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Abstract: In recent years, with the development of Web2.0, enterprises, government agencies,
and traditional news media, which have been positively influenced by opinion leaders, have been
dedicated to understanding leaders’ opinions on the web in order to seek convergence. Specifically,
with the increase of environmental awareness, the introduction of green energy and carbon reduction
technology has become an important issue. Consequently, studies identifying opinion leaders and
followers who are interested in green energy and low carbon have become important. This study
aims to find a solution that can identify the characteristics of opinion leaders and followers that can
be widely used, which will help certain public policies or issues to be more effectively disseminated
in the future. To model the characteristics of opinion leaders and their influence on followers,
this study uses a dual matrix. The interaction patterns are recognized among opinion leaders and
followers, with the aim of developing public policy to promote green energy and low carbon emissions.
A case is studied to validate the superiority of the proposed solution approach. With the proposed
approach, a (business) organization can identify and access opinion leaders and their followers.
Through communication, these organizations can absorb strain and preserve functions despite the
presence of adversity. This study also clearly demonstrates its contribution and novelty through
comparisons with the existing alternative method.

Keywords: green energy and low carbon; opinion leaders; followers; social media; matrix method;
intelligent systems

1. Introduction

With the rise of communication technology, people are utilizing platforms such as content
sharing sites, blogs, social networking, and wikis to create, modify, share, and discuss Internet
content. Social media provides flexible platforms that play key roles in energizing collective action in
movements [1]. This represents the social media phenomenon, which can significantly impact society
and industry, e.g., firms’ reputations, sales, and even survival [2]. Within the discussions on social
media, certain individuals influence others and thus emerge as opinion leaders. Opinion leaders have
great impacts and influence on social media. Organizations can take advantage of these predispositions
through marketing research and public relations, nurturing opinion leaders or advocates, placing and
creating advertisements, developing new products and lowering the cost-to-serve [3]. On the Internet,
the power of these leaders is increasing larger and sequentially influencing entire societies through
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calls to protest, promotion of policy and decision-making, which was defined as the fifth right in the
“Towards a Civil Society” seminar [4].

The world must confront the energy crisis and air pollution. Discussions about energy issues are
increasing. These discussions range from nuclear energy, thermal power, hydropower, and other forms
of green energy and low carbon technology, including wind, solar, tidal, and biomass geothermal
energy issues. In Taiwan, whenever an energy crisis occurs, energy charges increase. Anti-nuclear
positions and other energy issues are discussed broadly. Therefore, the Taiwan government tries to
understand people’s needs and questions.

On the Internet, the roles of opinion leaders and followers in the formation of these issues cannot
be neglected. According to the “theory of two-step flow” [5] and Rosen’s definition of opinion leaders’
characteristics, “social media initially pass the information to opinion leaders, then opinion leaders
spread the information to followers and influence their attitudes” [6]. Thus, when followers follow
opinion leaders, the formers’ judgments and attitudes will be influenced and changed by opinion
leaders. This study defines opinion leaders as people or social media with high social status who
are able to influence followers. This study defines followers as the users who follow certain issues,
publish related discussions and add their own ideas. They spread, repost or blindly follow the
behaviors of opinion leaders.

Most previous research of opinion leaders focuses on the commercial domain rather than on
nonprofit-related policies such as energy policy [7]. In the promotion of many public policies through
online postings, it is difficult to clearly identify opinion leaders and followers, which greatly reduces
the effectiveness of communication. Based on the community attributes of opinion leaders and whether
they can successfully resonate, this study aims at providing a method to try to identify who are
opinion leaders or who are likely to become opinion leaders in social media, and who are followers.
Relational matrix analysis is used to represent the relationship between opinion leaders and followers
in social media and to identify the collection of opinion leaders and potential opinion leaders.

Furthermore, previous studies [8] have used quantitative methods of analysis. One example is the
SuperedgeRank algorithm. However, this algorithm not only has difficulty identifying potential opinion
leaders effectively but also neglects how opinion leaders influence followers and how relationships
between opinion leaders and followers are characterized. It also ignores the increasingly important
role played by intelligent systems such as algorithms.

Although the literature on green energy is rapidly increasing, many studies suggest that this
problem needs to be dealt with by considering a broader perspective [9]. This study not only examines
the issue from the perspective of intelligent systems such as algorithms but also identifies the roles
of opinion leaders and followers on social media in relation to the introduction of green energy and
carbon reduction technology, with the aim of developing public policy to promote green energy
and low carbon emissions. This study is novel not only because it takes quantitative factors and
tradition clustering approaches into account but because it also analyzes posts, poster characteristics
and their interactive relationships on social media. This study reviews relevant literature in Section 2.
In Section 3, we propose a method to identify opinion leaders and their followers based on their
interactions on social networks. The interaction patterns are also identified. An energy case is studied
in Section 4 to validate the proposed solution approach and enhance communication effectiveness
between government policymakers and people’s desires. The discussion is summarized in Section 5,
and Section 6 concludes this study.

This research contributes to finding a solution to easily identify the characteristics of opinion
leaders and followers in the case of online posts related to green energy and low-carbon policies.
Once certain public policies need to be effectively disseminated, they can be widely used. Using the
same model and the solution approach, the results of this study can be extended from the green energy
low carbon issue to other social issues. Furthermore, this study provides a new perspective to deal with
the effective identification of opinion leaders and followers, at the same time, promotes the “theory of
two-step flow” to add another research perspective in the academic field.
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2. Literature Review

2.1. Green Energy and Low Carbon

Global warming, unexpected climate change, dwindling energy resources and unprecedented
amounts of air pollution have become critical problems. The United Nations’ 2030 Sustainable
Development Goals show that a sustainable modern electricity grid [10], reduction of CO2 emissions [11]
and the carbon footprint of human mobility to a sustainable level [12] etc., are key parts. In addition,
exhaustion of fossil fuel is viewed as a big challenge of human development [13] since energy is
an expensive resource that is becoming more scarce with increasing population and demand [14].
Green energy could help governments reduce the dependency on energy importation, improve the
variety of production resources and advance sustainable environmental development. Moreover,
the usage of rich green energy could benefit economies significantly [15].

In the past, studies of green energy and low carbon have focused on issues of energy itself and
energy systems, for example, integration of energy systems [16], reliability of the power distribution
system [17], uptake of biomass energy [18], and so on. Few studies have focused on social opinions
about green energy and low carbon. In recent years, due to awareness of the environment, the public
has started to care more about the environment and quality of life [19]. Social media has strengthened
community among people and emerged as a platform to spread messages quickly and powerfully.
In the era of Web 2.0, massive public opinion is increasingly generated on the Internet [20]. Therefore,
the study of the role of social media in green energy and low carbon social issues is very important.

2.2. Opinion Leaders

In the era of the Internet, opinion leaders enhance content sharing. In fact, almost all of the content
is generated by opinion leaders (the 90–91% law) [21]. What makes opinion leaders so important
on social networks is their ability to informally influence others’ attitudes and behaviors [22–25].
Opinion leaders usually have access to far more information on a certain topic and have professional
experience with the topic. Rosen defined the characteristics of opinion leaders proposed the acronym
ACTIVE. ACTIVE stands for the six characters of opinion leaders: ahead in adoption, connected,
travelers, information-hungry, vocal, and exposed to the media [6].

In a recent qualitative survey carried out through focus groups, Katz and Lazarsfeld proposed the
“theory of two-step flow” in 1995 and pointed out that opinion leaders are situated between social
media and the majority of people. The information first reaches the opinion leaders or influencers [26],
who then introduce it to the wider population [5]. Followers are those who are affected and change
their behaviors and attitudes when receiving the information [27]. The followers are enormously
influenced by opinion leaders in terms of changing their attitudes and behaviors [25].

Based on the above study, we elaborate on the attributes of opinion leaders as follows: Their life
experience and understanding of knowledge are rich and thorough and a majority of them are
highly educated. Moreover, they have strong social skills, strong connections with the broad masses,
and good reputations due to their professionalism and knowledge. They have great influence and
appealing power. They exhibit sensitivity to information, willingness to accept new things and an
innovative spirit.

2.3. Opinion Leaders Identification

Many theories have been put forward about social networks, but few address the issue of opinion
leader identification [28]. According to a previous literature review, opinion leaders are simply
determined based on some visible user activities, and other factors that allow a user to become an
opinion leader are ignored [28,29]. Studies of Internet opinion leaders have also mainly focused
on the role of Internet opinion leaders in spreading the news and in the Internet world of word
mouth marketing [23]. Consensus has not yet been reached in the analysis of Internet opinion
leaders. Few efforts have been taken to create a computer-based model to identify and analyze the
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opinion leaders in an Internet community, and the studies that have been undertaken on this issue
have failed to reach an in-depth level [30]. At present, studies related to the TwitterRank algorithm
based on PageRank [29] and the contribution of information to InfluenceRank [31] and weighted
Page-Rank [32] make use of the network construction of user interaction, but they neglect the users’
inherent features [33].

In addition, from the perspective of data mining, the identification of opinion leaders is a
cluster problem. However, the aforementioned studies consider the relationships of people to be
a social network. Engagement is used as an effective degree to measure user interaction with an
organization. Basic interactions include commenting on contents, sharing contents, or “liking” or
“favoriting” content. A core KPI for social media is that engagement is high, as this would indicate
that organizations are producing content that users find interesting enough to spend additional time
on [34]. Unfortunately, when applying the cluster problem to social networks, previous studies have
only taken quantitative factors, and traditional clustering approaches into account, e.g., support vector
machines [35], k-means [36], partitioning around medoids [37], fuzzy c-means [38], and so on have
been used to resolve quantitative clusters. However, qualitative characteristics are not yet considered,
and only static data have been analyzed. To study the qualitative characteristics of opinion leaders
and the impact of opinion leaders on followers, [39] evaluates whether every speaker in social media
satisfies the characteristics of an opinion leader. By observing the relational matrix, the interacting
relations between users in social media are analyzed, and opinion leaders and followers are identified.
However, there are no theoretical background axioms implied in [39], specifically from the perspective
of communication to validate the results.

2.4. Opinion Leaders Identification Algorithms

Ma and Liu [40] used the SuperedgeRank algorithm to analyze the attributes of three seed networks
and identify opinion leaders on the Fukushima nuclear issue. In another study, Jiang et al. [41] designed
and implemented a BBS opinion leader mining system based on an improved PageRank algorithm
using MapReduce. Ziyi et al. [30] adopted the core algorithm of the Internet searching–PageRank
model and, by combining the analysis of the influence of linguistic data and sentimental preference,
put forward a method to identify Internet opinion leaders; they also verified the method by carrying
out an empirical study. Cheng et al. [42] combined influence with sentimental analysis based on the
content of posts and filtered opinion leaders by combining the PR values of the PageRank algorithm
and recognition degree, abbreviating the IS Rank algorithm. Deng et al. [43] constructed a SINA
Micro Blog APIs based Micro Blog crawling and analysis tool, and a node betweenness approximation
computation method was proposed, offering better accuracy and less running time to detect core
opinion leaders on Micro Blog graphs.

PageRank is an excellent sorting algorithm, but its running speed decreases significantly with the
increase of the number of data nodes. Jing and Lizhen [33] proposed a hybrid data mining approach
based on user features and interaction networks, which includes three parts: a way to analyze users’
authority, activity and influence, a way to consider the orientation of sentiment in an interaction
network and a combined method based on the HITS algorithm for identifying microblog opinion
leaders [33]. Chu et al. [44] researched social networks to access the influence of tobacco opinion
leaders on followers and found that followers are a vulnerable group. They are young and low
educated. Followers are easily influenced by opinion leaders. Therefore, anti-smoking education to
stay away from tobacco can educate them on social media. Obviously, opinion leaders on the Internet
have considerable influence on followers, and opinion leaders are often used in marketing in the
e-commerce industry. The research of Lin et al. [45] found that opinion leaders can use their influence
to act as important promoters of products and services. It is recommended that companies or corporate
managers choose to cooperate with opinion leaders of a certain type of forum to promote products
or services. What is the impact of the levels of followers’ trust in opinion leaders on the resulting
influence? Zhao et al. [46] used opinion dynamics theory to study the influence of trust in opinion
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leaders. His research found that followers’ trust in opinion leaders determines opinion leader influence.
It is suggested that if the communication effect of e-commerce is pursued, the key premise can increase
the trust of opinion leaders.

Not only have many studies investigated opinion leaders in the e-commerce field, but the
role and function of opinion leaders have attracted attention in politics and the public domain.
Aleahmad et al. [43] examined the political field by proposing the effective OLfinder algorithm.
The researchers found that this algorithm can not only find opinion leaders in social networks but
also calculate their popularity. Many people are curious about why opinion leaders like to play the
role of opinion leaders. Winter et al. [47] examined people who disseminate opinions about politics or
public affairs on the Internet and identified these people as opinion leaders who try to influence the
psychological motivations and personality characteristics of followers. This study found that opinion
leaders have strong psychological motivations to actively express themselves and persuade others,
making them like to play the role of opinion leaders. In addition, in social network analysis, centrality
methods have been applied to measure the importance of nodes in a network whereby nodes with
higher centrality can influence others more significantly [48,49].

All in all, past relevant research either used a certain social measurement method based on
interview self-reports or questionnaire surveys or used quantitative clustering techniques to identify
opinion leaders. Few studies have actually investigated online posts to identify opinion leaders and the
social patterns of interaction between opinion leaders and followers. Thus, it is important to propose a
method to analyze posts, posters’ characteristics and their interactive relationships in social media.

3. Methodology

3.1. Modeling Interaction between Opinion Leaders and Followers

Between users, matrix M is a relational matrix.

M = [T|I] (1)

We set the row index as i and the column index as j in the matrix. The n users in the set are
represented by C = {1 . . . n}. In the matrix T, the elements are composed of counts of responses and
being responded to. Additionally, between users and social community support level, the elements in
the matrix I are the influence factors

Matrix T shows us the counts of both responses and being responded to between n users. T_ij
refers to counts of responses of useri_i to userj_j where i , j. When T_ij refers to counts of total posts of
user_i where i = j. i refers to the index of the users who responds to other user’s opinions, and j refers
to the index of the users whose opinions are responded to.

Matrix I indicates the power of users to influence and be influenced. I_ij refers to the influence
of user_i on user_j where i , j, i refers to the index of a user who influences other people, and j refers
to the index of a user who is influenced by others. The influence power can be classified into three
different patterns, including job position, professional knowledge and social community support
level [39]. Each criterion has three levels, no influence (NI), general influence (GI), and high influence
(HI) (Table 1). For a higher job title with more professional knowledge and a high social community
support level, we define influence power as high influence (HI). For a general job title with popular
professional knowledge and neutral social community support level, the overall influence power is
general (GI). If the user has no job and inaccurate professional knowledge or social community support,
we define that the influence level as having no influence (NI). However, some users have privacy
settings or discuss issues anonymously, so our study could not gather their background information.
Fortunately, the proposed approach can serve as a flexible model with the missing part left blank.
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Table 1. Influence power table (NI: No Influence, GI: General Influence, HI: High Influence.).

Social Status

− General +

Professional
knowledge

Wrong knowledge NI NI NI Low social
community support

Social community
SupportPopular knowledge NI NI GI Low social

community support

Professional knowledge NI GI GI Low social
community support

Professional
knowledge

Wrong knowledge NI NI GI Neutral social
community support

Social community
SupportPopular knowledge NI GI GI Neutral social

community support

Professional knowledge GI GI HI Neutral social
community support

Professional
knowledge

Wrong knowledge NI GI HI High social
community support

Social community
SupportPopular knowledge GI HI HI High social

community support

Professional knowledge HI HI HI High social
community support

In matrix I, I_ij refers to a user’s social community support level where i = j. In this study,
social community support is divided into three levels. These three levels are relatively well-known,
and well-followed social media that receives good attention are which are classified as having high
social community support (H). Less-followed, less-known social media with low attention is classified
as low (L). However, we were unable to gather users’ social community support levels because of some
users’ anonymous discussions or privacy settings. Our study defines the social community support
level of these users as missing (O).

A non–follower, a user with a negative speech count, is defined in this study. Meanwhile,
when contents are responded to negatively, the user is listed as a non-opinion leader. The relationship
between opinion leaders and followers refers to a mutual relationship between users. However,
one user may not respond to or express ideas to others’ speech content on social media. One opinion
leader may not be an opinion leader of all users. Therefore, if there is no relationship between users,
we cannot distinguish whether they are opinion leaders or followers. In this study, the groups of
opinion leaders and followers are be judged base on interaction. The users with mutual influence
are classified as one group to analyze whether there is an opinion leader and a follower in the group.
If there is no mutual influence, no group is formed.

3.2. Opinion Leaders and Followers’ Social Patterns

Six axioms are proposed to classify opinion leaders, influencers, followers and interaction patterns.
Notations are presented in Table 2.

Table 2. Notations table.

Notations:

Nrsp : The total number of responses in matrix T.
Nrsp : The average total number of responses in matrix T.
Ng : The total number of members that respond in group g.
Ng : The average total number of members’ responses in group g.
T(USi) : The number of user′i s posts, the total counts of columni in matrix g.
T(URi) : The number of user′i s responses, the total counts of rowi in matrix T.
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Table 2. Cont.

Notations:

USIi j : The influence of user′i s speech to user ji, where i is the index of the column, and j is the index of the row.
URIi j : The influence of user′i s responses from user j, where j is the index of the column and I is the index of the
row.
SIi{INFLUENCE} : The number of user′i s influences (NI, GI, HI).
SIol : Number of the opinion leaders’ posts in matrix I.
SI f : Number of followers’ posts in matrix I.
SIol

{
in f luence power

}
: The number of opinion leaders’ influences (NI, GI, HI).

SI f {NI} : The number of opinion leaders’ influences (NI, GI, HI).
UNIi: The number of user′i s posts with NI influence power and responses in matrix T are zero.

The axioms formulated by the systematic rolling analysis of big data over the years.
Experts determine the criteria and select thresholds for them, for example, the positive or negative
degree of the counts of responses to and responded to. The following axioms are proposed to recognize
opinion leaders, influencers, and followers.

Axiom1—Opinion leader.
If Nrsp < URi and URi > 2×Ng and UNI < 1/2×Ng, then the useri is an opinion leader.
To be an opinion leader, useri’s (URi) response total must be higher than the average total response

(Nrsp), and useri must have more than twice the number of responses in the group (Ng). Moreover,
user′i s NI speech and the count in matrix T(USi) less than 1 cannot be more than half of the total number
of members’ responses in group g.

Axiom 2—Influencer.
If Ng < URi < 2×Ng and UNI < Ng, then useri is an influencer. If the user′i s responses (URi) are

more than the average number of total responses in the group and lower than twice the average number
of total responses in the group. Moreover, user′i s speech which is NI and the count in matrix T(USi)
which is less than 1 cannot more than the number of the member which is in the group. Influencers
also have the power to influence others and have the potential to become opinion leaders. Hence,
this study also offers a way to find influencers.

Axiom 3—Followers.
If URi > 0, then the user is a follower.
A follower needs to support or agree with someone, so the useri must have a positive count in

matrix T. In other words, the user in rowi is the follower’s leader.
Three social community patterns are classified: In the criterion pattern, the opinion leaders broadly

influencing many followers usually obtain high social community support and posts professionally.
The criterion social community, the most common pattern. In the argument pattern, the pattern’s
emergence is caused by the discussion space provided for users of social community platforms. Users can
give specific advice to influence each other or influence other users. The bandwagon pattern arises when
followers follow closely due to opinion leaders’ personal charisma. In this pattern, followers usually do
not care whether the content posted by opinion leaders is correct.

The following axioms are used to define three patterns.
Axiom 4—Criterion pattern.
According to group_k with opinion leaders in set_ol, (1) if the number of posts influencing followers

who post to set_ol in group_k is more than half of the number (≥1/2 × SI_f ), and (2) if the number of
posts influencing opinions directed to followers in group_k is more than half of the number (SI_ol
{HI,GI} ≥ 1/2 × SI_ol), then group_k is a criterion pattern.

According to the criterion pattern, an enterprise can promote its products effectively, and the
government can sharp public opinion in favor of a particular policy by utilizing the function of opinion
leaders. Furthermore, finding opinion leaders and tracking them over the long term can prevent
an explosion of potential issues. In the criterion pattern, the opinion leader is very professional.
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If a government or enterprise wants to negotiate or cooperate with them, the contractor must also
be professional.

Axiom 5—Argument pattern.
After grouping with the CI Algorithm, we find different groups. According to group_k with

opinion leaders in set_ol, (1) if the number of posts influencing {HI,GI} followers who post to set_ol in
group_k is more than half of the number (if SI_f {GI,HI} ≥ 1/2 × SI_f ) and (2) if the number of posts
influencing {HI, GI} opinions directed to followers in group_k is more than half of the number (SI_ol
{HI,GI} ≥ 1/2 × SI_ol), then we recognize that group_k can be characterized as an argument pattern.

On the basis of the argument pattern, the character of the interaction between opinion leaders and
followers is not significant; consequently, the cost of marketing is high and may even have little impact
on promotion. Moreover, in the argument pattern, the viewpoints are diverse. Thus, it is desirable to
provide a platform and sufficient information and domain knowledge for uses to engage in dialog
with each other.

Axiom 6—Bandwagon pattern.
After grouping with the CI Algorithm, then we have different groups. According to group_k

with opinion leaders in set_ol, (1) if the number of posts influencing {NI} followers who post to set_ol
in group_k is more than half of the number (if SI_f {NI} ≥ 1/2 × SI_f ) and (2) if the number of posts
influencing {NI} opinions directed at followers in group_k is more than half of the number (SI_ol {NI}
>1/2 × SI_ol), then we recognize that group_k can be characterized as a bandwagon pattern.

According to the bandwagon pattern, opinion leaders and followers are not professional in most
cases. Enterprises and governments can utilize social media to promote their products and public
policy effectively by enhancing the roles of these opinion leaders and followers. If the government or
an enterprise wants to negotiate or cooperate with them, the contactors need not be professional but
must be a decision-maker who can promise to provide resources.

3.3. Problem with Identification of Opinion Leaders and Followers

The problem of identifying opinion leaders and followers is formulated as follows:
Decompose a user-user interaction matrix into mutually separable submatrices (modules) with

(1) the minimum number of non-empty high-value entries outside the block-diagonal matrix T,
and (2) the maximum number of strongly desired entries (HI) and the minimum number of strongly
undesired entries (NI) included in the submatrices of the block diagonal matrix I.

Subject to the following constraints:
Constraint C1: Empty groups of users are allowed, and
Constraint C2: The number of users in a group cannot exceed the upper bound Nu.
Constraint C3: Satisfy the following assumptions:

(1) Continuous posts are defined as one post.
(2) Users who respond negatively to posts cannot be regarded as followers.
(3) The content of the post and the level of social community support determine the influence of the

user’s post.
(4) Expert posts are prioritized as reasonable posts.
(5) If users have a low influence on each other, judge it as “NI”.
(6) If users have a great influence on each other, judge it as “HI”.

In matrix T, we count input post, responses and being responded to. In the matrix I, (1) input
the highest influence power HI. Moreover, (2) input the lowest influence power NI. Combined with
observation results, identify the opinion leader set and follower set.

3.4. Identification of Opinion Leader and Follower

In this study, the relationship between opinion leaders and followers is the mutual relationship
between users. When a user satisfies the characteristics of opinion leaders, our study defines the user
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as an opinion leader. Followers will change their own ideas and attitudes according to opinion leaders’
characteristics, including social status, accuracy of post contents and social community support level.
The algorithm is described as follows:

Step I. Collect data from social media, such as users, posts, and response information.
Step II. Compute the counts of total posts of useri in matrix [Tii]
Step III. For all users, put the responses which useri gives to user j in matrix [Tij] until there are no

responses from useri to other users.
Step IV. If colomni and rowi in matrix T are NULL then remove the meaningless useri by deleting

rowi and colomni in matrix T and I until there are no meaningless useri
Step V. According to the data of social media, matrix T and social community support level,

the social community support level marked with useri at [Iii].
Step VI. For all users i and j, according to expert judgment, assign useri the influence power level

[Iij] of user j.
Step VII. If [T(i−1)(i−1)] > [Tii], exchange the columns of useri and useri−1. until there is no [Tii] < [T(i−1)(i−1)]

in matrix T.
Step VIII. The CI algorithm is applied to group users.
Step IX. If [Iij] is not NULL, then check whether the useri and user j is in the same group or not;

if they are not in the same group, then put them in the same group matrix until all users in the matrix I
have been checked.

Step X. In each group, sum up all positive responses to Nrsp and compute the average Nrsp.
Step XI. Count the responses of useri by

∑n
j=1

[
Ti j

]
and posts of useri by

∑n
i=1

[
Ti j

]
. Additionally,

count the influence of each useri, If useri satisfies Axiom 1, then useri is identified as an opinion leader.
If useri satisfies Axiom 2, then useri is identified as an influencer. If useri satisfies Axiom 3, then useri is
identified as a follower. Continue until all users in matrix T have been checked.

Step XII. Check each group matrix. Count all opinion leaders’ [Ii j] and followers’ [Ii j]. Recognize the
pattern based on Axioms 4–6.

Step XIII. When there are positive responses or influence between users, we classify these users in
the same group.

4. Case Study

The ABC network platform is taken as an example to describe the application of our research in
practice. The ABC network platform is a discussion platform created by the government to promote
community communication. This platform was created as part of a public policy proposal to improve
policy communication and make policy public.

This case study is taken from the National Energy Conference organized by the Energy Bureau
of Taiwan’s Ministry of Economic Affairs. However, there are still many disagreements when it
comes to choosing opinions due to value divergence. To discuss and clarify issues with the public,
the proposition, “Where does future electric power come from?” is open on the policy consultant
forum (People Talk), with three sub-issue forums including, ‘environment low carbon sustainable
development’, ‘stable supply and open source’ and ‘reduce expenditures effectively’. In particular,
‘stable supply and open source’ is the focus of this case study.

The proposed solution approach is applied in this case.
Step I. Collect materials: Judging by the forum (posts, fan pages) on social media about green

energy and low carbon, we collected materials, including text and response information. This study
collected materials from users’ discussion contents related to the “stable supply” issue on the ABC
network platform between May 2019 and the end of 2019. The data collection is implemented with the
Python-Jieba crawler program, which is particularly suitable for Chinese text analysis automatically.
The collected materials are listed below: Post users: 36; total posts: 205 (total posts have been
deducted from the number of administrator responses and consecutive posts); effective responses: 61;
effective count of being responded to 47.
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Step II. Input matrix elements: Input elements in matrix T. The elements include general posts,
counts of responses and being responded to as judged by experts.

Step III. Remove meaningless users: Remove users whose posts are never responded to.
Step IV. Tag the user’s category: Input social community support
Step V. Influence analysis: We analyze a user’s influence by comparing the levels of influence

power according to three characteristics and input the influence into the matrix I.
Step VI. If the count of users’ posts, responses, and influence power, reaches a certain level of

relevance, then move forward. If the users have greater counts of responses or respondents, list them
in front. (Figure 1).

Figure 1. Matrix element conversion. Note1: the criterion of influence power: NI = no influence;
GI = general influence; HI = high influence. Note2: The level of social community support: H: high
social community support; L: low social community support; O: missing social community support.

Step VII. According to matrix I and T based on Equation (1), group the users by their relationships.
Group A {1, 2, 3, 4, 5, 6, 18, 20, 21, 24}; Group B {2, 16, 24, 26, 27, 34, 36}; Group C {17, 18, 19}; Group D
{19, 20, 21, 36}; Group E {2, 27, 28, 29, 30, 36}; Group F {7, 20, 26}; Group G {2, 9, 27, 31, 34}; Group H
{7, 27}; Group I {7, 8, 15}; Group J {21, 22, 23}; Group K {25, 26}; Group L {34, 35}.

Step VIII. Identification: Determine the interaction between users, followers, and opinion leaders,
according to the definition of each group of opinion leaders.

In Group A, opinion leader 1 is recognized by Axiom 1, and the influencers are Users 3 and 5.
This group is identified as an argument group based on Axiom 5.

In Group B, User 16′s post contents are usually meaningless. According to Axiom 1, User 16 is
not an opinion leader. Moreover, the group does not belong to any pattern.

Group C is an argument pattern. Users 18 and 19 are influencers. In this pattern, no opinion
leaders and followers are identified. The influencers influence each other without focusing on any
particular key person.

In group D, the response of User 19 has a great influence on Users 20 and 21. However, the influence
of the posts responded to by Users 20 and 21 is not great. There is a discussion relationship between
Users 19 and 20, so it is a social pattern.

In Group E, the post contents of User 36 are valuable. However, other users’ responses are not
good. Thus, User 36 is an opposing opinion leader.
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In Group F, according to Axiom 6, User 26 is an influencer, and the group represents an argument
pattern. User 20 is the follower of User 26.

In Group G, Users 27 and 34 are the influencers, and it is a bandwagon pattern. Moreover, User 2
is the follower.

In Group H, Users 27 and 7 have a discussion relationship, and both of them are influencers.
In Group I, the social community support level of the group is high. They should be opinion leaders,

in theory. However, in this case, study, since they do not play the role of opinion leaders, they cannot
be recognized as opinion leaders. User 7 is an opinion leader, and this is an argument pattern.

In Group J, there are no opinion leaders or followers. User 21 is an influencer.
In Group K, User 26 is opposed to the opinions of User 25. There are no opinion leaders or

followers in this group.
Group L: In this group, there are no opinion leaders or followers.
According to the summary of group analysis, Users 1 and 36 are obviously opinion leaders.

The five groups A, C, D, F, and H can all be characterized as argument patterns, which shows that in
the forum, most post contents influence other users through discussion.

The case was also analyzed with a traditional network approach, i.e., the Ward method, named
after its creator, focuses on the allocation of profiles to groups equally. Ward [50] pointed out that
grouping in this manner makes it easier to consider and understand relations in large collections.
The principle of this method is to minimize heterogeneity, and the important goal is to find the greatest
similarity. The comparison between the proposed approach and Ward’s approach is shown in Table 3.
The results show that Users 1, 7, 36 are identified as opinion leaders. However, User 19 has not been
identified through the traditional method due to the threshold.

Table 3. Analysis results.

The Proposed Approach Ward’s Approach

Opinion leader 1,7,19,36 1,7,36

Influencer 18,24,20,21,22,27 N/A

Leader/lollowers

1 18,24,21,3,5,6,20 1 18,24,21,3,5,6,20
7 8,15,20,27 7 8,15,20,27

19 8,15,20 36 20,27,28
36 20,27,28

Pattern
Criterion D, E

N/Aargument A, C, F, H, I
bandwagon G

The identification of opinion leaders by Ward’s method only identifies opinion leaders who
participate in the whole conversation. However, in the proposed approach, this study uses two
identification methods: the whole conversation and group conversation. The latter can clarify which
user is the group’s opinion leader. In addition, the proposed approach can discover different patterns.
Although the traditional network approach of Ward’s is considered to be the best one among the
hierarchical clustering methods [51–53], it cannot identify these patterns.

Through the perception of social community patterns among users, this study successfully
distinguished opinion leader and defined social patterns in the complex social communities,
which contains highly controversial users and many of them are anonymous, where few persons are
involved in the discussion and users’ support level could not be obtained because users disagree with
each other.

After identifying opinion leaders and followers, in a criterion pattern, opinion leaders have
a higher degree of professionalism than followers. In that case, if green energy and low-carbon
related policies are to be disseminated through opinion leaders, it is necessary to send personnel
with a certain degree of professionalism. After contacting and negotiating with them, you must
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first obtain the approval of the opinion leaders before you can persuade them to influence followers
through their platforms or social media. It is expected that they will achieve rapid dissemination,
higher dissemination effect, and avoid costly but ineffective dissemination. In addition, a follower may
also become another opinion leader, generating multiple diffusion of innovations.

Second, in the argument pattern, due to the comparably equal status between opinion leaders
and followers, issues are quite diverse, and it is not easy to focus on specific issues. If opinion leaders
wanted to disseminate relevant policies on energy conservation and low carbon to influence followers,
the dissemination effect would be poor. Therefore, in order to make the issue of green energy and
low-carbon attract more attention, opinion leaders can package the issue into lifestyles and features,
thereby achieving a higher diffusion effect (Diffusion of innovations) on followers.

In addition, in the bandwagon pattern, because opinion leaders and followers are less professional,
they are more vulnerable to each other. In order to disseminate green energy and low-carbon policies,
policies can be packaged as simple, interesting or lifestyle issues, while social media or platforms are
often used by opinion leaders or followers to achieve better diffusion of innovations.

5. Discussion

In this study, three interactive patterns and their characteristics are identified, which can help
how to find opinion leaders more effectively and grasp the characteristics of opinion leaders and
followers when want to spread (Diffusion of innovation) new policies or marketing new products.
Opinion leaders and followers both have different levels of knowledge, social community support,
and influence power. Therefore, this study summarizes the interactions on social media into three
patterns, and the characteristics of three patterns have also been explored. Furthermore, based on the
characteristics of users in these patterns, it can be used to provide opinion leaders with specific and
clear topics/issues to influence their followers, thereby obtaining effective dissemination or commercial
marketing purposes in the green energy domain.

In addition, the results of this study can also be applied to the political dissemination of democratic
elections or the shaping of the opinion climate, which can more efficiently lead the electoral issues and
win elections. In other words, the issues or political opinions that candidates are trying to market can
be differentiated based on different communication modes so that the information can be segmented,
and the impact of effective agenda-setting goals can be achieved. This study not only has the possibility
of expanding and deeper research, but it is also the relative value of this research.

Most previous studies used different algorithms or improved algorithms to identify opinion
leaders [28–31,33,37]. In other words, most of the above-mentioned studies only used various algorithms
to identify opinion leaders or followers, and consequently, apply them to political communication
and commercial marketing related fields. There has recently been an exploration of the psychological
motivation of actively acting as opinion leaders to understand which users are active communicators
or passive recipients of social issues. However, the related study on the interaction patterns between
the opinion leaders and followers and their characteristics have not been explored.

In addition, the opinion dynamics of current popular research are interested. The classic model
of opinion dynamics is derived from the research of DeGroot’s and Friedkin–Johnsen’s models of
opinion dynamics, which aims at the integration and consistency of opinions in social networks,
carried out very enlightening modeling and exploration [54]. DeGroot’s model describes the process of
reaching consensus in social networks, while Friedkin–Johnsen’s model further introduces the degree
of “stubborn individual” to explain the phenomenon of inconsistent opinions in social networks.
The models clearly depict the dynamic process of opinion integration and consistency, as well as
the obstacles caused by “stubborn individual” factors to the process of opinion integration [55,56].
However, the two models are very instructive to explore how individuals (or Internet users) should
be controlled if they are affected by certain characteristics or stubbornness in the process of opinion
integration. Our study more specifically explores how opinion leaders and followers can find out
the characteristics of users and the patterns of interaction between them in the process of consensus,
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which can be applied to precision marketing in actual operation, and even give opinion leaders with
different characteristics use differentiated topic content to increase the influence of consensus. Since the
research of DeGroot’s and Friedkin–Johnsen’s models of opinion dynamics are in conceptual level
only, some difficulties in practical application are challenged [57].

This study extends the idea of [39] to the domain of green energy and low carbons, where roughly
qualitative characteristics of opinion leaders and matrix of interaction between users are considered.
To make this study more solid and applicable, the theories of “two-step flow”, “bandwagon effect”,
“agenda-setting” and “innovation diffusion theory” from the theoretical perspective of communication
and the axioms are used to validate the results. In addition, this study does not focus on a single
discipline only but a cross-disciplinary study of the fields of green energy and low carbons, intelligent
systems, and communication to provide numerous management implications discussed in this section.
The core novelty and contribution is shown in that the solid theoretical part makes this study applicable
to other social media and industry sectors.

6. Conclusions

Nowadays, networks are the most important media among broad masses, and almost everyone
is closely related to networks, which results in many social issues as virtual networks are reflected
in the real world. Opinion leaders play a very important role in spreading media for many
issues. Previous research used some social measurement methods based on interview self-reports
or questionnaire surveys [23,24,32,33] or used quantitative clustering techniques to identify opinion
leaders [30,40–43]. In fact, few studies have investigated online posts to determine the social patterns
of opinion leaders and interactions between opinion leaders and followers. Therefore, it is valuable
that this study proposes a method to analyze the characteristics of social media posts, posters and their
interaction relationships.

Furthermore, this study identifies opinion leaders on the issue of green power in social communities
based on social community support level and influence power level. As a result of users cannot
express positive and negative opinions on the issue; it is not enough to consider only the user’s posts.
For example, when a user has a large number of posts, if the user cannot get support from others,
he/she cannot be classified as an opinion leader.

Using the same model and the solution approach, the results of this study can be extended from
the green energy low carbon issue to other social issues, e.g., the domain of marketing to make better
CRM. It also provides an efficient and operable application model for online marketing or public issue
communication in practical applications, which can more easily identify opinion leaders and followers.
Furthermore, this study not only examines from the perspective of intelligent systems such as different
algorithms but provides a new perspective to deal with the effective identification of opinion leaders
and followers, at the same time, promotes the “theory of two-step flow” [5] to add another research
perspective in the academic field.

The level of community support and influence proposed in this study uses a relational matrix
to analyze the relationship and the community pattern between users in this study. If it is applied
to analyze social media with higher data volume and discussion volume, it should consider the
computation speed, but which is usually not an issue in the current IT world. In addition, this study
uses static data for analysis. This model can also be added or removed from dynamic data and
evolution modeling for analysis in the future, and it is expected that it can be identified as more timely
and faster. For example, the advantages of DeGroot and Friedkin–Johnsen models are taken into
consideration for further study

However, this research’s reproducibility to other industry sectors is interested and requires further
investigation. In addition, this study focuses on a single case study of a country’s green energy
and low-carbon policy in Taiwan. If the results of this study are used to infer whether there will be
differences in other countries with different levels of development, knowledge and education, it is
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worthwhile to explore further. In any case, despite the above negotiable points, it does not detract
from the valuable results obtained in this study.
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