Interferometric Wavefront Sensing System Based on Deep Learning
Abstract
:1. Introduction
2. Method
2.1. Wavefront Detecting System
2.2. Wavefront Analysis Neural Network
2.2.1. Models
2.2.2. Training Data Generated
2.2.3. Training Networks
3. Experiment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tyson, R.K.; Wizinowich, P.L. Principles of Adaptive Optics. In Physics Today; Day, C., Ed.; AIP: College Park, MD, USA, 1992; Volume 45, p. 100. [Google Scholar]
- Liang, J.; Grimm, B.; Goelz, S.; Bille, J.F. Objective measurement of wave aberrations of the human eye with the use of a Hartmann&ndash Shack wave-front sensor. J. Opt. Soc. Am. A 1994, 11, 1949–1957. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, P.R.; Hirsche, B.L.; Manning, C.J. Ultra-rapid-scanning Fourier transform infrared spectrometry. Vib. Spectrosc. 1999, 19, 165–176. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Angel, J.R.P.; Wizinowich, P.; Lloyd-Hart, M.; Sandler, D. Adaptive optics for array telescopes using neural-network techniques. Nat. Cell Biol. 1990, 348, 221–224. [Google Scholar] [CrossRef]
- Fienup, J.R.; Marron, J.C.; Schulz, T.J.; Seldin, J.H. Hubble Space Telescope characterized by using phase-retrieval algorithms. Appl. Opt. 1993, 32, 1747–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGuire, P.C.; Sandler, D.G.; Lloyd-Hart, M.; Rhoadarmer, T.A. Adaptive optics: Neural network wavefront sensing, reconstruction, and prediction. Sci. Appl. Neural Netw. 2007, 522, 97–138. [Google Scholar]
- Guo, H.; Xu, Y.; Li, Q.; Du, S.; He, D.; Wang, Q.; Huang, Y. Improved Machine Learning Approach for Wavefront Sensing. Sensors 2019, 19, 3533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishizaki, Y.; Valdivia, M.; Horisaki, R.; Kitaguchi, K.; Saito, M.; Tanida, J.; Vera, E. Deep learning wavefront sensing. Opt. Express 2019, 27, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Lane, R.G.; Tallon, M. Wave-front reconstruction using a Shack-Hartmann sensor. In Applied Optics; Driggers, R., Ed.; OSA: Washington, DC, USA, 1992; Volume 31, pp. 6902–6908. [Google Scholar]
- Booth, M.J. Adaptive Optics in Microscopy. In Optical and Digital Image Processing: Fundamentals and Applications; Cristobal, G., Schelkens, P., Thienpont, H., Eds.; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Bruning, J.H.; Herriott, D.R.; Gallagher, J.E.; Rosenfeld, D.P.; White, A.D.; Brangaccio, D.J. Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses. Appl. Opt. 1974, 13, 2693–2703. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Harding, K. Conversion from phase map to coordinate: Comparison among spatial carrier, Fourier transform, and phase shifting methods. Opt. Lasers Eng. 2007, 45, 342–348. [Google Scholar] [CrossRef]
- Dasarathy, B.V.; Shah, V.P.; Younan, N.H.; Durbha, S.S.; King, R.L. Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2007. In Proceedings of the SPIE Defence&Security Symposium, Orlando, FL, USA, 9–13 April 2007. [Google Scholar]
- Goldstein, R.M.; Zebker, H.A.; Werner, C.L. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Sci. 1988, 23, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Cumming, I. A region-growing algorithm for InSAR phase unwrapping. IEEE Trans. Geosci. Remote. Sens. 1999, 37, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Flynn, T.J. Consistent 2-D phase unwrapping guided by a quality map. In Proceedings of the International Geoscience and Remote Sensing Symposium, Lincoln, NE, USA, 31 May 1996; pp. 2057–2059. [Google Scholar]
- Golub, G.H.; Van Loan, C.F. Matrix Computations—Third edition; The Johns Hopkins University Press: Baltimore, MD, USA, 1996. [Google Scholar]
- Businger, P.; Golub, G.H. Linear least squares solutions by householder transformations. Numer. Math. 1965, 7, 269–276. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Honolulu, Hawaii, HI, USA, 21–26 July 2017; pp. 770–778. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Net1 | Branch Cut | Quality-Guided | |
---|---|---|---|
RMSE | 0.07 | 0.06 | 0.22 |
Time | 1.04 s | 1.94 s | 12.48 s |
Net1 | Branch Cut | Quality-Guided | |
---|---|---|---|
RMSE | 0.37 | 1.48 | 1.02 |
Time | 1.06 s | 1.97 s | 12.73 s |
1.7944 | 0.6126 | 0.27979 | −0.96737 | −1.01558 | −0.44856 |
−0.00485 | 0.11478 | −0.02006 | −0.14852 | −0.07189 | −0.09368 |
−0.11007 | −0.07977 | −0.06551 | 0.04326 | −0.11056 | −0.09216 |
−0.14109 | 0.04773 | 0.09532 | 0.5545 | 0.06727 | 0.10555 |
0.05787 | −0.01177 | −0.06569 | −0.01927 | 0.05708 | 0.00327 |
−0.03634 | −0.04515 | −0.04231 | 0.02874 | 0.05204 | −0.0082 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Gao, Z.; Gao, C.; Zhao, J.; Wang, X. Interferometric Wavefront Sensing System Based on Deep Learning. Appl. Sci. 2020, 10, 8460. https://doi.org/10.3390/app10238460
Niu Y, Gao Z, Gao C, Zhao J, Wang X. Interferometric Wavefront Sensing System Based on Deep Learning. Applied Sciences. 2020; 10(23):8460. https://doi.org/10.3390/app10238460
Chicago/Turabian StyleNiu, Yuhao, Zhan Gao, Chenjia Gao, Jieming Zhao, and Xu Wang. 2020. "Interferometric Wavefront Sensing System Based on Deep Learning" Applied Sciences 10, no. 23: 8460. https://doi.org/10.3390/app10238460
APA StyleNiu, Y., Gao, Z., Gao, C., Zhao, J., & Wang, X. (2020). Interferometric Wavefront Sensing System Based on Deep Learning. Applied Sciences, 10(23), 8460. https://doi.org/10.3390/app10238460