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Abstract: Metabolic Syndrome (MetS) is a set of risk factors that increase the probability of heart
disease or even diabetes mellitus. The diagnosis of the pathology implies compliance with at
least three of five risk factors. Doctors obtain two of those factors in a medical consultation:
waist circumference and blood pressure. The other three factors are biochemical variables that
require a blood test to determine triglyceride, high-density lipoprotein cholesterol, and fasting
plasma glucose. Consequently, scientists are developing technology for non-invasive diagnostics,
but medical personnel also need the risk factors involved in MetS to start a treatment. This paper
describes the segmentation of MetS into ten types based on harmonized Metabolic Syndrome criteria.
It proposes a framework to diagnose the types of MetS based on Artificial Neural Networks and
Random undersampling Boosted tree using non-biochemical variables such as anthropometric
and clinical information. The framework works over imbalanced and balanced datasets using the
Synthetic Minority Oversampling Technique and for validation uses random subsampling to get
performance evaluation indicators between the classifiers. The results showed an excellent framework
for diagnosing the 10 MetS types that have Area under Receiver Operating Characteristic (AROC)
curves with a range of 71% to 93% compared with AROC 82.86% from traditional MetS.

Keywords: metabolic syndrome; Quine–McCluskey algorithm; SMOTE; artificial neural networks;
random undersampling boosted tree; diagnostic non-invasive; harmonized the metabolic syndrome
criterion; random subsampling validation

1. Introduction

Metabolic syndrome (MetS) is not a worldwide recognized cause of death. However, it is a trigger
that increases the chances of multi-systemically and progressively affecting the people who suffer
from it, and that creates a pattern of metabolic abnormalities that reflect in the factors associated with
the increase in mortality due to diabetes mellitus or Coronary Heart Disease (CHD) [1,2]. These are
non-communicable diseases and are the leading causes of mortality worldwide [3,4]. Patients who
have four out of five significant variables have a 3.7 times higher risk of experiencing cardiac events
and 24.5 times more risk of being diagnosed with type 2 diabetes [5].

MetS is coded E88.81 according to the International Classification of Diseases, 10th Edition
(ICD- 10, 2020 version) and is a group of alterations in metabolism that includes dyslipidemia
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(abnormal concentrations of lipids in the blood: increased triglycerides and decreased HDL cholesterol),
hypertension, hyperglycemia, and obesity [6]. The insidious increase in the elements of MetS, obesity,
insulin resistance (IR), and dyslipidemia are responsible for the current global epidemic of type 2
diabetes [5]. Other authors relate MetS with the occurrence of cancers and chronic kidney disease [7,8].

The available evidence indicates that in most countries, between 20% and 30% of the adult
population can be characterized as having MetS. In some populations or segments of the population,
the MetS prevalence is even higher [9,10]. The prevalence of the syndrome in countries such as the
United States has increased. Three studies have yielded the following results: 23.7% in 2002, 34.2%
in 2006 [11,12] and nearly 34.7% of all U.S. adults were estimated to have the MetS in 2011–2012.
During the period 2003–2012, the MetS prevalence was estimated at 50% in adults older than 60 years
of age [13].

The Kuopio Ischaemic Heart Disease, Risk Factor Study consisted of a population-based,
prospective cohort study of 1209 Finnish men aged 42 to 60 years at baseline (1984–1989), who did not
initially present cardiovascular disease, cancer, or diabetes. They found that men with the Metabolic
Syndrome as defined by the National Cholesterol Education Programme Adult Treatment Panel III
(NCEP ATP III) were 2.9 (95% confidence interval [CI], 1.2–7.2) to 4.2 (95% CI, 1.6–10.8) times more
likely to die of CHD [14]. Moreover, a review study showed a range of Odds Ratio (OR) three- and
20-fold for developing type 2 diabetes. Thus, it is often considered prediabetes [15,16].

MetS prevalence in some Latin American countries is high. For example, Mexico has more than
40% prevalence in adults [17]. In Colombia, several studies about the prevalence of the syndrome
have focused on specific population ranges. For instance, a short study of 62 people in a northern city
of Colombia found that the patients with arterial hypertension showed a very high prevalence level
(74.2%) of Metabolic Syndrome, according to the ATP III criteria [5,18].

Healthcare professionals diagnose the syndrome with a set of risk factors using some threshold
levels in the criteria proposed by several medical associations. Several associations have proposed
criteria, including the World Health Organization (WHO) [19], the Adult Treatment Panel of the
National Cholesterol Education Program (ATP III) [20], the European Group for the study of Insulin
Resistance (EGIR) [21], and the International Diabetes Federation (IDF) [22]. Since 2009, specialists
arrived at the consensus of a Harmonized Metabolic Syndrome (HMS) through a joint interim statement
that several associations and institutes write to unify the diagnosis criteria [23].

Most of the criteria for diagnosing MetS agree that patients must have at least three of the five
risk factors to be diagnosed. The contrast is IDF, which requires central obesity plus two more taken
from the remaining four risk factors. For the population of Colombia, according to the HMS criterion,
which is the most updated, the waist circumference levels in men must be ≥90 cm and in females must
be ≥80 cm to have central obesity. The other risk factors are shown in Table 1.

Table 1. Definition of the MetS according to HMS (Data from [16]).

Risk Factors HMS Criteria

Central Obesity
Waist Circumference (WC)
population and country specific

Triglycerides (TG) ≥150 mg/dL

Fasting Plasma
Glucose (FPG) ≥100 mg/dL

High-Density Lipoprotein
Cholesterol (HDL-C)

<40 mg/dL in males
<50 mg/dL in females

Blood Pressure
Systolic ≥ 130 mmHg
and/or Diastolic ≥ 85 mmHg

Diagnostic criteria Three risk factors
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Independently of the criteria to diagnose MetS, the diagnosis uses five factors. Doctors get two
of those factors (Waist Circumference (WC) and Blood Pressure (BP)) in medical consultations and a
community setting. Invasive tests are required to know the value of triglycerides, HDL-C, and fasting
plasma glucose present in the patient’s blood. Therefore, the time of treatment initiation can vary
according to the health system. The delay between initial consultation, a blood test to measure the
triglycerides, fasting blood sugar, and HDL-C levels, plus a diagnostic consultation, can add several
days or weeks [24,25] creating a problem to diagnose early.

This time delay in obtaining the results, particularly for patients in remote locations, might be
sufficient time in some cases to worsen or aggravate the patient’s health conditions due to the
occurrence of a stroke diabetes [26]. It is useful to diagnose early MetS to avoid or delay the onset of
some illnesses already mentioned.

Many researchers have proposed solving the problem without doing a blood test using machine
learning techniques, such as Kroon et al. [27], Hsiung et al. [28] and others. However, when diagnosing
MetS, doctors always check the triglycerides, fasting plasma glucose, and HDL-C values to recommend
a specific treatment to prevent diabetes or coronary diseases. They also want to know the possible
cause since it allows a better decision to plan patient treatment [23,29].

Therefore, this article proposes segmenting MetS into various types to identify the risk factors
that produce it and use machine learning to diagnose them early without making a blood test
and comparing each MetS type with the traditional MetS. We used four approaches for improving
the accuracy or AROC for the different MetS types. The first approach uses the ANN technique;
the second approach uses an ensemble classification algorithm as the Random undersampling Boosted
tree (RusBoost) ensemble. The third approach uses an oversampling technique to create more data and
then applying ANN. The last approach uses the dataset with oversampling and RusBoost.

The objectives of this paper are the following:

• Achieve a mathematical representation to diagnose MetS using HMS criteria.
• Propose a segmentation of MetS using HMS criteria.
• Develop a framework to diagnose the different MetS types according to HMS criteria using a set

of variables that doctors can obtain using non-invasive methods in a first consultation.
• Evaluate two machine learning techniques using performance indicators for each MetS type.

We now continue to explain the methodology to design a framework to diagnose each MetS
type without doing a blood test based on MetS segmentation. Then, we show the results of the
implementation and then the discussion and conclusion.

2. Methodology

This paper uses a novel methodology called RAMAD to develop the article. This RAMAD
methodology [30] has five stages and improves the model every time by cycling until it achieves the
design of a generalized model based on their data, as described in Figure 1.

The execution of the steps can be updated. Researchers could do so by repeating the methodology
from the first phase. In this way, they could add new models from the literature. This circular approach
ensures that researchers keep improving their models. If they follow the documentation phase correctly,
new researchers could improve the original model’s prediction capabilities.
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Figure 1. RAMAD methodology [30].

2.1. Review

The Review phase performed a specialized search in the following databases: DBLP, IEEE,
and ACM for the relationship with Computer Science, and Pubmed for its relationship with healthcare
research. We have used a window of 12 years since 2008. The keywords used are “SEGMENTATION”
OR “TYPES” OR “PREDICTION” OR “ANN” AND [“METABOLIC SYNDROME” AND “WITHOUT
BLOOD TEST”] for Query1: IEEE, Query2: DBLP, Query3: ACM, and Query4: PUBMED to know
all the projects related to keywords in these search engines dedicated to the field of engineering.
The results of the queries (QUERY1: 92, QUERY2: 51, QUERY3: 82, and QUERY4: 131) provided an
extensive list of journal articles and conferences. However, not all the documents are directly related
to the segmentation of MetS since DBLP, IEEE XPLORE, ACM, and PUBMED delivered articles on
machine learning and computer science at a general level, for example, the topic image segmentation.

Then, the delivered list was filtered, evaluating its relationship with the segmentation of MetS
or types of MetS. It excluded repeated articles (mirror articles). Afterward, we performed a manual
inspection and then filtered by the criteria established on the following questions.

• Could authors predict the Metabolic Syndrome types or segmentation without a blood test? Y/N.
• What Metabolic Syndrome diagnostic criteria did the authors use? e.g., ATP II, IDF, HMS, or other

criteria recognized.
• What ANN configuration did the authors use?
• What validation method did the authors use? e.g., hold out, random subsampling, and others.
• What performance indicators did the authors use? e.g., Sensitivity, Area Under the ROC

curve, Specificity.

The manual inspection did not find anything about the segmentation of MetS using only variables
obtained in a medical consultation such as anthropometric and clinical or history variables. However,
we found three articles that diagnose MetS using ANN and anthropometric and clinical variables such
as Age, Sex, Weight, Height, Waist Circumference (WC), Hip Circumference (HC), Waist to Hip ratio
(WHHR), Waist to Stature (WSR), Body Mass Index (BMI), Body Fat Percentage (BFP), Systole Blood
Pressure (SBP) and Diastole Blood Pressure (DBP). These variables will be used to build the model to
diagnose the MetS types without doing a blood test, i.e., without using biochemical variables.

As a summary, Table 2 shows an overview of the variables that are used explicitly in the study
and other variables that were not used (implicitly) but are necessary to construct the explicit variables.
It also shows the classification models used for the MetS diagnosis without taking a blood sample of
each article in the literature, and we describe them now:
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Table 2. Variables and hidden neurons of ANN used by the authors found in the review.

Authors Murguia-Romero [31] Chen [32] Kupusinac [33]

Age E E

Sex E E E

WG:Weight E I I

HG:Height E I I

WC: Waist
circumference E E I

HC: Hip
circumference E

WHR: Waist to
Hip ratio E

WSR: Waist
to Stature Ratio E

BMI: Body
Mass Index E E E

SBP: Systolic
blood pressure E E

DBP: Diastolic
blood pressure E E

Hidden neurons 25 5 85 and 96

E: Explicit use of variable; I: Implicit use of variables.

Murguia-Romero et al. [31] configured an Artificial Neural Network (ANN) based on Multilayer
Perceptron (MLP) with back-propagation of 25 hidden neurons to diagnose with HMS criteria and
using BMI, WC, Weight, Height, and Sex variables from a dataset with 826 people to validate using
70% for training and 30% for testing.

Chen et al. [32] used anthropometric and clinical variables such as HC, Age, BMI, WC, WHR, Sex,
SBP, and DBP, and implicitly used Weight and Height as inputs of a back-propagation neural network
(BPNN). They diagnosed the MetS and compared the results with another machine learning technique,
Principal Component Logistic Regression (PCLR), for predicting Met with IDF criteria using a dataset
of 2074 individuals (male: 1495, female: 579), obtaining improved results in the BPNN.

Kupusinac et al. [33] presented a feed-forward ANN with back-propagation for diagnosing the
MetS with IDF criteria using non-invasive variables such as sex, age, BMI, WHR, SBP, DBP, and in an
implicit way WC, Weight, Height, due to the use of WSR and BMI. The dataset of 2928 people was
divided into three parts with the proportion 80:10:10 for the stage of training, validation, and testing.

Diagnosing MetS using non-biochemical variables is an approach that implies not taking blood
samples. This approach can help doctors make early decisions about MetS. However, doctors always
need to know what risk factors are present in the patient diagnosed with MetS to start treatment early
to decrease the probability of heart disease or diabetes mellitus type 2. Moreover, to date, no study
has evaluated the MetS types or the segmentation of MetS from a perspective of machine learning.
This situation may be due to the lack of a model of segmentation of MetS that explains the different
MetS types.
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2.2. Analysis

2.2.1. Design and Study Population

Universidad del Norte obtained the data through a study performed in the second semester of
2012, as an integrated research strategy for the study and intervention of the Metabolic Syndrome in
Barranquilla, Colombia, using the following rules:

List of inclusion rules

• Age of 20 years or over.
• The subject can understand the instructions explained by the researchers.
• The subject can sign an informed consent.
• The subject resides permanently in the area.

List of exclusion rules

• Are you pregnant?
• Are you bedridden?

The study began with a survey of 615 adult subjects 20 years old or older randomly selected in
10 city neighborhoods and distributed proportionally according to the neighborhood, and residence
block. The survey consisted of several questions divided into several sections. The most relevant
sections are obesity history, anthropometric measurements, and biochemical blood measurements such
as lipid profile (cholesterol, triglycerides), fasting plasma glucose. The study determined Metabolic
Syndrome and associated factors using the laboratory results plus the surveys’ data and the weight
measurements, size, and abdominal perimeter.

As a limitation of the study, the researchers initially designed it to diagnose the traditional MetS,
not to diagnose different MetS types because there was no hypothesis about MetS segmentation at
that date. However, we consider that the patients’ predictive variables are reliable to diagnose the
traditional MetS, and in the same way, it will be reliable to diagnose the different MetS types.

The research was carried out under the Good Clinical Practices (GCP) guide and the International
Conference on Harmonization (ICH). Therefore, respect for the dignity and the protection of the
rights and well-being of people prevailed. The study included protecting the individuals’ privacy and
autonomy and the decision not to participate in the survey. It is important to note that there was no
risk of the participant suffering any damage due to the study. The data that support the findings of
this study are available from the corresponding author, upon reasonable request.

This research ensures compliance with the guidelines for the protection of research subjects.
Participants received a letter informing them about the project and their rights as participants.
The research was approved by the Ethics Committee of the Universidad del Norte in act 87 in
September 2012 and complies with the national guidelines (Resolution No. 8430 of the Ministry
of Health of Colombia) and international guidelines (the Declaration of Helsinki) related to the
participants’ informed consent.

2.2.2. Physical Examination and Blood Tests

The respondents arrived at the University del Norte’s hospital, where healthcare professionals
performed the scheduled clinical examination, executed by a Doctor and a nurse. They measured
Blood pressure and took two doses with an interval of 5 min, averaging the two measurements. Nurses
measured stature and weight, without shoes and with the least amount of clothes possible. They also
measured waist and hip circumferences.

Many articles have supported the association between MetS and the percentage of body fat
obtained with the bioimpedance technique [34,35]. However, according to the objectives stated above,
the variables should be obtained from the medical consultation data where in general, the first level
assistance office does not have a body fat measurement device.
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Therefore, the measurement of Body Fat Percentage (BFP) was performed with the following
equations depending on gender for men Equation (1) and for women Equation (2). According to
an analysis of the authors Lean, Han, and Deurenberg [36], Equations (1) and (2) have the largest
prediction power to measure BFP.

BFP(%) = 0.567WC(cm) + 0.101Age(year)− 31.8 (1)

BFP(%) = 0.439WC(cm) + 0.221Age(year)− 9.4 (2)

The research also obtained information about the respondents’ health history that was
recommended by several authors [27,28,32]. According to the variables we have in the study, we only
analyze the history of obesity with the variable obtained from the following question: “Have any
health professionals diagnosed you with overweight or obesity?”. Recent studies have shown a strong
association of the previous obesity diagnosis to the risk of heart failure (HF) [37]. Therefore, we tabulate
the discrete values of the Previous Obesity Diagnosis (POD) variable in the Results section.

2.3. Model

In this section, we explain the mathematical representation to diagnose the MetS using HMS.
Moreover, we propose a model of segmentation of MetS obtaining several types of MetS for HMS
criteria. Then, we show an abstract overview of a framework for implementing the proposed method
to predict each type of MetS without doing a blood test.

2.3.1. Mathematical Representation to Diagnose MetS

The MetS, according to different traditional organizations (HMS, IDF, ATP III, among others),
must be diagnosed when the patient meets at least three risk factors. We base the verification of a risk
factor through the criteria shown in Table 1. Then we could represent each risk factor as a dichotomous
variable, where 1 is positive and 0 is negative. Therefore, the diagnosis with the HMS criterion can be
represented mathematically through the sum of dichotomous variables greater than or equal to three
positive risk factors, as shown in Equation (3).

W + P + G + H + T ≥ 3 (3)

• W: Represents the normal(0) or raised(1) status of the dichotomous values of the
waist circumference

• P: Represents the normal(0) or raised(1) status of the dichotomous variable of the blood pressure
• G: Represents the normal(0) or raised(1) status of the dichotomous variable of the fasting

plasma glucose
• H: Represents the normal(0) or lower(1) status of the dichotomous variable of the HDL-C
• T: Represents the normal(0) or raised(1) status of the dichotomous variable of the triglycerides

Equation (3) shows the interaction of the dichotomous variables of triglycerides, fasting plasma
glucose, HDL-C, waist circumference, and blood pressure used to diagnose the MetS.

It is essential to keep in mind that we obtain the dichotomous variable of blood pressure (P) by
making a logical OR operation between the dichotomous variables of Systolic Blood Pressure (SBPD)
and Diastolic Blood Pressure (DBPD), as shown in Equation (4).

P = SBPD | DBPD (4)

2.3.2. Proposed Model MetS Segmentation

Several researchers have shown that it is possible to diagnose MetS using only non-biochemical
variables [27,28,30]. However, doctors also require information about the variables that cause the
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syndrome to proceed with the appropriate treatment to prevent diabetes or coronary diseases.
Therefore, there are several cases of MetS due to the combination of the five(5) [23,29] dichotomous
values of risk factors represented by WPGHT, which are in base 2. With five factors, there are 25 = 32
combinations (00000 to 11111) and each combination represents a case of MetS that doctors diagnose
as positive or negative based on the HMS criteria. To determine each positive case of MetS, we built a
true table of all MetS cases using HMS criteria with a Boolean perspective [38,39] as shown in Table 3.
The first column with the n values represents in base 10, all the combinations of the dichotomous values
of risk factors WPGHT, which are in base 2. The MetS column represents the syndrome diagnosis.
The value is positive (1) if three or more dichotomous values are positive. Otherwise, the column is
negative (0). For example, in the case when W = 1, P = 0, G = 0, H = 1, T = 1, the combination in
base 2 represents 10011, which converted to base 10 is 19. We also can use an apostrophe as a negation
of a value. The same example then can also be represented as WP′G′HT.

Table 3. Truth table of all the combinations of the risk factors of the MetS according to the HMS criteria.

n W P G H T MetS

0 0 0 0 0 0 0

1 0 0 0 0 1 0

2 0 0 0 1 0 0

3 0 0 0 1 1 0

4 0 0 1 0 0 0

5 0 0 1 0 1 0

6 0 0 1 1 0 0

7 0 0 1 1 1 1

8 0 1 0 0 0 0

9 0 1 0 0 1 0

10 0 1 0 1 0 0

11 0 1 0 1 1 1

12 0 1 1 0 0 0

13 0 1 1 0 1 1

14 0 1 1 1 0 1

15 0 1 1 1 1 1

16 1 0 0 0 0 0

17 1 0 0 0 1 0

18 1 0 0 1 0 0

19 1 0 0 1 1 1

20 1 0 1 0 0 0

21 1 0 1 0 1 1

22 1 0 1 1 0 1

23 1 0 1 1 1 1

24 1 1 0 0 0 0

25 1 1 0 0 1 1

26 1 1 0 1 0 1

27 1 1 0 1 1 1

28 1 1 1 0 0 1

29 1 1 1 0 1 1

30 1 1 1 1 0 1

31 1 1 1 1 1 1
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We find the different cases of MetS according to Table 3 and to HMS criterion giving a result of
a sum of products of the dichotomous values of the risk factors represented numerically in base 10,
as shown in Equation (5).

MetSHMS = ∑
5
(07, 11, 13, 14, 15, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31) (5)

For the traditional MetS, we also call it general MetS to separate it from the MetS types proposed
in this article. Next, we optimize Equation (5) and minimize it using the Quine–McCluskey algorithm.
The detailed solution is in Appendix A and we checked the technique with Karnaugh Map as well,
obtaining Equation (6) in the format WPGHT.

MetSHMS = WPT + WPH + WPG + WGT + WGH + WTH + PGT + PGH + PHT + GHT (6)

As observed in Equation (6), the tripartite variables that we call MetS types are always necessary
for a diagnosis of the traditional MetS. It requires at least one of these WPT, WPH, WPG, WGT, WGH,
WTH, PGT, PGH, PHT, and GHT to be positive according to the HMS criteria, as detailed in Table 4.

We will use the term traditional MetS or general MetS to separate it from the MetS types proposed
in this article. For practical purposes, we developed a framework to diagnose the MetS types based on
Equation (6) representing the HMS criteria using machine learning techniques.

2.3.3. Framework to Diagnose the MetS Types

Figure 2 shows an abstract overview of the implementation of the proposed method by using a
framework divided into three stages.

Table 4. Types of MetS according to the HMS criterion.

Type Diagnostic of MetS

WPT
Increased Waist Circumference , Blood Pressure,
and Triglycerides levels

WPH
Increased Waist Circumference , Blood Pressure,
and reduction of HDL-C levels

WPG
Increased Waist Circumference , Blood Pressure,
and Fasting Plasma Glucose levels

WGT
Increased Waist Circumference , Fasting Plasma Glucose,
and Triglycerides levels

WGH
Increased Waist Circumference , Fasting Plasma Glucose,
and decreased HDL-C levels

WTH
Increased Waist Circumference , Triglycerides,
and decreased HDL-C levels

PGT
Increased Blood Pressure, Fasting Plasma Glucose,
Triglycerides levels

PGH
Increased Blood Pressure, Fasting Plasma Glucose,
and decreased HDL-C levels

PHT
Increased Blood Pressure, Triglycerides and
decreased HDL-C levels

GHT
Increased Fasting Plasma Glucose, Triglycerides and
decreased HDL-C levels
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Figure 2. Framework to diagnose the types of MetS by HMS criterion using non-biochemical variables.
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(a) Extraction, Transformation, and Load (ETL)

In this stage, we collected the data from a population of 615 subjects who authorized taking
a blood sample to measure the values of triglycerides, HDL-C, and fasting plasma glucose.
Moreover, the study recorded the anthropometric and clinical variables such as Age, Sex,
Weight, Height, Waist Circumference (WC), Hip Circumference (HC), Systole Blood Pressure
(SBP), and Diastole Blood Pressure (DBP).
Later, through the transformation process, we obtained Body Mass Index, Body Fat Percentage,
Waist Hip circumference ratio, Dichotomous Blood Pressure Systolic, Dichotomous Diastolic
Blood Pressure, Dichotomous Blood Pressure, Dichotomous triglycerides, Dichotomous fasting
blood sugar, Dichotomous HDL-C, and Dichotomous Waist circumference among others.
Afterward, we used dichotomous values of the HMS criteria’ risk factors to build the different
MetS types obtained from the segmentation process explained in the previous subsection.
We obtained the output variables WPG, WPH, WPT, WGH, WGT, WTH, PGT, PGH, PHT,
and GHT. Therefore, all anthropometric and clinical data was loaded in a dataset of 615 records.

(b) Statistical analysis and balancing dataset

In this stage, we began with a dataset containing 615 people with samples of biochemical
variables with their respective diagnostic of MetS. Then, we did a descriptive statistical
analysis of the dataset, finding that some types of MetS were imbalanced, as shown in the
Results section.
This problem was caused by the low prevalence of the risk factor for fasting blood glucose in
the study population. This low prevalence is expected in a study of MetS [40]. We resolved this
imbalance by using a data balancing technique, such as the Synthetic Minority Oversampling
Technique (SMOTE) [41,42] implemented by WEKA. We created synthetic data to get a
balanced dataset of 799 records (615 plus 184 synthetic data) and a better distribution of risk
factors of MetS, thus improving the quality of discrimination.

(c) Modeling

In this stage, we use an algorithm to select the necessary non-biochemical features. We used
Sequential Feature Selection in Matlab to achieve the maximum discrimination in both datasets
(imbalanced and balanced) of the proposed model’s output variables.
For the following step, we used several Multilayer Perceptron (MLP) ANN to predict each MetS
type: WPG, WPH, WPT, WGH, WGT, WTH, PGT, PGH, PTH, and GHT. These ANN should
be trained before being used to predict the output variable value, i.e., the dependent variable.
Each ANN is formed by neurons whose elements are a set of inputs that can come from other
neurons or the outside, as shown in Figure 3 the basic structure of an ANN.

Each structure of ANN should be initialized according to the propagation rule to the starting
and each node has synaptic weights, which are the degree of communication between neurons,
as shown Equations (7) and (8). Then, the data used to train the network is introduced into
the network after the propagation algorithm is employed to obtain the final parameters in the
network. In practice, the algorithm is divided into two parts: network training and network
testing. The steps of propagation algorithm are described as follows [43]:

netk =
n

∑
i=1

(ωk
i xk

i − αk
i ) (7)

yk = θ(netk) (8)
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where xk
i are inputs, ωk

i are synaptic weights, α are bias in the input layer, k is the iteration and
n is the number of inputs resulting in a net output that is determined by a activation function
θ(netk) with output yk [44,45].

This information flows in one direction only from the inputs to the hidden layer and after to
the output layer, i.e., the information that comes from different activation function neurons,
which is responsible for determining the current state and finally converges all the data to the
output [33].

Each ANN has several hidden neurons that have functions, such as the hyperbolic tangent
sigmoid function and an output layer with a neuron. The neuron has a function that can be a
log-sigmoid function [44,46].

It should be noted that there are no hard and fast rules for the number of hidden neurons.
These hidden neurons can be calculated or found empirically and are highly dependent on the
problem and the dataset [47]. However, we used the methodology mentioned by [48–50] and
described in Equation (9), where the number of hidden neurons (NHN) can be 2/3 of the input
variables plus an output variable.

NHN =
2(Input variables)

3
+ Output variables (9)

We used Equation (9), to estimate the number of hidden neurons to contribute to research in
the area of machine learning for the diagnosis of MetS without using biochemical variables
and in a way, describe every detail of the process for experimentation by other researchers can
continue investigating these models as well as Chen [32] that used other equation to calculate
the hidden neurons.

Another machine learning technique used to diagnose the MetS types was the ensemble Random
undersampling Boosted tree (RusBoost) because the data from the MetS study is imbalanced [51].
This technique improves the performance indicators of models using imbalanced data by
applying a random undersampling technique. The technique randomly removes samples from
the majority class [52], as shown in the algorithm detailed in Appendix B with the configuration
showed in Table 5.

Table 5. RusBoost Configuration.

Learned Type Decision Tree

Maximum number of splits 20

Number of learners 30

Learning rate 0,1

In summary, we used two machine learning techniques ANN and RusBoost to design the
models and validating with the performance indicators using random subsampling described in
the next subsection.
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Figure 3. Basic structure of the artificial neural network.

2.4. Performance Indicators and Model Assessment

In this section, we assessed the framework to predict each MetS type first by using
Random Subsampling validation. Second, we used performance indicators to compare the previously
chosen techniques to select the best model to predict the MetS types using the HMS criterion.

This article uses a dataset summarized by means, standard deviations, and percentages and found
the prevalence of MetS. We analyzed each variable of the dataset in two groups (MetS and Non-MetS)
assessed with t-tests and Chi2 tests using the SPSS statistical software, version 23 for Windows.

For the validation of the model, we used random subsampling or Monte Carlo cross-validation
on multiple data that are randomly chosen from the dataset and combined to form a new dataset,
i.e., multiple hold outs. The remaining data forms the training 70% and testing 30% of the dataset.
The test data predictions give a realistic estimate of the external validation data predictions because
it is asymptotically consistent. This approach results in more pessimistic predictions of the test data
compared to cross-validation [53–56]. For this article, we made a random subsampling of 100 times
using Matlab software.

Now, in each holdout, a training set equivalent to 70% of the dataset was used to train the ANN,
and the training stops when any of these conditions occur: the maximum number of 1000 epochs is
reached, the performance gradient falls below 10−6 , and maximum validation failures to check was
6. For preventing the ANN from performing poorly while learning well on training data, training
stops if the validation performance degrades for 6 (default) consecutive epochs. The ANN was tested
with the equivalent test set of 30% of the dataset to obtain the performance indicators. After doing this
100 times, the model was validated, obtaining the average of the performance indicators.

We compared the classification models to diagnose each MetS type (WPG, WPH, WPT, WGH,
WGT, WTH, PGT, PGH, PTH, and GHT) without using a blood sample. For this purpose, we used
indicators to evaluate their capacity for discrimination, such as Sensitivity (SS), Specificity (SP),
False Negative Rate (FNR), False Positive Rate (FPR), AROC [40,46]. The TP, TN, FP, and FN values
represent True Positives, True Negatives, False Positives, and False Negatives, respectively.

Sensitivity(SS) =
TP

TP + FN
(10)

Speci f icity(SP) =
TN

TN + FP
(11)
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FPR = 1− SP (12)

FNR = 1− SS (13)

AROC =
∫
(SS)(1− SP) (14)

The classifiers used to diagnose diseases prioritize the rate of type 1 and 2 errors known as
False Negative Rate (FNR) and False Positive Rate (FPR), which are the complement of SS and SP,
respectively. The type 2 error (false negative) is harmful because a patient with Metabolic Syndrome
can be diagnosed as a patient without the syndrome, affecting their health since they did not start
adequate treatment.

On the other hand, it should be noted that we evaluated all these models using the AROC and
the Hosmer and Lemeshow criterion [57], which is shown in Table 6.

Table 6. Assessment rules of AROC.

AROC Discrimination Ability

AROC = 0.5 No discrimination
0.5 < AROC < 0.7 Regular
0.7 ≤ AROC < 0.8 Acceptable
0.8 ≤ AROC < 0.9 Excellent

AROC ≥ 0.9 Outstanding

2.5. Document

In the following results section, we present the analysis and document the whole process to be
reused later by other authors to improve the proposed model. We record all the models’ parameters
and verify that it is detailed so that the project and experiments can be replicated.

3. Results

This section describes the results obtained from the experiments to find a data description of the
variables and the performance indicators described previously to diagnose the traditional MetS and
each one of the MetS types based on the dataset from a MetS study conducted by the Universidad
del Norte.

3.1. Data Description

The Universidad del Norte conducted the MetS study with a sample of 615 patients split into
348 women and 267 men between 20 and 96 years old. The study used blood tests to obtain the
biochemical variables of triglycerides, fasting plasma glucose, HDL-C. The results are separated into
three groups: MetS, Non-MetS, and total, as shown in Table 7.

Table 7. Statistic description of the biochemical variables.

Variables * MetS m(SD) No MetS m(SD) Total m(SD) p

TG 216.94 (112.8) 121.84 (63.05) 160.81 (98.67) <0.001
GL 97.33 (38.82) 84 (19.56) 89.47 (29.74) <0.001
HDL-C[W] 38 (8.22) 46.97 (13.54) 43.39 (12.49) <0.001
HDL-C[M] 36.11 (11.1) 43.32 (11.63) 40.27 (11.93) <0.001

TG: Triglyceride; GL: Fasting Blood Glucose; M: Men; W: Women; Average(m); Standard deviation (SD);
* (mmol/L).

The biochemical variables of the MetS group and the Non-MetS group have different statistical
significance. Together with the waist circumference and systolic and diastolic blood pressure,
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these variables are necessary to diagnose the MetS. The study found that the total prevalence rate was
42.60% divided into 44.94% for men and 40.8% for women.

Moreover, healthcare professionals collected anthropometric and clinical variables such as Age,
Sex, Weight, Height, WHR, HC, WC, SBP, and DBP in each patient. Other variables were calculated,
such as BFP and BMI. Table 8 shows the statistical description of the total data of the study with the
variables between people with MetS, No MetS, and total. These variables were measured, given that
several studies [31–33] suggested to take into account these variables to diagnose the MetS without a
blood sample. Doctors can obtain those variables at the first medical consultation. We can observe
that the average of each of these variables obtained from patients with MetS is higher than that of
patients without MetS and present a statistical significance in the groups MetS and Non-MetS that
evidence a difference between groups. On the contrary, the Height variable’s behavior in the two
groups demonstrates a (p = 0.068) very low probability of difference.

Table 8. Statistical description of the study variables for the total data.

Variables MetS m(SD) No MetS m(SD) Total m(SD) p

Age (year) 47.62 (17.49) 38.89 (15.96) 42.61 (17.17) <0.001
WC (cm) 99.81 (11.33) 87.24 (11.91) 92.59 (13.21) <0.001
HC (cm) 105.51 (10.56) 93.73 (12.50) 98.75 (13.07) <0.001
Weight (Kg) 79.08 (17.11) 66.59 (13.81) 71.71 (16.43) <0.001
Height (m) 1.64 (0.09) 1.62 (0.09) 1.63 (0.09) 0.068
BMI (Kg/m) 29.09 (5.31) 25.26 (4.74) 26.89 (5.33) <0.001
WHR * 0.94 (0.05) 0.93 (0.09) 0.94 (0.08) <0.001
BFP (%) 38.64 (8.46) 30.86 (10.23) 34.05 (10.28) <0.001
SBP (mmHg) 128.52 (18,46) 112.91 (12,61) 119.55 (17.19) <0.001
DBP (mmHg) 78.48 (11.13) 71.18 (9.21) 74.29 (10.69) <0.001

* (cm/cm);Average(m); Standard deviation (SD).

Other variables that should be taken into account to diagnose the MetS are those found in
the clinical history such as the Previous Obesity Diagnosis (POD) due to the relationship with the
occurrence of coronary heart disease [37,40]. Therefore, in this MetS study, the researchers asked
patients about their history of a previous obesity diagnosis and found that 42.37% were MetS and
23.23% were Non-MetS with a significant difference of p < 0.001 in the chi2 test. Therefore, there is a
possible association between POD and MetS. The odds ratio indicates that patients with POD are 2.43
times more likely to have MetS.

3.2. Experiment to Diagnose the Traditional MetS without Biochemical Variables

We found in the review several articles such as Murguia-Romero [31], Ivanovic [33],
and and Chen [32] using ANN to diagnose MetS without biochemical variables. So , we conducted
several experiments to compare the models described by the authors in those articles [31–33]. We used
the data from the study of 615 subjects from the Universidad del Norte. Table 2 shows the variables
used to build the ANN of each article.

We analyzed the training and test distributions of each of the following articles in chronological
order, as published by Murguia-Romero [31], Chen [32], and Kupusinac [33]. For example,
Murguia-Romero [31] and Chen [32] used 70/30, and Kupusinac [33] used 80/10/10, as explained in
the review section. We homogenized and compared all the experiments using a feed-forward Artificial
Neural Network (ANN) with back-propagation of 3 layers perceptron and with the training data (70%
of the data) and the testing data (30% of the remaining data). For the validation, we used the random
subsampling technique of 100 times.

We implemented an ANN with 25 hidden neurons as published by [31]. It is important to note that
Murguia-Romero [31] did not publish all the configuration parameters of the ANN, only the number
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of hidden neurons, and so, we used the configuration set by Kupusinac [33] using the parameters
shown in Table 9 to build the ANN because they were the only one who published the configuration.

Table 9. Parameters of the ANN(Data from [33]).

Parameter Value

Training Function Levenberg–Marquardt back-propagation
min_grad 10−10

mu 10−3

mu_dec 0.1
mu_inc 10

mu_max 1010

HL function hyperbolic tangent sigmoid
Out function Log-sigmoid

Murguia-Romero [31] used the variables WC, Sex, Height, Weight, and BMI. The results for
this ANN show sensitivity 69.44%, specificity 63.78%, and AROC 74.8% with random subsampling
validation of 100 times and a ratio of 70% for training data and 30% for testing data due to the
low prevalence of MetS. On the other hand, Chen [32] used the variables SEX, AGE, BMI, WC, HC,
WHR, SBP, and DBP and an ANN of 5 hidden neurons. We implemented and tested it using the
same configuration to homogenize and compare, resulting in sensitivity 75.37%, specificity 72.54%,
and AROC 81.75% using HMS criteria.

We built the ANN published by Kupusinac [33] but we changed the distribution of training and
testing data (70% for distribution and 30% for testing). We used the random subsampling validation of
100 times, obtaining a mean of the sensitivity of 71.62%, a specificity of 66.95%, and AROC of 74.94%,
for ANN with 96 hidden neurons. Moreover, using the ANN of 85 hidden neurons, we obtained a
mean sensitivity 72.22%, specificity 66.25%, and AROC 74.79%.

In this article, we used an algorithm of sequential feature selection by Matlab [58,59] with
17 variables from the set of variables detailed in Table 2 obtaining a set of AGE, WC, WHR, and SBP
variables to achieve the maximum discrimination in the classification algorithms. The number of
hidden neurons was calculated with Equation (9), resulting in 4 with the same configuration parameters
by Kupusinac [33]. We used random subsampling validation, obtaining the performance indicators of
sensitivity 66.92%, specificity 80.57%, and AROC 82.48% using HMS criteria.

As a summary, Figure 4 shows the performance indicators of each experiment to compare
with the other three models of ANN differentiating only in the number of hidden neurons and the
input variables.

Figure 4. Percentage of the performance indicators of the models of ANN.
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The behavior of the data mining techniques shows in Figure 4 that the ANN of 4 hidden neurons
is better compared to the previously proposed techniques. It appears that decreasing hidden neurons
increases AROC, and this is a reason for some researchers to estimate hidden neurons empirically until
the minimum number of neurons required is found. However, we decided to use a common method
to calculate it [48–50] and had obtained promising results. The diagnostic of traditional MetS without
doing a blood test presents an excellent level to discriminate (AROC = 82.48 %) using only four (4)
variables AGE, WC, WHR, and SBP using an ANN of 4 hidden neurons. We found significant AROC
values to determine an excellent MetS classification without using a blood sample and, at the same
time, knowing which anthropocentric and clinical variables caused it.

However, based on clinical trials performed by the National Heart, Lung, and Blood Institute
(NHLBI), excellent management of the individual risk factors of the syndrome should prevent or delay
the onset of diabetes mellitus, hypertension, and cardiovascular disease [23,29,60].

MetS is a combination of five risk factors. For a MetS diagnosis, it is necessary to calculate the risk
factors’ values according to the decision threshold shown in Table 1. An example case of MetS implies
the combinations of the dichotomous variables represented by the format (W × P× G× H × T) in
base 2. This example case diagnoses MetS due to normal blood pressure, increased waist circumference,
triglycerides, fasting plasma glucose and decreased HDL-C (W = 1, P = 0, G = 0, H = 1, and T = 1).
Hence, the prevalence of W, P, G, H, and T in a dataset is significant for balancing each type of MetS.
Therefore, we analyzed the percentage of W, P, G, H, and T, and the result was 72.68%, 27.97%, 13.33%,
63.58%, and 42.76%, respectively, as shown in Figure 5.

Figure 5. Prevalence rate of the MetS risk factors.

3.3. Experiments to Diagnose Each MetS Type without a Blood Test

The experiments were performed based on the segmentation of MetS using the HMS criterion
represented in Equation (6) that shows the ten (10) MetS types. We obtained these types by making an
AND operation among each dichotomous risk factors W, P, G, H, and T using a dataset of 615 subjects,
resulting in a distribution of the different (10) types of MetS shown in Figure 6 that shows the prevalence
of each MetS type: WPT, WPH, WPG, WGT, WGH, WTH, PGH, PGT, PTH, and GHT were 14.31%,
16.75%, 5.53%, 7.32%, 9.11%, 26.18%, 3.9%, 3.9%, 10.41%, and 6.67%, respectively. These types are a
built-in set giving the traditional MetS a prevalence rate of 42.60%.

We can observe several MetS types with a low prevalence rate of less than 10%. We can note
the risk factor (G) of fasting plasma glucose with the lowest rate (13.33%), as shown in Figure 5.
This situation could lead to lower accuracy or AROC of prediction by the classifiers. The goal of
the article is to classify each type of MetS. However, this research’s dataset is highly imbalanced,
as depicted in Figure 6.
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Figure 6. Prevalence rate of the MetS types.

Therefore, we analyzed four approaches for improving the accuracy or AROC for the different
MetS types due to an imbalance of the dataset.

• Approach 1 is using only the ANN technique with a feature selection algorithm.
• Approach 2 uses an ensemble classification algorithm in the dataset, which is the Random

undersampling Boosted tree (RusBoost) ensemble.
• Approach 3 uses SMOTE to create more data that we called dataset with oversampling for then

applying ANN.
• Approach 4 is using the dataset with oversampling and RusBoost.

For the approaches 1 and 3, we used for each MetS type a feed-forward Artificial Neural Network
(ANN) with back-propagation of 3 layers perceptrons and with the training data (70% of the data) and
the testing data (30% of the remaining data). For the validation, we used the random subsampling
technique of 100 times.

It should be noted that approaches 1 and 2 used the original dataset of 615 samples, split into
training and testing groups. However, approaches 3 and 4 used a dataset of 799 samples obtained
using smote to create synthetic data and then splitting training or testing data.

3.3.1. Approach 1: Diagnosis of Each MetS Type Using the Original Dataset and ANN

We did the following to diagnose each MetS type without a blood test. We first selected the
necessary features to achieve the maximum discrimination in the classification algorithms using a
sequential feature selection algorithm in Matlab [58,59] using 17 variables. We obtained the set of
variables detailed in Table 10. To compare the traditional or general MetS (MetSG) with the MetS types,
we also show the features selected to build a model to diagnose it without a blood sample.

Table 10 shows the predictor variables for the MetS types. It is important to highlight the BFP
variable’s relationship with the MetS types WPH, WGH, and WTH. This situation occurs due to the
risk factor H (dichotomous HDL-C) dependence on gender. The MetS types related to P (dichotomous
Blood Pressure) such as WPT, WPH, WPG, PGH, PGT, and PTH, according to the selection algorithm,
have an evident relationship with the variables SBP and DBP. On the other hand, the MetS types WGT
and GHT have the predictor variables WC and WSR, respectively, presenting a great challenge to
discriminate them.
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Table 10. Selection of predicting variables for each MetS type from original dataset.

Types Predicting Variables

WPT WC SBP DBP POD

WPH BMI BFP HC SBP DBP

WPG AGE HC SBP

WGT WC

WGH BFP HC

WTH BFP WC

PGH SBP POD

PGT AGE WG SBP

PTH HC SBP DBP

GHT WSR

MetSG AGE WC WHR SBP

We then designed each classification model for the MetS, taking into account which variables
would be treated. These selected features were used as inputs of the ANN with several hidden
neurons calculated using Equation (9) as shown in Table 11 and with the same configuration parameter
recommended by Kupusinac [33] to diagnose the following MetS types: WPG, WPH, WPT, WGT,
WGH, WTH, PGT, PGH, PTH, and GHT according to the HMS criterion.

Table 11. Numbers of hidden neurons from each ANN of the MetS types.

WPT WPH WPG WGT WGH WTH PGH PGT PTH GHT MetSG

4 4 3 2 2 2 2 3 3 2 4

We validated each ANN using random subsampling, which we explained previously, obtaining
the average performance indicators as shown Figure 7. The classification algorithms’ performance
indicators for diagnosing the MetS type WPT show an outstanding ability to discriminate (AROC =
90.58%). Also, the diagnosis of the MetS type WPH has the same level of outstanding discrimination
ability (AROC = 92.85%). The MetS type WPG diagnosis shows an excellent level to discriminate
(AROC = 85.28%). The PGT and the PTH types also show an excellent level due to (AROC = 81.06%)
and (AROC = 88.84%), respectively. The MetS type WGH, WTH, and PGH show an acceptable level
(AROC = 71.93%), (AROC = 70.60%), and (AROC = 73.03%) respectively.

Figure 7. Performance indicators of the ANN for the MetS types using the original dataset.
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In contrast, for the diagnosis of the MetS types WGT, GHT, results show a substandard level of
ability to discriminate (AROC = 60.13%), and (AROC = 54.13%) respectively. This situation is due to
the low levels of sensitivity. A reason for this could be that there are so few predictive variables or low
prevalence rates for each type, as shown in Figure 6. The figure shows that most of the MetS types
have a prevalence rate of less than 10% and are affected or generated by the less prevalence rate of
fasting plasma glucose of 13.33% compared to the other risk factors.

3.3.2. Approach 2: Diagnosis of Each MetS Type Using the Original Dataset and RusBoost

The approach 2 is to use the same variables’ selections of the dataset and an ensemble classification
algorithm. The selected algorithm is the ensemble Random undersampling Boosted tree (RusBoost),
which we explained previously. This classifier is appropriate for imbalanced data. We run RusBoost
with the variables selections of Table 10 and with the configuration described by Table 5 to validate
with random subsampling obtaining the average performance indicators given in Figure 8 that shows
interestingly the RusBoost technique obtained excellent levels for the AROC performance indicator
in the diagnosis of the MetS types WPT, WPH, WPG, PGH, PGT, and PTH. The values were 88.56%,
89.79%, 83.67%, 81.04%, 81.30%, and 83.33% respectively with improvements in sensitivity rate.

On the other hand, the results show lower AROC levels for the MetS types WGT, WGH, WTH,
and GHT, with values of 66.11%, 62.58%, 64.71%, and 51.53%, respectively. For the MetS types WGT
and GHT, their few predictors variables possibly affected the performance indicators. The same
happened with other MetS types with a low prevalence of fasting plasma glucose that created this
effect, generating an imbalance in the rest of the other data and affecting the AROC levels.

Figure 8. Performance indicators of the RusBoost for the MetS types using the original dataset.

3.3.3. Approach 3: Diagnosis of Each MetS Type Using the Dataset with Oversampling and ANN

The approach 3 is to solve the imbalanced dataset for each MetS type. Several research articles
have proposed that the balanced dataset improves prediction [61,62], and most importantly, it improves
ANN training as the model can correctly adapt to the minority feature of the data. Therefore, we
used the sampling methods technique to balance the dataset to improve the representation of each
MetS type [63]. For this reason, a data balancing algorithm called SMOTE [41,42] was used with
the WEKA data mining tool. In the dataset of 615 patients, the fasting plasma glucose dichotomous
variable (G) was used in SMOTE to generate synthetic data [64] with a result of 799 samples (615 plus
184 synthetic data). This approach increased the prevalence of MetS to 51.81%, and improved the
prevalence rate of fasting plasma glucose. It also updated the distribution of the W, P, G, H, and T risk
factors. The new values were 73.72%, 29.16%, 30.79%, 65.58%, and 45.93%, respectively, as observed in
Figure 9. We called the new dataset of 799 samples as dataset with oversampling.
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Figure 9. Prevalence rate of the MetS risk factors using the dataset with oversampling.

Moreover, as a result of using SMOTE in the fasting plasma glucose (G) risk factor, the percentage
of the MetS types related to fasting plasma glucose increased, as shown in Figure 10. This result shows
that the prevalence rate of the MetS types WPG, WGT, and WGH is greater than 10%, PGH and PGT
is greater than 5%, and GHT s higher than 15% in comparison with Figure 6. The prevalence rate of
WPT, WPH, WPG, WGT, WGH, WTH, PGH, PGT, PTH, and GHT was 15.39%, 18.15%, 11.89%, 17.52%,
22.9%, 29.41%, 9.01%, 8.01%, 11.14%, and 15.39%, respectively. This result generated an increment in
the prevalence rate of the traditional MetS of 51.81% as well.

Figure 10. Prevalence rate of the MetS types using the dataset with oversampling.

We used an algorithm of sequential feature selection from Matlab to achieve maximum
discrimination in the classification algorithms, and Table 12 shows the results. This step refined
the variables’ selection due to synthetic data’s creation, similar to the actual data. This step increments
the positive values of the MetS types related to biochemical variables, especially those related to fasting
plasma glucose. As part of this refinement, the types WPG and WGT selected POD as a predictor
variable. On the other hand, the BFP variable remains in both Tables 10 and 12, especially for the types
WPH, WGH, and WTH. In those types, the biochemical variable HDL-C is related, and this depends
on gender. The BFP variable is a function of gender, waist circumference, and age, demonstrating a
logical relationship with WPH, WGH, and WTH types. Interestingly, the WPG and PGH types have
the same initial predictor variables.
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Table 12. Selection of predicting variables for each target from the dataset with oversampling.

Target Predicting Variables

WPT WC SBP DBP

WPH BFP HG WHR SBP DBP

WPG AGE POD WG SBP

WGT WC POD

WGH BFP HC WHR DBP

WTH BFP WC

PGH AGE POD WG SBP

PGT AGE WG SBP

PTH BFP HC SBP DBP

GHT HC POD

MetG AGE WC WHR SBP

Afterward, we designed several ANN for each type of MetS according to the variables of Table 12
using the dataset with oversampling. These selected features were used as inputs of the ANN
with several hidden neurons calculated using Equation (9) as shown in Table 13 and with the same
configuration parameter recommended by Kupusinac [33] and was validated each ANN using random
subsampling obtaining the average performance indicators as shown Figure 11.

Table 13. Numbers of hidden neurons from each ANN of the MetS types.

WPT WPH WPG WGT WGH WTH PGH PGT PTH GHT MetSG

3 4 4 2 4 2 4 3 4 2 4

Figure 11. Performance indicators of the ANN for the MetS types using the dataset with oversampling.

Figure 11 shows the ANN to classify for the diagnosis of the MetS types WPT, WPH, WPG
were an outstanding ability to discriminate given that the AROC were 90.69%, 93.06%, and 90.57%,
respectively with an excellent specificity rate. The MetS types PGH and PTH showed an excellent
ability to discriminate AROC of 86.32% and 88.41%, respectively, with an excellent specificity rate.
The PGT, WGH, and WTH types showed an acceptable level (AROC = 76.92%), (AROC = 75.52%),
and (AROC = 70.38%) respectively, with a regular sensitivity rate.
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In contrast, the diagnosis of the MetS types WGT and GHT showed a regular level (AROC =
66.22%) and (AROC = 64.06%), respectively. Moreover, the sensitivity rate was almost null due to
the few positive cases that have that MetS type, generating overfitting in the ANN in the training
stage, since it has learned more negative cases than positive ones. Therefore, these two models are not
reliable in these conditions.

The prevalence of WGT and GHT is similar to the other MetS types that have an excellent level
of AROC, such as WPT, WPH, WPG. Therefore, we think that the prevalence in this dataset with
oversampling is not reason. However, the traditional MetS diagnosis improved its AROC level to
82.86% (Excellent)%.

3.3.4. Approach 4: Diagnosis of Each MetS Type Using the Dataset with Oversampling and RusBoost

Approach 4 uses the same variables selection from the dataset with oversampling of Table 12
and the ensemble Random undersampling Boosted tree (RusBoost) algorithm using the configuration
described in Table 5 in the Methodology section to validate using random subsampling obtaining the
average performance indicators given in Figure 12.

Figure 12. Performance indicators of the RusBoost for the MetS types using the dataset
with oversampling.

Figure 12 shows that the prediction accuracy values of the MetS types increased when compared
with the results shown in Figure 8 and also the AROC discrimination ability values especially to
diagnose the MetS type WGH due to obesity, high fasting plasma glucose, and low HDL-C with an
acceptable level to discriminate (AROC = 71.08%) which increased 8.5%. The MetS type WPH showed
an outstanding ability to discriminate with an AROC of 91.49% with an excellent sensitivity rate.
The MetS types WPT, WPG, PGH, PGT, and PTH, showed an excellent ability to discriminate AROC
89.20%, 85.36%, 84.20%, and 84.10% respectively, with very good sensitivity rate. The MetS types WGH
and PGT showed an acceptable level (AROC = 71.08%) and (AROC = 78.39%), respectively, with an
acceptable sensitivity rate.

In contrast, the MetS types WGT, WTH, and GHT showed an regular level (AROC = 65.82%),
(AROC = 65.16%), and (AROC = 65.65%), respectively. The prevalence of WGT, WTH, and GHT is
similar to the other MetS types with an excellent level of AROC such as WPT, WPH, WPG.

4. Discussion

One important issue to discuss is the AROC low level for some of the MetS types. The AROC
low level in the WGT, WTH, and GHT types is not related to the prevalence of each MetS type in the
balanced dataset. However, the reason could be the few predictors variables of the models. On the
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other hand, it is interesting to note that when SMOTE is used to balance a risk factor such as fast
plasma glucose in a dataset for traditional MetS diagnosis, minimal improvement in AROC levels
is achieved. For ANN, the difference is 73.50% compared to 73.25%. For RusBoost, the difference is
82.48% compared to 82.86% using the same variables AGE, WC, WHR, and SBP.

Each medical organization established its criteria to diagnose the MetS, which varies according to
the thresholds of risk factors. All the cited medical organizations have in common that for the diagnosis
of the MetS, doctors must check at least three of five risk factors. Therefore, it is a combination of five
risk factors, in which at least three are positive.

This article is an example of the conjunction of data science with the combinatorial analysis and
the simplification applications by the Quine–McCluskey algorithm for finding the segmentation of
the MetS. This approach achieved the diagnosis of the MetS types without using a blood sample
that is, using a non-invasive method. For example, for a patient with waist circumference, triglycerides,
and increased blood pressure, the system would predict only one type of MetS (WPT) to be active and
the other types to be inactive. Therefore, doctors can infer that the patient has MetS due to increased
triglycerides, blood pressure, and waist circumference to help focus on initial treatment and prevent
diabetes mellitus or stroke.

We found that each MetS type’s predictor variables are different from those of the traditional
MetS. These variables were used to configure each machine learning technique to diagnose each MetS
type without a blood test. We also found that the prevalence of the MetS type related to the risk factor
of fasting plasma glucose has a low rate. Therefore, we performed four approaches to improve the
performance indicators of the classifiers.

The first approach was to use artificial neural networks to diagnose each of the MetS types
working with previously selected variables, obtaining excellent AROC levels for the types of MetS
such as WPG, WPT, WPH, WGH, WTH, PGT, PGH, and PTH. However, the sensitivity levels were
low when diagnosing some MetS types indicating a high type 2 error level. The second approach
was to use an algorithm specialized in data imbalance to compensate for the sensitivity levels and the
specificity levels, thereby decreasing the ROC levels affecting four types of MetS WGT, WGH, WTH,
and GHT.

The third approach was to increase the sample with an oversampling algorithm such as SMOTE,
allowing evaluation of the ANN models with selected variables from these new data, finding an
increase in AROC levels. However, the sensitivity levels are relatively low in some types, and so,
the type 2 errors decreased relatively but are still high. The fourth approach was a mixture of using
an imbalanced data prediction algorithm RusBoost with the larger dataset. We found a significant
improvement in the levels of AROC for the MetS types levels and, at the same time, a considerable
increase in sensitivity and, therefore, decreased the type 2 error. This result favored its choice compared
to the neural networks for the types WPT, WPH, WPG, WGH, PGH, PGT, PTH. This approach resulted
in 7 types of MetS that can be diagnosed without using a blood test. However, the types WGH, WTH,
and GHT have a regular level to diagnose it, possibly due to the few predictors variables that can be
reflected in its power of discrimination.

Another interesting point is that the MetS types WPT, WPH, WPG, PGH, PGT, PTH have better
performance in the AROC than traditional MetS diagnosed using anthropometric variables using
ANN or RusBoost.

The result of this article demonstrates the existence of ten (10) types of MetS according to the
HMS criteria and their diagnostic using non-biochemical variables, such as the anthropometric and
clinical variables using the ANN and RusBoost. Moreover, it demonstrates that doctors can diagnose
traditional MetS using non-biochemical variables with classifiers. The results can vary according to
the prevalence of the MetS types present in the dataset.
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5. Conclusions

Healthcare professionals diagnose the Metabolic Syndrome through 5 factors, two of which they
get in a medical consultation: Waist Circumference level (W) and blood pressure level (P). However,
Triglyceride, HDL-C, and fasting plasma glucose levels (T, H, G) require a blood test. When we
analyzed the segmentation of the MetS in types, we observed that for the diagnosis, an algorithm
requires three risk factors, and we proved which risk factors generate that disease. Therefore, we
suggest that in the future, MetS studies should take them into account to know which MetS type a
patient has.

The present work uses information that doctors can collect from medical history and the
medical visit. Such data includes Previous Obesity Diagnosis (POD), Age, Height, Weight (WG),
Waist Circumference (WC), Hip Circumference (HC), Systolic and Diastolic Blood Pressure (SBP, DBP),
Body Fat Percentage (BFP), and Body Mass Index. We used an algorithm of sequential feature selection
and compared machine learning techniques such as ANN and RusBoost to diagnose the several types
of MetS without doing a blood test. This discovery helps in an early screening of one or several MetS
types through anthropometric and clinical data using non-invasive methods. From this point, doctors
can take relevant actions to change them through habits modification.

We performed four approaches to obtain the best results. The first approach was carried out using
clinical data from 615 subjects of selected variables to evaluate the ANN, obtaining excellent levels of
AROC in the WPG, WPH, WPT, WGH, WTH, PGT, PGH, and PTH MetS types. However, the sensitivity
levels were regular, presenting a considerable rate of type 2 errors due to the data imbalance.
The second approach used a classifier for imbalanced data such as RusBoost, which improved the
sensitivity levels to diagnose each MetS type, decreasing the type 2 error rate. However, the regular
AROC levels decreased particularly for the classifiers for the WGT, WGH, WTH, and GHT types.

The third approach was to use the SMOTE technique to balance the data, and in this way,
we achieved an improved performance of the ANN classifiers. However, in some classifiers,
the sensitivity levels were regularly presenting a considerable rate of type 2 errors. The fourth
approach was to use the balanced data and the RusBoost technique. This approach generated for
the MetS types WPT, WPH, WPG, WGH, PGH, PGT, and PTH the following excellent AROC levels:
89.20%, 91.49%, 85.36%, 71.08%, 84.20%, 78.39%, and 84.10%, respectively, and with high sensitivity
rates. The fourth approach obtained the best results for most MetS types, but for classifying the
traditional MetS, the third approach was the best.

In the future, we plan to test the framework to diagnose the MetS types using an ANN model
with ten output classification neurons (one for each type of MetS) as well as fuzzy logic, Bayesian
networks, and other machine learning techniques.
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
IEEE Institute of Electrical and Electronics Engineers
ACM Association for Computing Machinery
DBLP Digital Bibliography Library Project
GCP Good Clinical Practices
ICH Guide and the International Conference on Harmonization
WHO World Health Organization
NCEP ATP III National Cholesterol Education Programme Adult Treatment Panel III
EGIR European Group for the study of Insulin Resistance
IDF International Diabetes Federation
HMS Harmonized Metabolic Syndrome
MetS Metabolic Syndrome
MetSG Metabolic Syndrome General
CHD Coronary Heart Disease
IR Insulin Resistance
ICD International Classification of Diseases
OR Odds Ratio
CI Confidence Interval
SS Sensitivity
SP Specificity
FNR False Negative Rate
FPR False Positive Rate
AROC Area under Receiver Operating Characteristic Curve
WC Waist Circumference
BP Blood Pressure
HDL-C High-Density Lipoprotein Cholesterol
FPG Fasting Plasma Glucose
TG Triglycerides
WG Weight
HG Height
HC Hip Circumference
WHHR Waist to Hip ratio
WSR Waist to Stature
BMI Body Mass Index
BFP Body Fat Percentage
SBP Systole Blood Pressure
DBP Diastole Blood Pressure
SBPD Systole Blood Pressure Dichotomous
DBPD Diastole Blood Pressure Dichotomous
W Represents the normal(0) or raised(1) status of the dichotomous values of the WC
P Represents the normal(0) or raised(1) status of the dichotomous variable of the BP
G Represents the normal(0) or raised(1) status of the dichotomous variable of the FPG
H Represents the normal(0) or lowed(1) status of the dichotomous variable of the HDL-C
T Represents the normal(0) or raised(1) status of the dichotomous variable of the TG
ANN Artificial Neural Networks
SMOTE Synthetic Minority Oversampling Technique
PCLR Principal Component Logistic Regression
RUSBoost Random Undersampling Synthetic Minority Oversampling Technique
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Appendix A. Solution of Quine–McCluskey Algorithm to Minimize the MetS Types

The Quine–McCluskey algorithm aims to minimize the logical sum of products, which are the
MetS types that we will call implicants. If the MetS type is a combination of 5 variables, it is represented
in the algorithm as an implicant of order 0. If it is a combination of 4 variables, it would be of order 1,
and if it is a combination of 3 variables, it would be of order 2.

1. We select the implicants of order 0 as show Table A1 that were obtained from the positive logic
truth table as shown Table 3.

2. All those implicants of order 0, where only one variable has changed its state are grouped
together. The group is obtained by eliminating the changed variable of those implicants of order
1. An example is the implicant of order 0, number 7 (W’P’GHT) and number 15 (W’PGHT),
which are grouped together, resulting in W’GHT, which is of order 1.

3. Then the implicants of order 1, where only one variable has changed its state are grouped together,
obtained by eliminating changed variable. For example, the implicants 7, 15 (W’GHT) and 23, 31
(WGHT) (both implicants of order 1) are grouped together, resulting in GHT, which is of order 2.

4. This process is carried out on all the implicants of order 0, until all implicants are minimized as
shown Equation (6)

MetSHMS = WPT + WPH + WPG + WGT + WGH + WTH + PGT + PGH + PHT + GHT

Table A1. Implicants in the minimization of the MetS types.

IMPLICANTS

n Order 0 * Order 1 Order 2

7 W’P’GHT 7, 15 W’GHT 7, 15, 23, 31 GHT

11 W’PG’HT 7, 23 P’GHT 11, 15, 27, 31 PHT

13 W’PGH’T 11, 2 W’PHT 13, 15, 29, 31 PGT

14 W’PGHT’ 11, 3 PG’HT 14, 15, 30, 31 PGH

15 W’PGHT 13, 2 W’PGT 19, 23, 27, 31 WHT

19 WP’G’HT 3, 29 PGH’T 21, 23, 29, 31 WGT

21 WP’GH’T 14, 2 W’PGH 22, 23, 30, 31 WGH

22 WP’GHT’ 14, 30 PGHT’ 25, 27, 30, 31 WPT

23 WP’GHT 15, 31 PGHT 26, 27, 30, 31 WPH

25 WPG’H’T 19, 23 WP’HT 28, 29, 30, 31 WPG

26 WPG’HT’ 19, 27 WG’HT

27 WPG’HT 21, 23 WP’GT

28 WPGH’T’ 21, 29 WGH’T

29 WPGH’T 22, 23 WP’GH

30 WPGHT’ 22, 30 WGHT’

31 WPGHT 23, 31 WGHT

25, 3 WPG’T

25, 29 WPH’T

26, 27 WPG’H
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Table A1. Cont.

IMPLICANTS

n Order 0 * Order 1 Order 2

26, 30 WPHT’

27, 31 WPHT

28, 29 WPGH’

28, 30 WPGT’

29, 31 WPGT

30, 31 WPGH

* The symbol apostrophe (’) means that the variable is negative.

Appendix B

Algorithm A1 RUSBoost Algorithm(Adapted from [65]).
Given: Set S of examples (x1, y1),...,(xm, ym) with minority class
Weak learner (decision tree), WeakLearn
Number of iterations, T
Desired percentage of total instances to be represented by the minority class, N

1: Initialize D1(i) = 1
m for all i

2: for t do = 1,2,...,T
3: Create temporary training dataset S

′
t with distribution D

′
t using random undersampling

4: Call WeakLearn, providing it with examples S
′
t and their weights D

′
t.

5: Get back a hypothesis ht: XxY→ [0,1].
6: Calculate a pseudo-loss (for S and Dt):
7:

εt = ∑
(i,y):yi 6=y

Dt(i)(1− ht(xi, yi) + ht(xi, y))

8: Calculate the weight update parameter:
9:

αt =
εt

1− εt

10: Update Dt:
11:

Dt+1(i) = Dt(i)α
1
2 (1+ht(xi ,yi)−ht(xi ,y:y 6=yi))
t

12: Normalize Dt+1: Let Zt = ∑i Dt+1(i)
13:

Dt+1(i) =
Dt+1(i)

Zt

14: end for
15: Output the final hypothesis:

H(x) = argmax
yεY

T

∑
t=1

ht(x, y)log
1
αt
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