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Abstract: Sericin is a 10-to-400 kDa hydrophilic protein with high serine content and is a silk
constituent together with fibroin. It is produced in the middle silk gland of the silkworm and encoded
by four sericin genes. The molecular weight of sericin and its biological activity vary depending
on the extraction method employed. Its chemical structure, in terms of random coil and β-sheet
conformations, also differs with the extraction method, thereby extending its applications in various
fields. Sericin, which was discarded in the textile industry in the past, is being applied and developed
in the biomedical field, owing to its biological properties. In particular, many studies are underway
in the field of tissue engineering, evaluating its applicability in burn dressing, drug delivery, bone
regeneration, cartilage regeneration, and nerve regeneration.
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1. Introduction

Raw silk produced by Bombyx mori is a natural protein fiber comprising hydrophobic fibroin and
hydrophilic sericin [1–3]. Fibroin is a core filament that provides stiffness and strength and makes up
more than 70% of the cocoon. Sericin makes up 20–30% of the cocoon and is a glue-like protein that
binds fibroin fibers together [4–6].

For a long time, silk sericin was discarded in the silk industry through a degumming process to improve
the value of silk as a textile fiber and simply regarded as waste [1,2]. Fibroin exhibits low inflammatory
activity, excellent biocompatibility and mechanical properties, and controllable degradability; hence,
many studies have been conducted on its non-textile applications, especially medical applications [7–10],
and it has been widely used in membranes for guided bone regeneration [6,11,12], scaffolds for tissue
engineering [13–17], wound dressing [18–20], cornea tissue engineering [21], artificial eardrums [22],
vascular grafts [23,24], nerve guidance conduits [25], and drug delivery carriers [26].

Only recent reports on new functions of sericin have demonstrated its beneficial properties such as
biocompatibility [27], biodegradability, collagen production, and anti-oxidative, anti-tyrosinase,
anti-inflammatory, anticoagulatory, antitumor, anti-aging, and anti-wrinkle effects [5,10,28–31].
Therefore, sericin has been applied in wound dressing [32–36], corneal abrasion treatment [37,38], cell
culture media [39–43], anticancer drugs [32], and cosmetics for skin, nails and hair [44,45].

The purpose of this paper is to report the recently updated information on sericin genes and their
influence on the molecular weight and biological activities of sericin depending on the degumming
method, as well as to review the application of sericin in tissue engineering.
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2. Sericin as a Degumming Product

2.1. Sericin Gene

Sericin proteins are synthesized by alternative splicing of sericin genes, which are regulated as
per different phases of larval development [32]. Sericin proteins are synthesized in the middle silk
gland (MSG) of the silkworm, B. mori [46]. Until now, four sericin genes have been reported, namely,
sericin1, sericin2, sericin3, and sericin4, all of which are located on chromosome 11 [47].

The first discovered gene was that encoding sericin 1, which is approximately 24 kb long and
contains nine axons [48,49]. This gene can be alternatively spliced as four mRNAs (10.5, 9.0, 4.0, and
2.8 kb) [50–52]. The sericin2 gene is approximately 16.2 kb long and comprises 13 exons [50,51]. It can
be alternatively spliced as two mRNAs (3.1 and 5.0–6.4 kb) [51]. The organization of sericin2 is similar
to that of sericin1 in that the first two exons are similar in size and encode the signal peptide [53].
Takasu et al. discovered sericin3 with a size of 6.6 kb and a transcript of 4.9 kb containing 3 exons [54].
The most recently discovered gene, sericin4, is approximately 40 kb in size and contains 34 exons.
It was identified to have six alternatively spliced transcripts [47].

Sericin 1 and 4 proteins are synthesized in the middle and posterior part of the MSG; however,
sericin 2 and 3 proteins are synthesized in the anterior part of the MSG (Figure 1) [47,54–56]. Sericin 1
is synthesized from the first to the fifth instar, while sericin 2 is synthesized from the first instar to the
fifth day of the fifth instar [55,57]. Sericin 3 is synthesized only after the fifth day of the fifth instar,
while sericin 4 is synthesized from the first instar to the fourth instar [47,57].
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Silkworms produce two types of silk: cocoon silk and non-cocoon silk. As the synthesis locations
of proteins in the silk gland determine their position in silk, the innermost and outmost sericin layers
in cocoon silk comprise of sericin 1 and 3, respectively, whereas the outer and inner sericin layers
in non-cocoon silk consist of sericin 2 and 4, respectively [32,47,55]. Non-cocoon silk with sericin
2 and 4 may exhibit better adhesion than cocoon silk with sericin 1 and 3, because sericin 2 and 4
have a higher percentage of charged amino acids than others [47,53]. In addition, sericin 2 and 4
contain fewer serine residues than sericin 1 and 3, suggesting that sericin proteins in non-cocoon silk
form fewer β-sheet structures than those in cocoon silk [47,52,54,55]. The structural differences in
sericin consistent with the distribution of sericin proteins in these two types of silk are also reflected in
functional differences [47]. Sericin 1 and 3, the main components of the cocoon shell, have a rather
rigid structure that forms the cocoon. In contrast, sericin 2 and 4 have adhesive properties, necessary
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to anchor the larval body to the surrounding material, such as a tree branch, without the need to form
a rigid structure [47,53,55].

2.2. Sericin Molecular Weight and Degumming Process

Sericin, composed of 18 amino acids, is a water-soluble globular protein with molecular weights
ranging from 10 to 400 kDa [29,30,32,58]. Its molecular weight varies depending on the extraction
method employed [58,59]. Several strategies have been used for the extraction of sericin from the
cocoon of B. mori, including extraction using high temperature, with or without high pressure, acids,
alkalis, urea, and enzymes [32,58,60]. Degumming conditions such as temperature, time, chemical
additives, and solution concentrations can be modified to achieve better efficacy [32]. The extraction
yield and the morphology of cocoon extracts vary depending on the degumming conditions such as
solvent and temperature (Figure 2). In addition, protein content and molecular weight vary depending
on the degumming conditions (Figure 3). The chemical structure of cocoon extracts changes as per these
conditions (Figure 4). The higher the concentration of ethanol (EtOH) and the lower the temperature,
the higher is the crystallinity. The random coil and β-sheet conformations of cocoon extracts also
change based on the degumming conditions (Figure 5 and Table 1).
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(a) Extraction yields (%) calculated by dividing the solid component in the various extracts by the
weight of input cocoons. (b) Cocoon extracts solutions after concentration by an evaporator. (c) Cocoon
extract powders obtained by lyophilization.
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Figure 3. Effects of extraction conditions on protein content (%) and molecular weight of proteins. (a) 
Percentage of protein and non-protein fractions included in the extracts. (b) SDS-PAGE results for 
various cocoon extracts. Lane “M” and ”1”–”4” indicate marker (M), silk sericin extracted by using a 
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Figure 3. Effects of extraction conditions on protein content (%) and molecular weight of proteins.
(a) Percentage of protein and non-protein fractions included in the extracts. (b) SDS-PAGE results for
various cocoon extracts. Lane “M” and ”1”–”4” indicate marker (M), silk sericin extracted by using a
hot water system (1), cocoon extracts prepared by 30% ethanol (EtOH) at 40 ◦C (2), 60 ◦C (3), 80 ◦C
(4), respectively. Lanes ”5”–”7” indicate cocoon extracts prepared by 70% EtOH at 40 ◦C (5), 60 ◦C (6),
80 ◦C (7), respectively.
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Figure 4. Effects of extraction conditions on the chemical structure of cocoon extracts. (a) FTIR spectra 
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and (b) amide I crystallinity index of various cocoon extracts. A cocoon extract prepared using the hot
water extraction system was considered as a control. * p < 0.05, ** p < 0.01,*** p < 0.001.
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Figure 5. Effects of extraction conditions on the conformations of cocoon extracts in aqueous solution.
CD spectra of various cocoon extracts prepared in 30% ethanol (a) and 70% ethanol (b) at 40 ◦C,
60 ◦C, and 80 ◦C. A cocoon extract prepared by the hot water extraction system was considered
as a control. Yellow marks indicate the wavelengths corresponding to random coil and β-sheet
conformations, respectively.
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Table 1. Calculated conformations of various cocoon extracts prepared by using different solvents at
different temperatures.

Sample Helix Sheet Turn Others

Hot water extracts 3.40% 34.40% 14.20% 48.00%

30% EtOH extracts

40 ◦C 2.30% 39.50% 13.90% 44.30%

60 ◦C 4.30% 37.10% 14.10% 44.50%

80 ◦C 6.90% 33.90% 14.90% 44.30%

70% EtOH extracts

40 ◦C 0.60% 41.90% 13.40% 44.10%

60 ◦C 0.60% 41.40% 13.60% 44.40%

80 ◦C 1.70% 40.10% 13.80% 44.40%

Sericin extracted by the conventional method of boiling have a molecular weight of 10 to
220 kDa [61], while those extracted by the high-temperature and high-pressure degumming technique
(autoclaving) have molecular weights ranging from 20 to 400 kDa [62]. Sericin extracted by the
acid-degradation method has a molecular weight in the range of 35–150 kDa, while that extracted by
the alkali-degradation method has a molecular weight in the range of 15–75 kDa [63]. Sericin extracted
with a urea solution was found to have a molecular weight in the range of 10 to >225 kDa [64].

2.3. Cellular Response to Sericin and Influence of the Degumming Method on Sericin Biological Activity

Sericin is a fundamental insect protein produced by the silkworm. There is no doubt that it
is a foreign protein and hence immunogenic to humans. While some studies stated sericin to be
a biocompatible and non-immunogenic protein, this should be accepted as a relative statement in
comparison with highly immunogenic foreign proteins. Even human proteins may be immunogenic
upon denaturation. As mentioned, different degumming processes produce different yield ratios
and protein structures. Considering that protein structure is the main determinant of its biological
response, the degumming process may influence sericin activity. The effects of the degumming process
on the macrophage response and β-sheet content of silk fibroin have been documented [65]. As the
silkworm cocoon protects the larva from the outer environment, sericin is assumed to have antibacterial
properties. However, a recent paper proved that sericin lacks antibacterial properties [66].

Sericin may be an allergen for some people [67]. Immunogenic responses to sericin have been
studied in RAW264.7 cells. Insoluble fibroin particles, but not soluble sericin, significantly increased
tumor necrosis factor-α (TNFα) levels [27]. When sericin was administered to mouse monocytes and
alveolar macrophages, the levels of TNFα and interleukin-1β (IL1β) increased in a dose-dependent
manner [68]. Interestingly, these elevated levels of TNFα and IL1β, following sericin administration,
did not result in delayed wound healing in animal models [68]. Similarly, sericin increased the
TNFα level in RAW264.7 cells, but a silk mat with sericin enhanced new bone formation in the rat
calvarial defect model [69]. Sericin also activated the nuclear factor kappa B (NF-κB) pathway, which
is implicated in the inflammation of retinal pigment epithelial cells [70]. Sericin increased vascular
endothelial growth factor (VEGF) in RAW264.7 cells through elevation of hypoxia inducible factor
(HIF) expression [71]. The administration of sericin increased VEGF expression in human umbilical
vein cells [72]. A silk mat produced by cutting and peeling off B. mori cocoons was tested for bone
regeneration in the extraction socket of humans [73]. The soluble proteins (mainly sericin) released
from these silk mats increased the expression of the genes associated with angiogenesis such as VEGF
and inflammation (IL1β and TNFα) (Figure 6) [74]. Sericin was shown to elevate the expression levels
of IL1β, TNFα, and VEGF [68,69,71]. When sericin was fractioned according to its molecular weight,
the fraction with higher molecular weight increased TNFα expression in RAW264.7 cells more than
that with lower molecular weight [75].
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the expression levels of genes after 2 h and 8 h. Layer 1 was obtained from the innermost layer of
silkworm cocoon, and Layer 4 from the outermost layer (Reproduced from a published article [74] with
permission).

Unlike most publications, some studies have reported the anti-inflammatory potential of sericin.
Topical application of sericin (80 µg/mL) could significantly lower cyclooxygenase (COX)-2 levels
as compared to water application in a carrageenan-induced inflammation model [76]. While sericin
alone could not reduce lipopolysaccharide-induced serum TNFα expression, naringenin-loaded sericin
reduced this effect [77]. The amelioration of TNFα levels in the naringenin-loaded sericin group was
stronger than that observed in the naringenin group [77]. Sericin exhibited a protective effect similar
to that of metformin in the kidneys of rats with diabetic nephropathy through the suppression of
the transforming growth factor (TGF)-β1/Smad3 pathway [78]. Sericin may also exert antioxidant
activities, which highly vary depending on the species that produced it [31]. Sericin extracted from
Antheraea mylitta cocoon was applied to AH927 cells and was found to reduce the oxidative stress
induced by hydrogen peroxide [79]. Sericin inhibited lipid peroxidation and tyrosinase activity [44]
and accelerated the attachment of human dermal fibroblasts in culture [80]. Sericin from B. mori
stimulated cellular migration via the c-Jun mediated pathway [81] and increased the expression of
osteocalcin and alkaline phosphatase in osteoblasts cultured on sericin-coated titanium surface [82].

The thermal stability of sericin varies depending on the chemicals used for its extraction [63].
Further, the biological activity of sericin also varies owing to differences in its molecular weight and
amino acid composition, depending on the extraction method [29,32]. The biological response to
sericin is highly dependent on the extraction method used. Sericin extracted by urea is highly toxic
to cells, but heat-degraded sericin is relatively non-toxic [64]. In terms of anti-tyrosinase activity,
sericin extracted using urea exhibits higher activity than alkali-degraded sericin [63]. Tyrosinases are
copper-containing enzymes that catalyze the conversion of monophenol to ortho-quinone [83]. Sericin
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plays the role of an antioxidant and inhibits tyrosinase activity [84]. It may be useful for the treatment
and prevention of reactive oxygen species (ROS)-related diseases, including cancer, neurodegenerative
diseases, diabetes, and cardiovascular dysfunction [85,86]. The comparison of the antioxidant activities
of sericin proteins extracted by different methods showed that sericin extracted by the alkali method
had the best activity, followed by that prepared by autoclaving and the conventional method [29].
During degumming, sericin undergoes fragmentation, and hence, has different molecular weights. The
molecular weight of sericin has a marginal effect on cellular toxicity [1]. However, the crystallization
and mechanical properties of sericin improve with an increase in its molecular weight [1]. Therefore,
the in vivo response to sericin may also differ based on its molecular weight. The various biological
activities associated with each degumming method are summarized in Table 2.

Table 2. Molecular weight and biological activity of sericin according to the degumming method used.

Extraction Technique Molecular Weight Biological Activity Reference

Autoclaving at 120 ◦C for 60 min 25–150 kDa Sericin extracted using urea exhibited
the highest cell toxicity and the lowest

induction of collagen production, while
sericin extracted by the autoclaving

method showed the lowest cell toxicity
and the highest induction of

collagen production.

[64]
1.25% citric acid solution heated for 30 min 50–150 kDa

0.5% Na2CO3 solution heated for 30 min 15–75 kDa

8 M urea for 30 min followed by heating at
85 ◦C for 30 min

from 10 to >225 kDa

Autoclaving at 120 ◦C for 60 min 35–150 kDa
Compared to other extraction methods,
sericin extracted using urea exhibited

the highest antityrosinase activity.
[63]

1.25% citric acid solution heated for 30 min 35–150 kDa
0.5% Na2CO3 solution heated for 30 min 15–75 kDa

8 M urea for 30 min followed by heating at
85 ◦C for 30 min from 10 to >225 kDa

Autoclaving at 120 ◦C for 20 min smear
Sericin extracted by the

alkali-degradation method showed
higher efficacy in antioxidant potential

than conventional or
autoclaving methods.

[29]

1.25% citric acid solution heated for 30 min smear

0.5% Na2CO3 solution heated for 30 min smear with a clear band
at 75 kDa

8 M urea for 30 min followed by heating at
85 ◦C for 30 min 10–120 kDa

0.02 M Na2CO3 solution heated for 30 min smear

Conflicting results from cellular experiments using sericin may be attributed to the following
reasons. First, many papers did not describe sufficiently the extraction method of sericin that was
employed. Considering the biological effect of the extraction method, the discrepancy in the biological
response to sericin may be attributed to the differences in the extraction methods. Second, the biological
response to sericin may be different depending on the species it was obtained from. Most studies
tested sericin proteins from B. mori or A. mylitta; their species-dependent activities have already been
well demonstrated [31]. Third, the biological response to sericin may be also different depending on
sericin molecular weight; however, there have been few papers about this. If high-molecular-weight
sericin is more effective than low-molecular-weight sericin, sericin fragments can be separated as
fractions based on their molecular weights, after extraction from cocoons. Considering that sericin is a
protein, most cellular responses may be mediated via cell surface receptors. As human cell receptors
corresponding to sericin have rarely been studied, cellular responses specific to sericin have not been
elucidated in detail.

3. Sericin and Tissue Engineering

3.1. Sericin for Burn Dressing

Wound healing is a dynamic and complex process involving a highly organized and coordinated
series of events [30,87]. Theses complex events occur in four overlapping phases: hemostasis,
inflammation, proliferation, and remodeling [30,87–89]. Chronic wounds such as burns, diabetic
wounds, and ulcers result in tissue injury, which becomes irreparable within a typical time period due
to disturbance by various factors that prolong one or more of the four normal healing phases [87,90].
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A burn is a tissue lesion characterized by changes varying from local erythema to complete
destruction of the affected structure [91]. Burns are associated with significant mortality and disability,
multiple surgeries, longer period of hospitalization and rehabilitation, and high medical costs [92].
The purpose of managing and treating burns is to induce epithelialization as quickly as possible for
prevention of infection and reduction of functional and aesthetic sequelae [91]. Burns often lead to
sepsis; hence, topical antimicrobial agents are always prophylactically administered to prevent the
complications of infections [92].

Silk sericin has been directly used in regenerative medicine to maintain the proliferation of
keratinocytes and fibroblasts during the wound healing process [93]. It can induce fibroblast proliferation
and collagen production without the activation of pro-inflammatory cytokines [64,68,94,95]. Further, it
can be formulated and used as a wound dressing or cream to control wound infection [30] and employed
to treat burns, reduce scarring, and prevent infection [91]. The antioxidant activity of silk sericin may help
in the scavenging of ROS generated in chronic wounds. Therefore, sericin-containing substances may
prevent the prolonged inflammation of chronic wounds and help in rapid healing by turning the wound
healing process into a proliferative phase [96,97].

Both a sericin cream and a cream combining sericin with silver sulfadiazine promoted healing of
full-thickness burn wounds in rats [95]. In addition, clinical studies have shown that a cream containing silk
sericin in combination with silver sulfadiazine is safe and beneficial for treating burns [93]. Another study
found that chitosan-sericin-silver nanocomposite films accelerated the process of burn wound healing
through fibroblasts differentiation, angiogenesis, and collagen reorganization in animal models [90].

3.2. Sericin for Oral Gargling

Sericin inhibits tyrosinase activity and tyrosinase has close relation with skin pigmentation [84].
Accordingly, sericin has been used in cosmetics [59]. When a sericin gel is applied to the skin, the
hydration level is increased [98]. Sericin treated skin shows a higher level of hydroxylproline than skin
treated with distilled water [98]. Many elderly people suffer from xerostomia. Increased hydration by
sericin used for oral gargling will be beneficial for those people. In addition, sericin accelerates wound
healing [93]. Though the antimicrobial effect of sericin is controversial, increasing hydration and
wound healing are enough to support the use of sericin as an oral gargling ingredient. Mulberry leaves
are eaten by silkworm, and approximately 70% of mulberry proteins are used to produce silkworm
cocoons [99]. Mulberry leaves have been used for oral gargle [100].

There have been few papers on sericin use for oral gargle. Only a single paper was found in
Google scholar database. The effect on halitosis of a sericin gargle was compared with that of a
commercial product [101]. The sericin gargle showed a lower level of hydrogen sulphide compared to
the commercial product [101]. Currently, only one oral gargle containing silk protein is available in the
market (Figure 7). Considering the beneficial effects of sericin on wound healing, the production of
oral gargles containing sericin will probably increase in the near future.

3.3. Sericin for Drug Delivery

Drug delivery systems are used to improve the effectiveness of therapeutic agents through efficient
targeting, modulated release, or stabilization of the molecular state of drugs [60]. An optimal effect
of the drug is achieved with a reliable and controlled release profile, which is particularly important
when the drug exerts undesirable side-effects. Silk proteins can be used as drug carriers, owing to
their biocompatibility and adjustable morphology [102]. Sericin can be potentially applicable to drug
delivery because of its chemical activity and pH responsiveness [60].
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Wang et al. reported a fabricated covalently crosslinked 3D pure sericin hydrogel that is injectable
and exhibits several physical and chemical properties that promote a sustained drug release [103].
This hydrogel could serve as an efficient drug delivery system. Nishida et al. used sericin of
different molecular sizes, concentrations, and forms, and evaluated the in vitro release and in vivo
biodegradation of a charged protein, fluorescein isothiocyanate-albumin [104]. The higher the
concentration of sericin, the longer was the release of the charged protein. In a rat model, this sericin
preparation gradually decreased in size and weight, and the charged drug protein remained for 3 to
6 weeks or longer [104]. Therefore, sericin can be used as a drug delivery biomaterial. Zhang et al.
reported that a sericin-alginate interpenetrating network hydrogel maintained controlled drug release
at an adjustable rate [105]. This hydrogel adhered to cells and supported their proliferation, long-term
survival, and migration and could be used as a versatile platform for drug delivery. Parisi et al. reported
the use of sericin/poly(ethyl cyanoacrylate) nanospheres as a delivery system for fenofibrate, a lipophilic
drug used as lipid-regulation agent [106]. This system increased the absorbable amount of fenofibrate
by 70%, improved plasma lipid levels, and decreased lipid storage in the liver, demonstrating its
suitability for poorly water-soluble drugs.

3.4. Sericin for Bone Regeneration

Self-healing in severe bone defects is rare, necessitating treatment with artificial bone substitutes [107].
Sericin extracted from silk cocoons has been used in soft tissue engineering, for example, for epithelial
and connective tissue repair [32]. The mechanical properties of sericin are suitable for soft tissue repair;
however, the lack of mechanical strength makes sericin less applicable for bone regeneration [60,107].
Nevertheless, sericin can be used as an artificial bone substitute for severe bone defects if it is modified to
improve its mechanical and bone-inducing properties [107].

Pure sericin is not used as a scaffold for bone tissue engineering because of its poor mechanical
properties [60]. The nucleation of hydroxyapatite (HA) crystals is caused by anionic side chains that
bind Ca2+, which means that the amount of acidic amino acids in sericin may affect the nucleation
of hydroxyapatite crystals [108]. Zhang et al. reported that HA/sericin composite films could
maintain the viability of human osteosarcoma MG-63 cells, owing to the deposition of HA and its
three-dimensional structure; hence, these films could be applied for bone tissue engineering [109].
Veiga et al. reported the non-toxicity of HA/sericin nanocomposites, which increased cell viability [110].
Qi et al. fabricated a sericin methacyloyl/graphene oxide hydrogel with tunable mechanical strength
and osteoinductive ability as a scaffold for the functional repair of bone tissue [107]. This scaffold
had good biocompatibility, cell adhesion properties, cell proliferation and migration abilities, and
osteogenic induction properties [107]. After implantation into a rat model of calvarial defect, this
scaffold effectively promoted new bone regeneration and induced autologous bone marrow-derived
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mesenchymal stem cell differentiation, thereby achieving structural and functional repair within
12 weeks [107]. Therefore, sericin-based biomaterials can be used in bone tissue engineering.

3.5. Sericin for Other Tissues

In addition to the aforementioned tissue engineering applications, sericin has been used for
cartilage or nerve regeneration. Dinescu et al. reported that a collagen-sericin scaffold improved with
hyaluronic acid and chondroitin sulfate could be used as a temporary physical support for human
adipose-derived stem cells for cartilage tissue engineering [111]. Hyaluronic acid and chondroitin
sulfate are the most beneficial prochondrogenic factors used in the design of new biomaterials for
cartilage tissue engineering, and adipose-derived stem cells have been demonstrated to exhibit high
chondrogenic potential [111]. Qi et al. reported that artificial cartilages were effectively formed 8 weeks
after injection of chondrocyte-laden sericin methacryloyl hydrogel in a rat model [112]. This artificial
cartilage showed histological, molecular, and mechanical similarities to natural cartilage.

Xie et al. reported for the first time the use of a pure sericin conduit for peripheral nerve
regeneration in a rat nerve injury model [113]. This sericin/silicone nerve guidance conduit can be
used as an alternative to autologous nerve grafts to repair damaged peripheral nerves, as it induced
functional recovery similar to that of an autologous nerve graft. Li et al. reported on nerve regeneration
using a carbon nanotube/sericin nerve conduit in a rat nerve injury model [114]. This conduit can
effectively promote the structural and functional recovery of nerves comparable to an autograft.

4. Conclusions

Sericin has different beneficial properties such as suitable chemical structure and biological activity,
which vary depending on the extraction method employed. Many studies have been conducted on the
biomedical applications of sericin, and recent studies on sericin for tissue engineering have received
special attention. It is necessary to select an extraction method that can efficiently provide the necessary
structure and impart the appropriate biological activity to sericin, according to the desired applications.
This may encourage the commercialization of sericin for biomedical applications. In the future, more
comparative studies on sericin biological activity depending on the extraction methods are needed.
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