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Featured Application: This article provides the strategy to find the best cell design and operating
condition of a diphasic electrochemical cell using an evolutionary algorithm.

Abstract: Hydrogen is an excellent energy source for long-term storage and free of greenhouse gases.
However, its high production cost remains an obstacle to its advancement. The two main parameters
contributing to the high cost include the cost of electricity and the cost of initial financial investment.
It is possible to reduce the latter by the optimization of system design and operation conditions,
allowing the reduction of the cell voltage. Because the CAPEX (initial cost divided by total hydrogen
production of the electrolyzer) decreases according to current density but the OPEX (operating cost
depending on the cell voltage) increases depending on the current density, there exists an optimal
current density. In this paper, a genetic algorithm has been developed to find the optimal evolution
parameters and to determine an optimum electrolyzer design. The optimal current density has been
increased by 10% and the hydrogen cost has been decreased by 1%.

Keywords: alkaline water electrolysis; hydrogen cost; genetic algorithm; optimization

1. Introduction

Mitigation of the climate change consequences is the main global challenge in the 21 century.
The different IPCC (Intergovernmental Panel on Climate Change) reports stated that the climate
change is mainly due to greenhouse gas emissions to the atmosphere produced by human activities.
The IPCC recommends in their scenarios the decrease of energy consumption, the increase of renewable
production, and sequestration of harmful CO2 produced by the industrial activities including the
production of cement and steel. The renewable energies generated from various systems such as wind
turbines and photovoltaic panels do not produce greenhouse gases but suffer from time intermittency
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and geographic limitations. In order to resolve this challenge, energy produced at off-peak hours must
be stored. Batteries can store this energy, but their energy density is low, and they discharge the stored
energy over time. Thus, if the energy needs to be stored more than a month, another storage mean must
be provided. Hydrogen storage can store (renewable) energy with a high density for a long period and
its use (by combustion and by reduction) only produces water. Most hydrogen is currently produced via
a process that needs fossil fuels and which produces greenhouse gases. However, although there exist
several other processes that can generate hydrogen without generating pollutants, water electrolysis
is one of these processes and is very promising. Nevertheless, the high operation cost hampers its
development. One way to decrease the cost is to choose the cheapest water electrolysis technology:
Alkaline water electrolysis. There are two other technologies: PEM electrolysis and high temperature
electrolysis. They both are theoretically more efficient than alkaline water electrolysis but they need
noble and expensive material (PEM) or suffer from low life duration (high temperature electrolysis).
Although alkaline electrolysis is the cheapest technology among all the electrolysis technology, it is still
needed to decrease the hydrogen cost. Like most electrochemical processes, the cost of the hydrogen
production is divided into two parts: CAPEX and OPEX. CAPEX represents the capital cost divided by
the total hydrogen production. The OPEX is the production process cost. Thus, the higher the cell
voltage increase, the higher the OPEX is.

The cell voltage is a sum of overvoltage as shown in Equation (1).

Ucell( j) = Erev(P, T) + R(T, YKOH, ε) j + ηact an

(
j

1 − θ

)
+ ηact cath

(
j

1 − θ

)
+ Rmemb j (1)

Erev is the reversible voltage in V, ηact is the activation overvoltage in V, R and Rmemb respectively the
electrolyte resistance and membrane resistance in Ω cm2 and, j the current density in A m−2.

The Erev voltage represents the minimum thermodynamic cell voltage. This value is around 1.23 V
at atmospheric pressure at 25 ◦C. Increasing temperature and decreasing the pressure decrease this
minimum cell voltage. The majority of previous studies have focused on finding a cheap, robust and
electroactive electrode material or electrocatalyst to decrease the activation overpotential, which are
the second and third terms in Equation (1). There is also another research trend aiming at increasing
efficiency, which is to reduce an ohmic resistance and surface coverage through electrolyzer design
by means of simulations or experiments. Previous studies modeled the void fraction and velocity
distribution [1–5] or the cell voltage [6]. There exist only few studies about optimization of this process.
Villagra et al. [7] showed that there exists an optimum current density for a given design of PEM
electrolyzer. Bensmann et al. [8] demonstrated that there exists an optimum of pressure for a given
PEM electrolyzer.

The goal of this study is to find the optimal design and the current density for an alkaline
electrolysis cell. A meta-model has been developed to simplify the physics of the void fraction and
a genetic algorithm is used to find the optimal design. The optimization problem uses a complex
objective function involving multiple, coupled and non-linear variables. The optimization of such a
function is difficult because there are no finite time resolution algorithms. The problem is defined to be
NP-complete and cannot be solved with classical methods such as the gradient descent [9]. For this
reason, artificial evolution techniques (evolutionary algorithms) have been explored in the design of
the electrolyzer. This paper begins with the theory, physics and economy behind the alkaline water
electrolysis cell. Then, the set-up, adjustment of parameters according to the problem features and
validation of the genetic algorithm are highlighted. Finally, the algorithm is used to find the optimal
design of the alkaline water electrolysis.
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2. Physics and Economy of the Alkaline Water Electrolysis Cell

2.1. Theory

An alkaline water electrolysis cell produces hydrogen and oxygen using electric energy via an
electrochemical process. The Figure 1 presents a classical water electrolysis cell. It consists of a positive
pole called the anode (where the oxidation of hydroxyl ions occurs Equation (2)), a negative pole called
the cathode (where the reduction of water occurs Equation (3)) and a membrane (brown part) that
prevents the mixing of hydrogen and oxygen.

2OH−(aq) → H2O(liq) +
1
2

O2(g) + 2e− (2)

2H2O(liq) + 2e− → 2OH −
(aq) + H2(g) (3)
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Figure 1. Design of the electrochemical cell.

The reactions of Equations (2) and (3) occur at alkaline pH (>7). Thus, KOH or NaOH salts must
be added. The classical operating conditions of alkaline electrolyzer are: Temperature around 80 ◦C,
atmospheric pressure and 0.30 KOH. In the next paragraph, we will explain why those choices have
been made.

As explained in the introduction section, the minimum voltage that must be applied to a water
electrolysis cell is called reversible voltage. Hammoudi et al. [10] developed a model (Appendix A)
that simulates the temperature, pressure, and mass fraction sensitivity of the reversible voltage.
The reversible voltage decreases with temperature while mass fraction and the pressure increase it.

The ohmic electrolyte resistance R is depending on the electrolyte conductivity σ, the diphasic
boundary thickness δ and the void fraction ε, see Equation (4) [11].

R(ε, δ, T, Y) =
δ

σ(ε, T, Y)
+

h− δ
σ(T, Y)

(4)
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With h the thickness of the electrolyte (catholyte or anolyte) in m, σ the electrical conductivity
in S m−1.

Hine et al. [12] showed the electrical conductivity dependency on void fraction can be simulated
using the Bruggeman’s correlation Equation (5).

σ(ε, T, Y)
σ(T, Y)

= (1 − ε)
3
2 (5)

The Equation (6) can be simplified by assuming that the gas is dispersed throughout the
electrolyte thickness.

R(ε, T, Y) =
h

σ(ε, T, Y)
(6)

Thus, ohmic resistance increases with void fraction. The quantity of gas injected in the electrolyte
is calculated via Faraday’s law Equation (7). According to the Equation (8), the pressure decreases the
volumetric hydrogen flow and thus the void fraction. Moreover, Vogt et al. [13] and Jannsen et al. [14]
showed that the pressure decreases the detachment bubble radius, thus decreasing the surface coverage.
Gilliam et al. [15] and See et al. [16] measured the electrical conductivity depending on the KOH mass
fraction and temperature. They showed that there exists an optimum KOH mass fraction between 0.2
and 0.4 that depends on the temperature. The different correlations for electrical conductivity, viscosity,
density of KOH and NaOH have been summarized by Le Bideau et al. [17]. The temperature increases
the efficiency of the process but a high temperature and an extremely alkaline (pH > 14) condition led
to material deterioration and electrolyte boiling. Thus, the temperature should not exceed 100 ◦C.

QvH2 =
j S vmol

2 F
(7)

vmol =
RG T

p
(8)

QvH2 the volumetric hydrogen flow m3 s−1, S the electrode surface in m2, vmol the molar volume
m3 mol−1, F = 96,500 C mol−1 the Faraday’s constant in C mol−1, RG = 8.314 J kg K−1 the ideal gas
constant in J mol−1 K−1, T the temperature in K, p the pressure in Pa.

Therefore, this analysis explained the choice of mass fraction and temperature but not
pressure choice. Actually, high pressure increases the manufacturing cost. However, according
to Grigoriev et al. [18], the aim of pressure level for the new alkaline electrolyzer is 30 bar.

According to Equation (6), it would be tempting to decrease as much as possible the electrolyte
thickness. However, Nagai et al. [19–21] observed in multiple studies that there exists an optimum of
electrolyte thickness. Indeed, in an extremely narrow electrolyte the bubbles cannot leave fast enough
to prevent bubble accumulation.

The activation overpotential can be modeled with different mathematical formalism depending
on the current density. For the industrial current density, the Tafel law is used, see Equation (9).

ηact( j) = a + b log
(

j
1 − θ

)
(9)

With a and b the Tafel parameter in respectively V and V dec−1 and θ the surface coverage ratio.
The parameter a and b depend on the electrode material and electrocatalyst. The surface coverage

depends on a lot of parameters (temperature, pressure, mass fraction, current density, presence or
absence of electrolyte flow). However, there is no numerical model that can simulate the surface
coverage ratio depending on all these parameters. Vogt et al. [22] developed a model that roughly
estimates the surface coverage depending on current density Equation (10).

θ = 0.023 j0.3 (10)
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Using the data from Jannsen et al. [14], the correlation that gives the bubble radius according to
the pressure is given by Equation (11).

r(p) = 0.876 r0
−0.471 p (11)

r0 the mean bubble radius at atmospheric pressure in m.
The pressure, current density and temperature sensitivities of cell voltage have been given. One of

the key parameters is the void fraction. This parameter depends on several parameters. The sensitivities
will be explained in the next section.

2.2. Physics of the Void Fraction

2.2.1. Mathematical and Numerical Tools

Finite Volume Model (CFD)

The void fraction can be calculated using numerical simulations. A model has been developed
and validated by Le Bideau et al. [1] in a previous study. The following hypothesis have been chosen:

• The flow is Newtonian, viscous and incompressible;
• the flow is considered isothermal;
• ions distributions are neglected;
• the flow is considered laminar;
• bubble diameter is constant for a given operating condition; and
• The current density is taken as constant.

For more explanations about the hypotheses, see Le Bideau et al. [1]. The model is a two-fluid
Eulerian model Equations (12)–(16).

∂εkρk

∂t
+
→

∇·

(
εkρk

→

Vk

)
= Sk (12)

ε is the gas or liquid fraction, the subscript k can be either g (O2, H2) or liq, ρ is the density in kg m−3,
V the velocity in m s−1, and Sk is the term source in kg m−3 s−1

∂
∂t

(
εkρk

→

Vk

)
+
→

∇·

(
εkρk

→

Vk
→

Vk

)
= − εk

→

∇p +
→

∇·

(
εk

=
τ
)
+ εkρ

→
g +

→

F k (13)

p is the pressure in Pa,
=
τ is the stress tensor in Pa,

→
g the gravitational acceleration in m s−2, and

→

F k is
the exchange term in N m−3

The stress tensor is written as follows:

=
τ = µk

[(=
∇
→

Vk +
=
∇
→

Vk
T
)
−

2
3

→

∇·
→

VkI
]

(14)

with µk the viscosity of the phase k in Pa s and I the unit tensor.

→

F k =
→

FD +
→

FL +
→

FBD (15)

→

F k = −
3
4
εgρ

CD

db
|Ur|Ur︸                ︷︷                ︸

Drag f orce

− εgρCL|Ur| rot
(
→

Vl

)
︸                ︷︷                ︸

Li f t f orce

− εgρ
Kg

db
|Ur|

→

∇εg︸             ︷︷             ︸
Bubble dispersion f orce

(16)

Equation (15) is the exchange term. It is the sum of the usual drag force and lift force. The study
of Le Bideau et al. [1] showed that it was mandatory to take into account the bubble diffusion force
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(
→

FBD) to reproduce the experimental data. The coefficient Kg has been used to fit the experimental data
of Boissonneau et al. [23].

Using the Vaschy-Buckingham theorem, four dimensionless numbers have been determined
Equations (17)–(20).

ReVG =
ρl VG Helec

µL
(17)

FrVG =
g Helec

VG2 (18)

r∗ =
r
H

(19)

h∗ =
h
H

(20)

Artificial Neural Network (ANN)

These four dimensionless numbers (Equations (21)–(24)) have been used to correlate the void
fraction using an artificial neural network (ANN). Appendix B shows the design of experiments used
to train the ANN. The numerical search field is summarized in Table 1. This numerical search field
allows the finding an optimum design for an average current density j in [103–104] A m−2, an electrode
height Helec in [0.01–0.1] m, a temperature T in [293–350] K, a pressure p in [1–30] bar, a mass fraction Y
in [0.2–0.4], a electrolyte thickness h in [1.5 × 10−4–1.5 × 10−3] m.

Table 1. Numerical search field for every dimensionless parameters.

Dimensionless Parameter xmin xmax
xmax+xmin

2
xmax−xmin

2

ReVG 1 × 10−2 300 150.005 149.995
FrVG 5.85 × 104 5.30 × 1010 2.65 × 1010 2.65 × 1010

r∗ 1.14 × 10−5 1.50 × 10−3 7.75 × 10−2 7.25 × 10−2

h∗ 5 × 10−3 1.50 × 10−1 7.557 × 10−4 7.442 × 10−4

The dimensionless numbers have been reduced using Equation (21).

X =
x −

( xmax + xmin
2

)
xmax − xmin

2

(21)

With X the reduced dimensionless number, x the dimensionless number
The weights of the ANN are obtained using the software NeurOne©. Because the evolutions of

the void fraction according to the four dimensionless parameters are non-linear, the learning is done
by a Levenberg–Marquardt (L–M) algorithm [24] with parameters initialized according to a normal
law N(0, 0.1) over about 70 iterations. The L–M algorithm consists in reducing a Sum Square Error
(SSE) defined by Equation (22).

SSE




ReVG

FrVG

h
∗

r∗

,
→
wN,M

 =
1
2

i=O∑
i

e2
i =

1
2

i=O∑
i

(
ε f luent,i − εANN,i

)2
(22)

→
wN,M the weight vector with the subscript N the number of layer (from 0 to N) and M the total

number of weights per layer and O the number of outputs.



Appl. Sci. 2020, 10, 8425 7 of 28

The SSE is reduced by a combination of two algorithm: the steepest descent algorithm and the
Gauss–Newton algorithm [24]. Thus, the weight vector is updated following the Equation (23).

Jk =



∂e
∂w0,0
∂e
∂w0,1

...
∂e

∂w0,M

∂e
∂w1,0

· · ·

∂e
∂w1,1

· · ·

... · · ·

∂e
∂w1,M

· · ·

∂e
∂wN,0
∂e

∂wN,1
...
∂e

∂wN,M


(23)

→
wN,Mk + 1 =

→
wN,Mk −

(
JT
k Jk + λI

) − 1
Jk
(
→
ε f luent,k −

→
εANN,k

)
(24)

With Jk the Jacobian matrix, the k subscript for the number of update and λ the
combination coefficient.

If λ is close to 0 then Gauss–Newton algorithm is used whereas when λ is very large the L–M
algorithm switches to the steepest descent algorithm.

The Figure 2 gives the architecture of the artificial neural network used to estimate the void fraction,
which correspond to the Equations (25)–(29).

for i in [0; 3] H1,i = w0,i ×H0,i + c0,i (25)

for i in [0; 2] H2,i = atan


 3∑

k=0

w1,(k×3) + i ×H0,k

 + c1,i

 (26)

H3,0 =

 2∑
i=0

w2,iH2,i

 + c2,0 (27)

H4,0 = w3,0 H3,0 + c3,0 (28)

H5,0 = exp(w4,0 H4,0) (29)
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The parameters of Equations (25)–(29) are given in the Table 2.
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Table 2. Parameters for Equations (25)–(29).

i = 0 i = 1 i = 2 i = 3

H1,i
w0,i 1.3965 1.3532 1.4242 1.4926

c0,i 0.61711 0.6445 0.5920 0.1461

H2,i

w1,i 41.63 −0.848 −0.444 –

w1,(i+3) −2.6544 −0.837 114 –

w1,(i+6) −1.5778 −9.13 −0.015 –

w1,(i+9) 0.2068 −0.154 −0.347 –

c1,i 29.78 −13.57 81.04 –

H3,i

w2,0 −0.4 – – –

w2,1 −0.959 – – –

w2,2 12.54 – – –

c2,0 19.84 – – –

H4,i
w3,0 0.99 – – –

c3,0 −2.03 – – –

H5,i w4,0 2.30 – – –

Figure 3 shows that the model approximates more or less 40% the numerical calculations.
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Figure 3. Results of the training of the artificial neural network (ANN), the results of void fraction of
the ANN εANN are compared to the void fraction calculated to ε f luent. The blue points represent the
learning samples and the red points the validation samples. The red line is ε f luent + 40% and the blue
line ε f luent − 40%.

2.2.2. Sensitivity Analysis of Void Fraction and Ohmic Resistance

In order to observe the effect of the different parameters on the electrolysis performance, the artificial
neural network has been used to predict the void fraction ε and the electrolyte ohmic resistance R.
Therefore, we performed a fractional factorial design of experiment (DOE). The DOE used is a
“one factor at a time” (OFAT), referred to the minimal parameter-values curve (red). In all other curves,
a single parameter among (T, Y, j, H, and h) changes from min to max value to assess the effect of each
one on the void fraction and electrolyte ohmic resistance. Table 3 gives the minimum and maximum
values of different parameters in this DOE. The bubble radius r is set at 25 µm. Because the ANN
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cannot evaluate the void fraction for r∗ above 1.5 × 10−3, the electrode height Helec has been set to
5 × 10−2.

Table 3. Minimum and maximum of the explored parameters for the sensitivity analysis.

Variables Min Max

T (K) 293 363

Y (–) 0.2 0.3

h (m) 4 × 10−4 10−3

Helec (m) 5 × 10−2 10−1

j (A m−2) 103 104

p (bar) 1 30

The results of the predictions are represented in Figures 4–7. In the Figure 4a,b, it can be observed
that the pressure decreases for all the cases the void fraction ε at least until 5 bar and the ohmic
resistance R. However, the artificial neural network predicts that the ohmic resistance reaches a plateau
around 10 bar for most of the cases. In the case where Hmax = 10 cm, the minimum value is obtained
near 5 bar but the void fraction rises again after this limit. This case, mass fraction and temperature
seem to have little effect on the void fraction but have more important effects on the resistance.
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In Figure 5a, it can be clearly seen that the electrolyte thickness has a great influence on the void
fraction. By decreasing the electrolyte thickness h by few hundred micrometers, the void fraction
increases abruptly from 0.1 to 0.6. Therefore, the existence of an optimum is explained. In the Figure 5b,
the optimum of electrolyte thickness hopt can be observed. This optimum mainly depends on the
electrode heights Helec and pressure p. The pressure reduces the radius of the bubble r and thus
diminishes the optimal thickness of the electrolyte. Increasing the electrode height means increasing
the injected gas flow so it increases the void fraction and the electrolyte ohmic resistance.

In Figure 6a,b, it can be observed that the current density increases the void fraction until
1500 A m−2 and reached a plateau. The value of the plateau depends on the geometry of the cell
especially the ratio electrolyte thickness/electrode height. However, the kinematic viscosity ν seems to
play a role also.

In Figure 7a,b, the electrode height sensitivity impact on the ohmic resistance and void fraction
can be observed. As expected, the electrode height increases the void fraction and thus the ohmic
resistance. However, for pmax (30 bar), it seems that electrode height does not impact the void fraction
values. This is a surprising result that must be taken with caution.

In conclusion, the neural network gives roughly the sensitivity to all parameters even if for some
case the results are surprising. Indeed, increasing the pressure must strictly decreases the void fraction
and the void fraction should always increase according to electrode height. However, even if the
sensitivities are strictly respected, the neural network approach save a lot of computational time.
Indeed, to train the ANN, 61 CFD evaluation has been needed (corresponding to approximately 20 h
of calculation on an Intel Core i7−6700HQ CPU @2.60 GHz). To make the Figures 4–7, at least 480
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evaluations must be performed corresponding to approximately 30 s using the ANN and 160 CPU hours
using the CFD code. Moreover, the genetic algorithm requires at the bare minimum 500 evaluations so
the optimization would take 167 CPU hours if the CFD code is used against 30 CPU seconds using
the ANN.

2.3. Economy

The hydrogen cost has two contribution: The CAPEX that represents the cost of the investments
and the OPEX that represents the cost during electrolyzer operations (Equation (30)). CAPEX is
estimated by using Faraday’s law, see Equation (31). The investment cost is divided by the total amount
of hydrogen produced during the electrolyzer lifetime. The OPEX depends on the cell voltage and
electricity cost.

OPEX =
Ucell·F
3600

·EC (30)

CAPEX =

(
2 F·ICS
t·MH2

)
·

1
j

(31)

Fc = CAPEX + OPEX (32)

With OPEX and CAPEX in € kg−1, Ucell the cell voltage in V, F Faraday’s constant in A s mol−1,
EC the energy cost in € kWh−1, ICS the initial capital cost per unit area in € m−2, t the electrolyzer
lifespan in s, MH2 is the molar mass in kg mol−1.

The life of the electrolyzer, the initial capital cost per unit area and the cost of electricity cannot be
calculated using a numerical model, but estimates do exist or can be calculated. Grigoriev et al. [18]
have indicated that the life of the electrolyzer is approximately 90,000 h. The cost of electricity
varies greatly depending on the country or the means of power generation used to produce electricity.
In metropolitan France, the cost of electricity is about 0.17 € kWh−1 and in Germany about 0.30 € kWh−1.
The effect of these two costs will be studied in the optimization section.

To estimate the ICS, the cost per kWh given by Grigoriev et al. [18] can be used. They stated
that the cost per kW is between 500 and 1400 today and will be between 400 and 850 in 2030 and
will reach the interval of 200–700 € kW−1. According to Grigoriev et al. [18], the electrolyzer power
density is between 4 and 10 kW m−2. Thus, ICS will be explored between 800 and 14,000 € m−2.
The Figure 8 presents the OPEX, CAPEX, and total hydrogen cost for an electrolyzer depending on the
current density for a naïve design (hH2 = hO2 = 1.5 mm, Helec = 10 cm, p = 1 bar, T = 353 K, Y = 0.30,
ban = 0.15 V dec−1, bcath = 0.15 V dec−1, IC = 14,000 €m−2, and EC = 0.17 € kWh−1) optimum current
density is 2923 A m−2 and the minimum cost is 12.48 € kg−1

.
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Figure 8. Investment cost (CAPEX), operating cost (OPEX), and Cost function for an electrochemical
cell with hH2 = hO2 = 1.5 mm, Helec = 10 cm, p = 1 bar, T = 353 K, Y = 0.30, ban = 0.15 V dec−1,
bcath = 0.15 V dec−1, r = 25 µm, ICs = 14,000 €m−2, and EC = 0.17 € kWh−1.
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3. Set up of the Genetic Algorithm

3.1. Optimization Problem

We also define the cost function Fc(CAPEX, OPEX) representing the addition of investment cost
(CAPEX) and operating cost (OPEX) in € kg−1.

Fc(CAPEX, OPEX) = CAPEX + OPEX (33)

The set of design parameters used in the rest of the article will be referred as DP.

DP =
{
hH2 , hO2 , Helec, j, p, T, Y

}
(34)

This type of optimization problem is classified as a NP-complete (non-polynomial solving time)
problem that has not yet found an effective deterministic solving algorithm.

Given Fc(DP), find DP∗ ∈
(
Ẽ ⊆ E

)
such as :

Fc(DP∗) ≤ Fc
(
D̃P

)
, ∀ D̃P ∈ Ẽ

with gi
(
D̃P

)
= 0 et h j

(
D̃P

)
≥ 0

(35)

With DP∗ the set of design parameters that gives the minimal cost value (i.e., the best design),
Ẽ the set of feasible solutions wrt gi and h j of constraint and E the set of general solutions.

Taking into account the dimensionality, the non-linearity and the couplings in this problem,
classical methods such as gradient descent are not likely to produce a successful optimization. Therefore,
we propose to rely on stochastic optimization such as evolutionary algorithms. This method allows to
find good solution when the problem is very difficult, and the search space is huge.

3.2. Genetic Optimization Algorithm (GA)

Historically, genetic algorithms (GAs) are the first and the simplest ones to implement [25]. GAs are
particularly well adapted for parametric optimization as is our design problem (see Equation (36)).

First of all, the design parameters (DP) must be put under genetic material (chromosome).
The fitness function is based on the chromosome and cost function. To begin the genetic algorithm,
an initial population of individuals (i.e., design candidates) is randomly generated and their associated
fitnesses are calculated. Next, individuals are selected for pairing according to their fitness to produce
offspring. During the pairing, chromosome may undergo crossover or mutation. Eventually, we look if
the best solution is satisfying if not, we generate a new population using the same process (evaluation,
selection, cross-over, mutation). There are different types of genetic algorithms, but they can all be
summarized in one general flowchart (Figure 9).
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3.3. Coding

The method of genetic algorithms takes its vocabulary from genetics. A design solution is called a
genotype (composed of a single chromosome in the Simple Genetic Algorithm) and the parameters
that make up this case are called genes. In our case, a chromosome containing all the genes would take
the following form Equation (36).

genotype = chromosome =
[
hH2, hO2, p, Helec, j, T,Y

]
︸                          ︷︷                          ︸

genes (np parameters)

(36)

All genes are normalized using Equation (37) and therefore their value is between 0 and 1.

xnorm =
x − xmin

xmax − xmin
(37)
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The number of bits in a gene depends on the desired precision (or quantification) for a parameter.
The input parameters for bits determination are summarized in Table 4. To determine the number
of bits, Equations (38) and (39) are used.

Table 4. Design parameter their intervals and their resolution.

Design Parameter xmin xmax Qwtd

hH2 (m) 1.5 × 10−4 1.5 × 10−3 1 × 10−4

hH2 (m) 1.5 × 10−4 1.5 × 10−3 1 × 10−4

p (bar) 1 30 1
Helec (m) 5 × 10−2 10−1 5 × 10−3

T (K) 298 358 10
j (A m−2) 103 104 102

Y (-) 0.2 0.4 2.5 × 10−2

We need a number of bits for parameter DPi:

xmax,i − xmin,i

2nb,i − 1
= Qobti (38)

nb ∈ N + nb,i ≥

(
ln

(
xmax, i − xmin,i + Qwtd,i

Qwtd,i

)
1

ln(2)

)
(39)

Finally, the total chromosome number of bits is determined via the Equation:

nbt =

np∑
i

nb,i (40)

Table 5 gives the number of bits, the wanted and obtained quantification for each design parameters.
The total number of bits is 33.

Table 5. Design parameter and their quantification.

Design Parameter Qwtd nb Qobt Example Coded Example Decoded Example

hH2 (m) 10−4 4 9 × 10−5 3 × 10−4 [0 0 0 1 1] 2.765 × 10−4

hO2 (m) 10−4 4 9 × 10−5 3 × 10−4 [0 0 0 1 1] 2.765 × 10−4

p (bar) 1 7 7. 79 × 10−1 3 [0 0 0 0 0 1 0] 2.54
Helec (m) 5 × 10−3 4 3.33 × 10−3 6 × 10−2 [0 0 1 1] 5.94 × 10−2

T (K) 10 3 7.85 3.08 × 102 [0 0 1] 3.04 × 102

j (A m−2) 102 7 7.08 × 101 2 × 103 [0 0 0 1 1 1 0] 1.98 × 103

Y (-) 2.5 × 10−2 4 1.33 × 10−2 0.3 [0 1 1 1] 2.87 × 10−1

3.4. Evaluation

In optimization, we need a normalized function to be maximized, so we will use an inverse
function. In order to have a solution between 0 and 1, the inverse function is scaled using the theoretical
minimum of the CAPEX and the OPEX. The theoretical minimum of OPEX is obtained by neglecting
the diphasic effect. The calculated minimum and maximum of CAPEX and OPEX are given in the
Table 6.

Ucellmin = Erev(Tmax, pmin) +
( hH2min
σmax

+
hO2min
σmax

)
jmin + bcath log( jmin) + ban log( jmin) + R jmin

OPEXmin =
Ucellmin F

3600 EC
(41)

Ucellmax = Erev(Tmin, pmax) +
( hH2max
σmin

+
hO2max
σmin

)
jmax + bcath log( jmax) + ban log( jmax) + R jmax

OPEXmax =
Ucellmax·F

3600 ·EC
(42)

CAPEXmin =

(
2 F·ICS
t·MH2

)
·

1
jmax

(43)
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CAPEXmax =

(
2 F·ICS
t·MH2

)
·

1
jmin

(44)

Table 6. CAPEX and OPEX minimum and maximum and their associated value of fitness.

EC (€ kWh−1
)

0.17 0.3

OPEXmin OPEXmax OPEXmin OPEXmax

9.48 13.46 16.74 23.76

ICs (€m−2)

800

CAPEXmin 0.02 F = 1
f = 1

F = 0.70
f = 0.04

F = 1
f = 1

F = 0.70
f = 0.02

CAPEXmax 0.24 F = 0.98
f = 0.92

F = 0.69
f = 0

F = 0.99
f = 0.96

F = 0.69
f = 0

3000

CAPEXmin 0.09 F = 1
f = 1

F = 0.71
f = 0.12

F = 1
f = 1

F = 0.71
f = 0.07

CAPEXmax 0.89 F = 0.92
f = 0.77

F = 0.67
f = 0

F = 0.95
f = 0.86

F = 0.68
f = 0

6000

CAPEXmin 0.17 F = 1
f = 1

F = 0.71
f = 0.20

F = 1
f = 1

F = 0.71
f = 0.13

CAPEXmax 1.78 F = 0.85
f = 0.61

F = 0.63
f = 0

F = 0.91
f = 0.74

F = 0.66
f = 0

9000

CAPEXmin 0.27 F = 1
f = 1

F = 0.71
f = 0.27

F = 1
f = 1

F = 0.71
f = 0.18

CAPEXmax 2.68 F = 0.80
f = 0.50

F = 0.60
f = 0

F = 0.88
f = 0.65

F = 0.64
f = 0

14,000
CAPEXmin 0.42 F = 1

f = 1
F = 0.71
f = 0.35

F = 1
f = 1

F = 0.71
f = 0.25

CAPEXmax 4.17 F = 0.72
f = 0.37

F = 0.56
f = 0

F = 0.82
f = 0.53

F = 0.61
f = 0

Inversing the cost function, having the lowest hydrogen cost (Fc = Fcmin) corresponding to the
highest fitness (Fmax = 1) gives:

F =
Fcmin

Fc
=

(CAPEXmin + OPEXmin)

OPEX + CAPEX
(45)

Unfortunately, F(Fcmax), corresponding to the highest cost (then the lowest fitness Fmin) is not 0,
as it should be:

Fmin =
Fcmin
Fcmax

=
(CAPEXmin + OPEXmin)

(OPEXmax + CAPEXmax)
(46)

Thus, it is interesting to make a linear transformation to take advantage of the whole range 0 to 1.
With:

A0 = 1
1 −

CAPEXmin + OPEXmin
CAPEXmax + OPEXmax

B0 = −A0
CAPEXmin + OPEXmin
CAPEXmax + OPEXmax

(47)

The value of these coefficients depends on the initial assumptions. Finally, the Equations (48) and
(49) gives the form of the fitness function.

f (CAPEX, OPEX) = A0F + B0 (48)

f (CAPEX, OPEX) = A0
CAPEXmin + OPEXmin

CAPEX + OPEX
+ B0 (49)
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3.5. Operators

The Flowchart shown in the Figure 9 shows there are several operators: Initial random population
generation, selection, crossing-over, mutation, and population replacement.

3.5.1. Initial Random Population

The first generation is created from scratch, randomly drawing bits values for all parameters of
each individuals in the population. The population includes kpop candidate solutions (individuals).
The following generations will undergo successively the genetic operators all along the evolution that
include kgen generations.

3.5.2. Roulette Wheel Selection

To simulate the natural selection, the candidates from the population are selected using the roulette
wheel selection [25]. Each candidate is given a portion of an imaginary wheel proportionally to its
fitness (so the bigger fitness, the bigger portion). The wheel is spun kpop times (kpop being the total
number of candidate solutions in the population). The selected candidates are paired to be mated.
Each couple will be the parents producing offspring for the next generation.

3.5.3. Single Point Crossing-Over

After the selection, a second operator that mimics the biological cell meiosis is used:
The crossing-over. This operator is used to combine the parents’ genetic material in the chromosome
(genotype). A crossing-over is carried out with a probability occurrence of pc. A crossing-over point
(locus) is chosen randomly in the chromosome. Before this point, the chromosome is unchanged and
beyond, the chromosome sequence is swapped between the parents. This produces two offspring that
will be new candidates for the next generation. The artificial evolution if not very sensitive to the
crossing-over probability [26]. It is why pc is generally set to 50%.

3.5.4. Bitwise Mutation

The mutation operator is used to maintain genetic diversity in the population over the generations.
It can be compared to the real biological mutation. In a living organism, the mutation occurs due to
external factors (radioactivity, environmental turmoil) or just due to DNA recopying error. In the
bitwise mutation, a mutation probability is drawn for each bit of the chromosome, the bits are flipped
from 1 to 0 or from 0 to 1. The probability of mutation pm must be set very low to avoid too much
genotype instability in the population. A good solution would be disrupted easily and its chance to
survive mutation will be null. If pm reaches 50%, the genetic algorithm is equivalent to a random search,
which must be prevented.

3.5.5. Replacement Generator (Generational)

The children obtained from parents through selection, crossing-over and mutation replace totally
the previous generation. A specific place in reserved for the best individual (in all previous generations).
This requires scarifying the first newborn children or having an odd population size kpop.

3.5.6. Presentation of the Evolution Parameter

The evolution parameters have been introduced briefly in the previous subsection. In total,
there are 4 of them:

• kgen the number of generations
• kpop the number of populations per generation
• pm probability of mutation
• pc probability of crossing-over is definitively set to 50%
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The values of these parameters can greatly impact the results of the optimization simulation,
they must be chosen wisely. The choice of kgen and kpop is constrained first by the time resource
(CPU time) allocated to an optimization and then by the respect of infinitesimality constraint. Indeed,
the advantage of the genetic algorithm is that it evaluates only a tiny (infinitesimal) part of the possible
solution. To comply with this constraint:

kgenkpop

card(E)
� 1 (50)

card(E) = 2nbt = 8.59× 109 (51)

To validate the algorithm, we use the ad hoc parameters kgen = 50 and kpop = 10, we define the two
dimensionless parameters:

RGP =
kgen

kpop
= 5 (52)

PGP = kgenkpop = 500� Card(E). (53)

According to Chocron [26], pm must be chosen in such a way that, in average, one bit mutates per
generation while having an average proportion of mutant individuals per generation equal to 50%
(Equations (54) and (55)). By this setting, the aim is that the mutation should have the same impact as
the crossing-over.

E(nbmp) = kgenE(nbmi) = kgen

i=np∑
1

nbi =
kgen

2
(54)

pm =
1

2
∑i=np

1 nbi

=
1

66
= 0.015 = 1.55% (55)

With E(nbmp) and E(nbmi) the expected value that a mutation affects the entire population and a
single individual.

3.6. Validation of the Algorithm

Hypothesis:

• ICs = 800 €m−2

• EC = 17c€ kWh−1

• ban = bcath = 0.15 V dec−1

• Rmemb = 3.23 × 10−5 Ohm m2 [27]

The calculation has been performed using an Intel Core i7−6700HQ CPU @2.60 GHz.
The optimization simulation time varies around 5 s. To validate the algorithm, the physics of
the model presented in Section 2 will be simplified. The diphasic effect will not be taken into account.
In doing so, we can analyze the equations to extract the sensitivities and find the optimal design
if the process was not two-phase. The next step is to see if the algorithm finds a better candidate.
By analyzing Equations (30) and (31), we can deduce that the current density must be around 1000.
As temperature increases the electrical conductivity and decreases the reversible voltage, the algorithm
must find the highest possible temperature. Since two-phase phenomena are not taken into account,
the pressure proposed by the algorithm must be as low as possible (because it increases the reversible
voltage). The same applies to the electrolyte thickness. Indeed, the latter decreases the ohmic resistance.

Figure 10 shows the evolution of the fitnesses (a) and the cost function (b) according to generations.
In (a) we observe that fbest and favg increase greatly in the first 10 generations, we call this phase the
exploration. During this phase, the GA searches good locations in the DP space. It finds very quicly
good regions in DP, which explains the quick fitness growing, thus the cost dwindling.
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Figure 10. Averaged over 100 evolutions (a) fitness and (b) cost function evolution according to
the generation.

Between generations 10 and 50 both fitnesses continue to increase but moderately, this in the
exploitation phase. During this phase the algorithms attracts most of the population towards the
best solution, which explain the reduction of fbest and favg difference. Usually, there exist a last phase
where the favg stagnates below the fbest that continues to slightly increase until reaching a plateau
around the end of evolution. This phase is called the convergence one and pursues the search around
the best solutions to find slightest increases for fbest (eventually ending up with the global optimum),
maintaining favg just below fbest using the mutation as permanent genetic stirrer. Unfortunately,
we cannot see this last phase that means the evolution is not completed.

In Figures 11 and 12 are presented the design parameters evolution path from random
(first population) to overall best (last population) values. In (a), both h parameters (H2 and O2) converge
to the smallest available value. This can be explained by the Ohm’s law in the monophasic model.
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of the best candidate depending on the generation (a) current density p, (b) electrode height Helec,
(c) pressure p and (d) KOH mass fraction Y.

In Figures 11 and 12, we note that almost all DP values converge during the evolution towards
their best value, but the parameter Helec (b). Actually, in this simplified model (monophasic), Helec has
no influence on the cost function (gaz effects neglected).

This first tentative of artificial evolution of alkaline electrolyzer is promising, but we know that it
could be improved in two ways:

• The simplified model does not take into account the two-phase phenomena, which can greatly
influence the hydrogen costs (Fc).

• The evolution parameters used in this first try are not well adapted to the problem (missing
convergence phase to achieve evolution).

In the next section we answer these two issues by using the more elaborate two-phase model and
by performing a sensitivity analysis of the genetic optimization w.r.t. the evolution parameters.

4. Sensitivity Study of the Results to the Evolution Parameters

In this section, we analyze the evolution algorithm on the more realistic diphasic problem to
tune the evolution parameters. The goal of this study is to adjust the evolution parameters (kgen, kpop,
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pm, pc) in order to have the best genetic optimization performances. The hypothesis are the same than
previously but because we take into account the diphasic effect, the bubble radius must be set. Thus,
the following hypothesis are used.

• ICs = 800 €m−2

• EC = 17 c€ kWh−1

• ban = bcath = 0.15 V dec−1

• Rmemb = 3.23 × 10−5 Ohm m2

• r = 25 × 10−6 m

4.1. Impact of kgen and kpop

The first study should make it possible to determine the value of kgen and kpop, the numerical
experiments carried out are gathered in Table 7. RGP represents the ratio between kgen over kpop It allows
to set (inversely) the level of “parallelism” of the genetic algorithm, to answer our high dimension
and strongly coupled optimization problem. PGP is the product of kgen by kpop (i.e., the number
of evaluations then of simulations), the higher this parameter is, the longer the evolution will take.
To reduce the optimization computational costs, it is necessary to reach a compromise between fitness
results and calculation time.

Table 7. Design of experiments for the two variables PGP and RGP. The optimal number of generation
kgen and population size kpop are in bold.

PGP

500 1000 1500 2000 2500 3000

RGP

1
kpop 22 32 38 44 50 54

kgen 23 31 40 45 50 56

3
kpop 13 19 23 26 29 32

kgen 38 53 66 76 85 93

5
kpop 10 14 17 20 22 24

kgen 50 70 87 100 112 122

7
kpop 8 12 15 17 19 21

kgen 59 84 102 118 132 145

10
kpop 7 10 12 14 16 17

kgen 71 100 123 141 158 173

The results that really interest us, the final best fitness, are summarized in Figure 13. It can be
seen in Figure 13a that for any RGP, it is necessary to choose a PGP of at least 1500 but for RGP of 1.
However, in Figure 13b, we really observe a stagnation of the fitness value from PGP = 2000 and
RGP = 7. If PGP = 3000, the necessary RGP is around 3, and this RGP increases when PGP decreases.
We can therefore conclude that the optimum setting is PGP = 2000 is necessary for a RGP = 7. If a larger
PGP is available (if more CPU time is available), then we should decrease RGP to 3 for PGP = 3000.
This amounts to increasing the number of individuals in the population, i.e., taking advantage of
resources to increase parallelism, which can be enhanced materially by using multiprocessors. So we
choose kgen = 118 and kpop = 17.
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4.2. Impact of pm

The mutation probability pm is important for the initial population draw, the exploration phase
and the genetic stiring all along the evolution. If pm is too low, no new genetic material is found,
and if too high it is disruptive and prevent keeping good solutions. Here we study its impact upon
the fitnesses.

Initially, pm = was set at 1.55% as recommended by Chocron [26]. In order to refute or affirm this
choice, a sensitivity study based on pm was conducted. In order to observe only the operator effect of
the mutation, elitism was deactivated (i.e., the fact that the best individual is always re-injected into the
population). The results of the evolutions are shown in Figure 14. The maximum fitness increases from
0 to about 0.5%, then reaches a plateau of up to 2% and then gradually decreases. For pm = [0.5–2]%,
there is a peak at pm = 0.7%. However, the difference between the fitness value at pm = 0.7% and 1.5%
is very small. The choice of pm recommended by Chocron is therefore relevant as far as we focus on
the best fitness.
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In Figure 15, the evolution parameters are the ones just defined. We see in this 100-averaged run
that the exploration phase stops at gen = 10, followed by the exploitation phase ending for gen = 90.
This time, we observe a convergence phase (gen = 90 to 117) where favg stagnates just below fbest that
increases slightly. The convergence gap between fbest and favg is only 3% of the fbest value, as expected
in the canonical GA (<5%). In conclusion, we can consider these evolution parameters to be validated.
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Figure 15. Averaged over 100 evolutions (a) Fitness and (b) cost function evolution according to
the generation with kgen = 118, kpop = 17, pm = 0.5% (ICs = 800 € m−2, EC = 0.17 € kWh−1,
ban = bcath = 0.15 V dec−1).

Eventually, the evolution parameter are summarized in Table 8.

Table 8. Optimum evolution parameters.

Value

kpop 17

kgen 118

pc 50%

pm 0.5%

RGP 7

PGP 200

These evolution parameters allow to get the optimum DP set summarized in Table 9. The main
results are the difference in catholyte and anolyte thickness and electrode heights. Due to the presence
of gases, the minimum of electrolyte thickness cannot be chosen. The electrode height is set to the
minimum value available. There is twice as much gas injected in the catholyte than in anolyte. Thus,
the catholyte thickness hH2 is bigger than the anolyte thickness hH2. The lower the electrode height,
the lesser gases injected resulting in a lower void fraction. The pressure stays at 1 bar. It can be
explained by the fact that the surface coverage sensitivity regarding the pressure has not been taken
into account. Thus, at relatively low current density, the pressure effect increases the cell voltage.
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Table 9. Optimum DP with their associated hydrogen cost for ICs = 800 € m−2, EC = 17 c€ kWh−1,
r = 25 µm and Rmemb = 3.23 × 10−5 Ohm m2.

Value

hH2(m) 3 × 10−4

hO2 (m) 2 × 10−4

Helec(m) 5 × 10−2

j (A m−2) 1000

Y (-) 0.2

T (K) 350

p (bar) 1

CAPEX (€ kg −1) 0.22

OPEX (€ kg −1) 9.85

Fc (€ kg −1) 10.07

4.3. Optimization of the Naïve Solution

In the Section 2.3, we defined a naïve solution. In this section, we will compare this naïve solution
with a GA optimized solution with the same hypothesis. The Figure 16a presents the average and
best fitness according to the generations. The evolution is correctly achieved around gen = 97. In the
Figure 16b, it can be observed that the genetic optimization allows to decrease the random hydrogen
cost from 12.70 € kg−1 to 12.30 € kg−1
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Figure 16. Averaged over 100 evolutions (a) Fitness and (b) cost function evolution according to
the generation with kgen = 118, kpop = 17, pm = 0.5% (ICs = 14,000 € m−2, EC = 0.17 € kWh−1,
ban = bcath = 0.15 V dec−1).

The Table 10 summarized the DP of the two solutions (the naïve and optimized solutions) and
their corresponding hydrogen cost. The optimization allowed to find the optimal Helec, hO2, hH2 and Y.
The electrode height is decreased at 5 cm and the anolyte and catholyte thickness are decreased at
400 µm. The KOH mass fraction is decreased to 0.23 (the loss of electrical conductivity is balanced
by the decrease of void fraction allowed by a less viscous electrolyte). This optimization allows to
decrease the price of 0.18 € kg−1 (1% of decrease) and an increase the current density of 290 A m−2

(10% of increase).
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Table 10. Naïve and Optimum DP with their associated hydrogen cost for EC = 17 c€ kWh−1, r = 25 µm
and Rmemb = 3.23 × 10−5 Ohm m2.

Naïve GA1 GA2

ICs (€m−2) 1.4 × 104 1.4 × 104 8 × 102

hH2 (m) 1.5 × 10−3 4 × 10−4 3 × 10−4

hO2 (m) 1.5 × 10−3 4 × 10−4 2 × 10−4

Helec (m) 10−1 5 × 10−2 5 × 10−2

j (A m−2) 2923 3214 1000

Y (–) 0.3 0.23 0.2

T (K) 350 350 350

p (bar) 1 1 1

CAPEX (€ kg−1) 1.42 1.30 0.22

OPEX (€ kg−1) 11.06 11 9.85

Fc (€ kg−1) 12.48 12.30 10.07

The Figure 17 shows this result. It can be seen that the difference of price increase with an
increasing current density until reaching a difference of 0.72 € kg−1 at j = 104 A m−2.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 25 of 29 𝑇 (K) 350 350 350 𝑝 (bar) 1 1 1 𝐶𝐴𝑃𝐸𝑋 (€ kg−1) 1.42 1.30 0.22 𝑂𝑃𝐸𝑋 (€ kg−1) 11.06 11 9.85 𝐹 (€ kg−1) 12.48 12.30 10.07 

The Figure 17 shows this result. It can be seen that the difference of price increase with an 
increasing current density until reaching a difference of 0.72 € kg−1 at 𝑗  = 104 A m−2. 

 
Figure 17. CAPEX, OPEX, and total cost for the naïve solution (dashed line) and optimum solution 
(solid line) depending on the current density (𝐼𝐶௦ = 14,000 € m−2, 𝐸𝐶 = 0.17 € kWh−1, 𝑏 = 𝑏௧ = 
0.15 V dec−1). 

Figure 18a,b explains why there exist a difference of price. We can see that the ohmic 
overpotential is strongly decreased. In Figure 18b, it can be observed that the major cost of OPEX is 
mainly due to the activation overpotential and reversible voltage. 

 

(a) 

 

(b) 

Figure 18. (a) Cell voltage of the naïve solution (dashed line) and optimum solution (solid line) (b) 
proportion of the different voltage of the cell voltage depending on the current density. 

Figure 17. CAPEX, OPEX, and total cost for the naïve solution (dashed line) and optimum
solution (solid line) depending on the current density (ICs = 14,000 € m−2, EC = 0.17 € kWh−1,
ban = bcath = 0.15 V dec−1).

Figure 18a,b explains why there exist a difference of price. We can see that the ohmic overpotential
is strongly decreased. In Figure 18b, it can be observed that the major cost of OPEX is mainly due to
the activation overpotential and reversible voltage.
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The other overpotential are the same because they only are depending on the hypothesis.

5. Conclusions

A CFD model has been used to create an artificial neural network (ANN). This ANN allows the
estimation of the void fraction very quickly from 166 CPU hours to around 30 s for 500 evaluations.
However, further experimental studies must be performed to increase the accuracy of the CFD model.
Indeed, the CFD model is based on only 3 experimental cases. Thus, the bubble diffusivity coefficient
is not well correlated to the dimensionless parameters. With this new model, it would be possible
to predict with accuracy the diphasic boundary layer thickness. The genetic algorithm parameters
have been determined by making sensitivity analyses. To ensure a good optimization, the number
of evolutions PGP = 2000 and a RGP = 7 have been chosen. For the mutation rate pm, the only based
on the best fitness mutation rate (proposed by Chocron [26]), has been replaced by a more suitable
pm = 0.5% (using also the average fitness). For the electrolyzer design, the algorithm preconizes the
lowest height possible and find an optimum anolyte and catholyte thickness between 200 µm and
400 µm, depending on the optimum current density. It has been noticed that increasing the surface cost
ICs increases the optimal current density. The optimum pressure has been determined at 1 bar but the
surface coverage dependency according to the pressure (or the other parameters) has not been taken
into account. Moreover, Bensmann et al. [8] showed that the optimal pressure depends on also of the
compression, cooling, purity needed. Two further studies should be performed. The first one must
focus on the determination of the surface coverage w.r.t dimensionless parameter (Reynolds number
ReVG , Froude number FrVG , dimensionless electrolyte thickness and radius h∗, r∗). Another one should
address the influence of electrolyte and hydrogen temperature, pressure(s) of compression stage on the
global hydrogen production system (cooling, compression, purification of hydrogen).
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Appendix A

The model of Hammoudi et al. [10] used to calculate the reversible voltage in this written as
Equations (A1)–(A4).

Erev(T, P) = Erev(T, 1bar)

+
RT
nF

In
(
(P− Pw)1.5 Pw∗

Pw

)
+(P− Pw)

(
21.661× 10−6

−
5.471× 10−3

T

)
+(P− Pw)2

(
−

6.289× 10−6

T
+

0.135× 10−3

T1.5
+

2.547× 10−3

T2 −
0.4825

T3

) (A1)

Erev(T, 1bar) = 1.50342 − 9.956× 10−4
× T + 2.5× 10−7

× T2 (A2)

Pw = T − 3.498 exp
(
37.93 −

6426.32
T

)
exp

(
0.016214− 0.13802×C + 0.1933×C

1
2

)
(A3)

Pw∗ = T − 3.4159 exp
(
37.043 −

6275.7
T

)
(A4)

Appendix B

The following numerical experiments has been performed to train the ANN.

Table A1. Training set.

N◦ ReVG FrVG h* r* εfluent

1 −0.375 1 0.625 −0.25 2.07 × 10−4

2 −0.875 −0.5 0.75 0.125 3.52 × 10−4

3 −0.75 −0.125 −0.875 −0.5 1.95 × 10−3

4 −0.625 0.25 −0.375 1 3.868 × 10−4

5 0.5 0.875 −0.125 −0.75 3.972 × 10−4

6 1 −0.375 −0.25 0.625 4.543 × 10−4

7 0.25 −0.625 1 −0.375 3.884 × 10−4

8 0.125 0.75 0.5 0.875 1.737 × 10−4

9 0 0 0 0 3.624 × 10−4

10 0.375 −1 −0.625 0.25 1.477 × 10−1

11 0.875 0.5 −0.75 −0.125 8.782 × 10−4

12 0.75 0.125 0.875 0.5 1.897 × 10−4

13 0.625 −0.25 0.375 −1 5.931 × 10−4

14 −0.5 −0.875 0.125 0.75 7.161 × 10−4

15 −1 0.375 0.25 −0.625 5.067 × 10−3

16 −0.25 0.625 −1 0.375 3.289 × 10−3

17 −0.125 −0.75 −0.5 −0.875 1.515 × 10−3

18 1 −1 −1 1 1
19 1 1 1 1 1.219 × 10−4

20 −1 −1 1 1 1.856 × 10−1

21 1 −1 1 −1 2.096 × 10−2

22 −1 1 −1 1 1.063 × 10−1

23 −1 1 1 −1 2.935 × 10−3

24 1 1 −1 −1 3.986 × 10−3

25 −1 −1 −1 −1 1
26 −0.9325 −0.98 −0.95 −1 4.058 × 10−2

27 −0.9325 −1 −0.875 1 6.778 × 10−1

28 −0.99 −0.99 −0.95 1 9.828 × 10−2

29 −0.875 −0.99 −0.875 −1 2.301 × 10−2

30 −0.99 −0.98 −0.875 0 4.274 × 10−2

31 −0.875 −1 −0.95 0 8.424 × 10−1
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Table A1. Cont.

N◦ ReVG FrVG h* r* εfluent

32 −0.946 −0.990 −0.728 −0.427 1.460 × 10−2

33 −0.983 −0.997 −0.704 −0.200 4.440 × 10−2

34 −0.973 −0.996 −1.023 −0.578 4.539 × 10−1

35 −0.964 −0.994 −0.925 0.328 6.174 × 10−2

36 −0.881 −0.991 −0.876 −0.729 2.390 × 10−2

37 −0.844 −0.997 −0.900 0.101 3.623 × 10−2

38 −0.900 −0.998 −0.655 −0.503 1.993 × 10−2

39 −0.909 −0.992 −0.753 0.252 1.350 × 10−2

40 −0.918 −0.995 −0.851 −0.276 2.892 × 10−2

41 −0.890 −0.999 −0.974 −0.125 8.122 × 10−1

42 −0.853 −0.993 −0.999 −0.352 1.044 × 10−1

43 −0.863 −0.994 −0.679 0.026 1.155 × 10−2

44 −0.872 −0.996 −0.778 −0.881 2.310 × 10−2

45 −0.955 −0.999 −0.827 0.177 9.900 × 10−2

46 −0.992 −0.993 −0.802 −0.654 6.528 × 10−2

47 −0.937 −0.992 −1.048 −0.050 6.000 × 10−1

48 −0.927 −0.998 −0.95 −0.805 1.431 × 10−1

49 −0.8 −0.87 −0.85 −0.875 5.296 × 10−3

50 −0.8 −0.97 −0.55 −0.125 3.516 × 10−3

51 −0.9 −0.92 −0.85 −0.125 6.844 × 10−3

52 −0.7 −0.92 −0.55 −0.875 2.807 × 10−3

53 −0.9 −0.97 −0.7 −0.875 7.510 × 10−3

54 −0.7 −0.87 −0.7 −0.125 2.482 × 10−3

55 −0.9 −0.87 −0.55 −0.5 2.279 × 10−3

56 −0.7 −0.97 −0.85 −0.5 1.068 × 10−2

57 −0.8 −0.92 −0.7 −0.5 3.584 × 10−3

58 −0.8 −0.87 −0.85 −1 1.740 × 10−2

59 −0.8 −0.97 −0.55 −0.9 9.525 × 10−3

60 −0.7 −0.92 −0.85 −0.9 1.082 × 10−2

61 −0.9 −0.92 −0.55 −1 1.636 × 10−2

62 −0.7 −0.97 −0.7 −1 3296 × 10−2

63 −0.9 −0.87 −0.7 −0.9 3899 × 10−3

64 −0.7 −0.87 −0.55 −0.95 7417 × 10−3

65 −0.9 −0.97 −0.85 −0.95 1508 × 10−2
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