA19-9 are reported to have a four
times greater mortality rate than those with lower. In gastric cancer, prior to surgery CA 19-9 behaves
as a prognostic marker and for risk factor assessment for the relapse of gastric carcinoma [92–95].
The CA72-4 assay detects aberrant sialyl-Tn (STn) in the serum of patients with gastric, colorectal,
pancreatic, lung and breast carcinomas [92,96–101]. CA72-4, is reported for its role as an independent
prognostic factor in gastric carcinoma and in pancreatic cancer [102,103]. Carcinoembryonic antigen
(CEA), is a member of a family of N-glycoproteins, its serum levels act as a marker for a wide range of
human carcinomas [104–108]. Tuccillo et al. have published an overview of the glycosylation-linked
biomarkers in their detailed review [75].

Pancreatic adenocarcinoma is a deadly form of cancer with a 5-year survival rate of <5%. Its
diagnosis consists of imaging and tissue biopsy and complete surgical resection is the only curative
therapy. Pancreatic cancer metastasizes early and mostly patients are diagnosed when treatment is
not possible. Carbohydrate antigen CA 19-9, sLeA is the most established biomarker for this form
of cancer. Other markers include truncated O-glycans (Tn and sTn), elevated sialyl Lewis X antigen
(sLex), branched and fucosylated N-glycans, upregulated proteoglycans and galectins and elevated
O-GlcNAcylation [109]. Glycosylation is reported to be instrumental for androgen control in prostate
cancer cells. Eight glycosylation enzymes (GALNT7, UAP1, GCNT1, PGM3, ST6GalNAc1, ST6GAL1,
CSGALNACT1 and EDEM3) are significantly upregulated in prostate cancer. These 8 enzymes
are under an androgen receptor (AR) and are reported by Munkley to be linked to cancer-related
sialyl-Tn (sTn), sialyl LewisX (SLeX), O-GlcNAc and chondroitin sulfate. AR as well as glycosylation
is reported to be mediated by androgens in prostate cancer cells [110]. Importantly, AR regulates
key glycosylation enzymes and synthesis of several cancer-linked glycans in prostate cancer [111].
Epithelial ovarian malignancy is the fifth most common disease in women, having the highest death
rate. The membrane glycosylation of non-carcinogenic ovarian surface epithelial (HOSE 6.3 and
HOSE 17.1) and serous ovarian disease cell lines (SKOV 3, IGROV1, A2780, OVCAR 3), have been
contemplated. Proof has been published [112] that MGAT3 articulation might be epigenetically
controlled by DNA hypomethylation, bringing about the one of a kind “bisecting GlcNAc” type
N-glycans on the membrane proteins of ovarian cancer cells. Glycoenzymes as a therapeutics target for
cancer patients are also under consideration [113] Glycoproteins comprise of protein tumor markers
endorsed by the Food and Drug Administration (FDA), and are being applied into clinical practices.
The FDA endorsed biomarkers include: MUC-1 (CA15-3/CA27.29) [114] and plasminogen activator
inhibitor (PAI-1) [115], beta-human chorionic gonadotropin (Beta-hCG) [116], the biomarker of breast
cancer; AFP; biomarkers of colorectal cancer [117], biomarkers of liver cancer and germ cell cancer,
chromogranin A (CgA) [118], biomarkers of neuroendocrine cancer and MUC16 (CA-125) [119] and
HE4 [120], biomarkers of ovarian cancer [121].

The molecular evidence of aberrant glycosylation in colorectal cancers (CRC) was explored.
Venkitachalam et al., focused on re-sequencing of 430 glycosylation-related genes in patient-derived CRC
cell lines and matched primary tumor tissues. They reported changes in 12 new glycosylation-related
genes in colon disease [122]. Enrichment of mutations in B3GNT2, B4GALT2, ST6GALNAC2 genes
associated with the biosynthesis of N-and O-linked glycans in the colon was reported. They concluded
that deleterious mutations in glycosyltransferase genes are linked to aberrant glycosylation and impact
on colon and other gastrointestinal cancers.

It is accepted that the acknowledgment of the widespread pertinence of glycosylation to the
cancer hallmarks will progressively affect disease treatment through the advancement of new efforts
to treat cancer [123]. At present, most cancer treatment protocols include radiotherapy, medical
procedures, and chemotherapy. Endeavors are in progress for recognizing compelling cutting edge
therapies to supplant conventional strategies [124,125]. Production of anticancer therapeutic proteins
as a class of medications is dominant in the medication business, due to advances in recombinant DNA
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innovation [126]. Glycosylation plays a crucial role in recombinant anticancer therapeutic proteins,
as most of the approved recombinant therapeutics are glycoproteins. Various methodologies have
been adopted to design the Golgi’s N-glycosylation pathway to obtain human-like glycans. Several
researchers have attempted to design the N-glycosylation pathway of expression systems. Among the
total endorsed biopharmaceuticals, practically 70% are glycoproteins [127–130]. Numerous functions
of anticancer glycoproteins are related to solubility, pharmacodistribution, pharmacokinetics, proper
structural folding, binding to receptors and serum half-life of glycans [131]. The most noteworthy
anticancer therapeutic recombinant proteins are mAbs, which are glycosylated in their Fc area [132].

The glycocalyx is said to drive the interaction between malignant cells and the tumor
microenvironment (TME). Both glycans, glycoconjugates and the TME effectively add to cancer
hallmarks, by affecting various interactions [11,133,134]. Generally, the crosstalk between neoplastic
cells and the TME guarantees smooth progress of the associated processes. Glycosylation generally
impacts the extrinsic apoptotic process including both TNF-Related Apoptosis Inducing Ligand
(TRAIL) and Fas passing receptors, just as integrin and galectin-mediated signaling. Glycans,
glycosyltransferases, and glycosidases assume significant functions in apoptosis [135] by thwarting
ligand–receptor interactions [135,136]. The tumor necrosis factor (TNT)-related apoptosis-inducing
ligand (Apo2L/TRAIL) advances tumor cell apoptosis through TRAIL-R1 and TRAIL-R2, whose
O-glycosylation status decides its sensitivity to the ligand. In particular, GALNT14 shows a
strong link to TRAIL sensitivity in pancreatic cancer, non-small-cell lung carcinoma (NSCLC) and
melanoma. The expression of GALNT3 and O-glycan processing enzymes FUT3 and FUT6 is
unique in CCCs. This information is useful in recognizing cancer patients who are bound to react
to TRAIL-based therapies [136]. Furthermore, a lower degree of fucosylation, due to mutation
of GDP-mannose-4-6-dehydratase (GMDS), expands the resistance from TRAIL-initiated apoptosis
in CCC [137]. N-glycosylation has a regulatory function in TRAIL-R1-mediated apoptosis, yet
not in TRAIL-R2 (without N-glycans). Defective apoptotic signaling by N-glycan-deficient TRAIL
receptors is related to lower TRAIL receptor aggregation and reduced death inducing signaling
complex (DISC) formation, without diminished TRAIL-binding affinity [138]. In addition, the death
receptor Fas (CD95/APO-1) has two N glycosylation sites at N136 and N118 modestly influencing
Fas induced apoptosis. The addition of sialic acids by ST6Gal-I in a α2-6 linkage to the N-glycans
of Fas provides security against Fas-induced apoptosis in CCCs. Specifically, α2-6 sialylation of Fas
hinders FasL-induced apoptosis, blockage of Fas–Fas-associated death domain (FADD) association
with Fas cytoplasmic tails and inhibition of Fas internalization [139–141]. Also, N-deglycosylation of
Fas prompts the slowing down of procaspase-8 activation at the DISC complex, with no effect on DISC
formation or FADD recruitment [142].

Glycosyltransferases, otherwise called N-acetyl galactosaminyltransferase 1 (GALNT1), are
reported to activate survival signals that stifle apoptosis. In particular, overexpression of N acetyl
galactosaminyltransferase 1 (GALNT1) adds to aberrant glycosylation of integrin α3β1, changing the
conformation of integrin heterodimers and promoting signal transduction to incite focal adhesion
kinase (FAK) activation in bladder cancer cells [143]. Another significant molecular mechanism is the
crosstalk among lectins and death receptors. Traditionally, the impact of galectin-3 (Gal-3) in apoptosis
relies upon its subcellular localization [144–147]. O-6-sialylation of integrin β1 N-glycans, mediated
by ST6Gal-I, totally impeded its recognition by Gal-3; then again, O-3-sialylation did not influence
Gal-3 recognition in gastric cancer [144,148]. These perceptions unequivocally demonstrate that Gal-3
binding to glycans is dependent on sialylation. Unraveling the sialome of cancer cells is expected to
give new insights on programmed cell death pathways.

The hyperglycosylated form of hCG is expressed by several tumors, like male germ cell tumors
(GCTs) and choriocarcinomas [149,150]. It also influences cancer invasion [151]. High concentrations
of hCG indicate adverse prognosis [149,150]. A1AT is a 52 kDa serine protease inhibitor with three
glycosylation sites brought forth by hepatocytes and is upregulated in the serum of lung cancer
patients [152–155]. Fucosylated haptoglobin (Fuc-Hpt) has been recognized as a promising biomarker
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in pancreatic cancer [156] and found to be upregulated in pancreatic cancer patient’s sera [157]. YKL-40,
also known as chitinase-3-like 1 (CHI3L1) or human cartilage glycoprotein-39, is a 40 kDa secreted
glycoprotein, which is also a biomarker (that has not received FDA approval) [158]. YKL-40 was
reported as a prognostic biomarker in multiple myeloma (MM) [159]. Alpha-1-acid glycoprotein
(AGP), a 40 kDa acute phase serum glycoprotein is reported to impact different cancers [160]. Peixotol
et al., have recently published a detailed review on the influence of protein glycosylation and tumor
microenvironments in driving cancer hallmarks [161].

NCT00460356 is one of the clinical trials ongoing for using the glycosylation-related knowledge
in real time [162]. NCT00897962, NCT00897962 and NCT00628654 are the other ongoing clinical
trials. Other than these clinical trials, not much technology transfer has been made in this direction
Figure 2 gives an overview of the interlinking factors between glycosylation (aberrant glycosylation)
and cancer [162].
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Figure 2. Overview of aberrant glycosylation and its correlation with other hallmarks of cancer,
altered expression of sialic acid, siayltransferase, sialidase, sialoproteins, fucose, fucoprotein,
fucosidase, fucosyltransferase, mannose and galactose inter-correlated with cancer hallmarks like
invasion, metastasis, proliferation, angiogenesis, evasion of growth suppressors, apoptosis, and
replicative immortality.

3. Futuristic Challenges for Glycosylation in Cancers and Conclusions

As evidenced in the previous section, glycosylation has come a long way in cancer diagnosis,
prognosis and therapy. However, there are evident challenges facing the future of glycosylation in
cancer. Single biomarkers with moderate sensitivity and specificity for the most common cancers are
yet to be identified and some biomarkers are ineffective for the early detection of cancer. Well-designed
clinical validation is a prerequisite before clinical application. Bioinformatic approaches and advanced
Artificial intelligence (AI) algorithms need to be applied to gain significant progress. Although there
are a large number of bioinformatics resources for glycosylation research, almost nothing has been
utilized towards glycosylation in cancer. The glycobiomarkers need more clinical validation before
they capture the attention of major industry players. The process of validation has been very slow
due to lack of suitable high-throughput tools, that are still under development. In the past few
years there has been a growing concern that no single biomarker can be reliably used for cancer
diagnosis. Further improvements with specific glycan binding receptors and multiplexed assays
with computer-assisted pattern analysis is needed in glycobiosensor research for breakthroughs in
cancer biomarker discovery [163]. Such integrated and combined approaches are needed in order
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to see progress in this area of research. A coalescence of all three “omics” technologies can result in
the integration of protein, gene, and glycan biomarkers into multiplexed platforms, yielding viable
cancer diagnostic platforms. In terms of analytical upgrading, the target of pertinent cancer-specific
glycosylation as well as lectin-based capture is crucial for detection. It is strangely interesting to add
here that although nanoplatforms have been able to push the detection limits and overcome sensitivity
limitations, nothing much has been done to involve the nano aspects of this area. Most of the analytical
work on glycosylation and cancer reported thus far are all surrounding traditional MS and a handful
of MS variants only, and none include the upgraded nano-MS variants. This appears to be a sort of
saturation in the research area and a lack of enthusiasm. This is a cross-disciplinary field involving
analytical chemists and biologist as well as medical expertise, and is speculated to be the core reason
for these broken links.

Cutting-edge achievements of techniques including MS, CE, UPLC, which focus on glycomics as
well as lectin-based glyco-capture, microarray and microfluidics which focus on aberrantly glycosylated
glycoproteins, have greatly accelerated the discovery and application potentialities of glycomics
and glycoprotein markers in various cancers. However, it is too early now to expect that these
analytical methods can deliver the anticipated glyco-biomarker revolution. Nano-integrated analytical
instrumentation being the current state-of-the-art technology, will no doubt push the analytical limits
towards some positive progress. This review brings to notice that none of the nano-analytical platforms
have been applied to glycosylation research in the area of cancer. As in all areas of science, the rise
of nano has created plenty of room for this, and there is no doubt there is much scope for enhancing
glycobiological research through successful application. Maybe, nano is that what is needed to take
glycosylation from benchside to bedside.

The success of future glycodiagnostics depends on the availability of new and improved nano-based
glycan-binding probes. Most of today’s cancer biomarkers are proteins that are glycosylated, but as it is,
they lack the sensitivity and most importantly specificity for early detection and therefore are currently
not recommended for early detection. Their use is limited for prognosis [164] Except for a handful (~4)
of clinical trials [162], the practical implementation of even the FDA-approved biomarkers has not
been initialized. After all, it is apparent that there may be a long and challenging journey from the
bench to the clinic for the glycobiomarker discovery according to Wang et al. 2019. Thus, these “sweet”
molecules, with complicated physiological and pathological implications hold promising diagnostic,
prognostic and therapeutic applications for the future institutional and industrial collaborations.
Translation of any biological discovery to clinical applications requires a multidisciplinary team of
biologists, chemists, physicists, engineers, and computer experts. This integration of skills is not found
in every other organization, so successful clinical progress can only result from interactions of such an
interdisciplinary expert collaboration. This review draws attention to the need for such an integrated
approach to break the limitations that glycosylation research has hit in the area of cancer biomarker
discovery [74,165–168] and to achieve progress.
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