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Abstract: At present, most wavefront sensing methods analyze the wavefront aberration from light
intensity images taken in dark environments. However, in general conditions, these methods are
limited due to the interference of various external light sources. In recent years, deep learning
has achieved great success in the field of computer vision, and it has been widely used in the
research of image classification and data fitting. Here, we apply deep learning algorithms to the
interferometric system to detect wavefront under general conditions. This method can accurately
extract the wavefront phase distribution and analyze aberrations, and it is verified by experiments
that this method not only has higher measurement accuracy and faster calculation speed but also has
good performance in the noisy environments.
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1. Introduction

When light is transmitted over long distances in space, it is often interfered by numerous factors
(atmospheric turbulence, humidity, etc.) to distort the wavefront. The wavefront aberration of
light has traditionally been an important factor affecting the imaging quality of optical systems.
Adaptive optics technology (AO) is the most effective measure to overcome and compensate wavefront
aberration [1]; it has a wide range of applications in astronomy, microscopy, radar, and other research
fields. The wavefront detector is an important part of the adaptive optics systems. It can analyze the
degree of the aberration and finally convert it into the control signal to the corrector to automatically
compensate for the aberration, thereby improving the imaging quality of the optic systems. With the
continuous development of technology, many fields have higher requirements for measurement
technology. They not only need to have a faster measurement speed but also need to have higher
accuracy. However, traditional wavefront detection methods such as the Hartmann–Shack method [2],
Fourier spectroscopy method [3], etc. have been unable to meet these requirements. Therefore,
new methods are needed to make up for the shortcomings of traditional technologies.

Machine learning, including deep learning, has become an increasingly hot topic now. It is based
on the biological neuron model of the human brain, which can learn from examples to solve the
problem of function approximation or pattern classification [4]. In the early days, some people applied
machine learning methods in the field of optics. They used a multilayer perceptron to measure the
optical phase distortion caused by air turbulence [5]. Later, this method was used in the wavefront
reconstruction system of the Hubble Telescope [6]. With the advent of neural networks, methods of
applying neural networks to adaptive optics for wavefront detection and reconstruction were also
proposed [7]. Recently, evidence reveals that the use of convolutional neural networks can realize the
wavefront reconstruction of the point source [8]. Furthermore, Zernike coefficients were computed
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with a deep neural network framework based on the wavefront of the point source and extended
source received by the wavefront detector [9].

At present, most wavefront sensing methods use a detector to directly record the light intensity
distribution of the wavefront [8–10] and then analyze the phase distribution and wavefront aberration.
However, these methods only work well under dark conditions, because any interference from external
light sources will be recorded by the detector, which directly affects the measurement result. Therefore,
the application of these methods is very limited. In this study, neural network algorithms were applied
to the interference system, which can realize the measurement of the distorted wavefront in the general
environment. Finally, it is verified by experiments that this method not only has higher measurement
accuracy and faster calculation speed but also has good performance in noisy environments.

2. Method

2.1. Wavefront Detecting System

A wavefront is a combination of points where light has the same phase in space, and the
wavefront aberration refers to the difference between the actual wavefront and the ideal wavefront [11].
In wavefront detection, it is crucial to get the distorted wavefront phase distribution first, and then
the wavefront aberration can be further analyzed. The phase-shifting (PS) method [12], as a common
phase measurement method, is very common in various interference systems. In the industrial field,
the wavefront detection technology based on the phase-shifting interference device is widely used in the
detection of optical surface defects, because it has the advantages of a large measurement field and high
measurement accuracy. The phase-shifting method can generate multiple interference fringe patterns
by continuously changing the phase value of the reference beam, and it extracts the phase distribution
of the measuring beam according to the relationships between the fringe patterns. Compared with other
phase extraction methods such as the Fourier transform method [13], wavelet transform method [14],
etc., the phase-shifting method is quite insensitive to background intensity and it can achieve pixel-wise
phase measurement with higher resolution and accuracy. Therefore, using phase-shifting interference
system for wavefront detection will not be interfered by external light sources, and it can better
complete the measurement task in a general environment, which breaks the constraint of the dark
environment. Here, we designed a phase-shifting interference system to detect the distorted wavefront
caused by the defect of the optical components, as shown in Figure 1.
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Figure 1. Phase-shifting interferometer. ND: neutral density filter; B: beam expander and collimator;
BS: beam splitter; M1, M2: mirror; M3: deformable mirror; PLS: precision linear stage.

Here, the laser emits a beam with a wavelength of 532 nm through the beam expander and
collimator (B) as the illumination source. To avoid excessive laser intensity, we placed an adjustable
neutral density filter (ND) at the exit port to adjust the intensity. The parallel beam irradiated on the
beam splitter (BS) is divided into two parts; one passes through the BS and irradiates vertically on
the mirror M1 controlled by a precision linear stage (PLS) as the reference beam, and the other one is
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reflected by mirror M2 to the deformable mirror M3 as the measuring beam. The reference beam and
the measuring beam are reflected by M1 and M3 respectively, and they converge and interfere at the
BS. The interference fringes are finally recorded by the camera. The intensity of the fringe pattern can
be expressed as Equation (1):

I(x, y) = Ir(x, y) + Io(x, y) + Ib(x, y) + 2
√

IrIo cos(ϕr(x, y) −ϕo(x, y)) (1)

where I(x, y) is the intensity of the fringe pattern, Ir(x, y) is the reference beam intensity, Io(x, y) is the
measuring beam intensity, Ib(x, y) is the background noise, ϕr(x, y) represents the reference beam
phase distribution, and ϕo(x, y) represents the measuring beam phase distribution. Here, x and y
refer to the horizontal and vertical coordinates of each pixel on the interference field area recorded by
the camera.

In this system, the deformable mirror will deform when subjected to external forces, which will
change the phase value at each point on the measuring wavefront, thereby simulating the distortion of
spatial light after long-distance transmission. When it is not subjected to external forces, it is equivalent
to a plane mirror, and the reflected wavefront is still a plane. At this time, the optical path difference
between the reference beam and the measuring beam at all points on the interference field is equal.
When the deformable mirror is subjected to external forces, the measuring wavefront reflected is no
longer an ideal plane but becomes distorted with a certain aberration. At this time, the interference
field recorded by the camera shows bright and dark stripes:

I′(x, y) = Ir(x, y) + Io(x, y) + Ib(x, y) + 2
√

IrIo cos[ϕr(x, y) − (ϕo(x, y) + ∆ϕ(x, y))]. (2)

Among them, ∆ϕ(x, y) represents the phase delay caused by M3 at the point (x, y) on the
measuring wavefront. By applying different forces, we can get the wavefront with different distortions.
After that, the four-step phase-shifting method is used to change the phase of the reference beam by
π/2 each time, so that four interference fringe patterns are obtained. The fringe patterns intensity can
be expressed as:

In(x, y) = Ir(x, y) + Io(x, y) + Ib(x, y) + 2
√

IrIo cos
(
ϕr(x, y) +

2πn
4
−ϕo(x, y)

)
. (3)

The index n = 1, 2, 3, 4. The phase change of the reference beam is controlled by the PLS, and each
movement distance is equal to 1/8 of the laser wavelength. Using the orthogonality of trigonometric
functions, ϕr(x, y) −ϕo(x, y) can be obtained:

ϕr(x, y) −ϕo(x, y) = arctan
[

I4(x, y) − I2(x, y)
I3(x, y) − I1(x, y)

]
. (4)

When M3 deforms, we can use the same method to obtain the phase distribution of the distorted
wavefront interference fringe pattern:

ϕr(x, y) − (ϕo(x, y) + ∆ϕ(x, y)) = arctan[
I′4(x, y) − I′2(x, y)

I′3(x, y) − I′1(x, y)
]. (5)

Equations (1)–(5) represent the process of the phase-shifting method. Since the reference beam
illuminates vertically on the mirror M1, so the value of ϕr(x, y) is equal everywhere in the interference
field and can be regarded as a constant. Therefore, we only need one phase-shifting measurement that
can obtain the phase value ϕo(x, y) + ∆ϕ(x, y) of the measuring beam.

2.2. Wavefront Analysis Neural Network

There is a problem in the method of extracting the wavefront phase based on the fringe patterns.
The phase value calculated by the inverse trigonometric function arctan is limited to (−π, π], which is
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not true; that is, there is a phenomenon of phase wrapping. So far, a lot of methods have been proposed
to solve this problem. There are some good algorithms such as Goldstein’s branch cut algorithm [15],
the quality-guided algorithm [16], and the mask cut algorithm [17]. They all belong to path-tracking
algorithms. This type of algorithm has very high requirements for the quality of the input image.
It needs to select a suitable integration path in the phase map and bypass the noise area to prevent
error transmission.

In general conditions, noise is inevitable. The true phase map calculated by this type of algorithm
is prone to large errors; thus, it is difficult to guide wavefront correction. When we detect the distorted
wavefront, phase unwrapping is an indispensable part. Traditional algorithms have low accuracy when
facing noisy images. Some algorithms with anti-noise capability often require a lot of calculation time,
making it difficult for wavefront detection systems to achieve dynamic monitoring of the wavefront.

After we get the true phase map, using mathematical expressions to fit the wavefront can better
guide wavefront aberration analysis and correction. In optical measurement research, it is very
common to use Zernike polynomials as the basis function for wavefront fitting. The reason is that
Zernike polynomials fit the optical wavefront with high accuracy, they are orthogonal in the circular
domain, and most of the optical instruments have circular apertures. What is more, there is a certain
correspondence between the Zernike polynomial and the Seidel aberration. If we use orthogonal
Zernike polynomial as the basis function to fit the phase change of the measuring beam wavefront,
it can be expressed as Equation (6):

∆ϕ(x, y) =
M∑

i=0

aiZi(x, y) (6)

where the index i = 1, 2, . . . , M, Zi is the ith Zernike polynomial, and ai is the corresponding coefficient.
To get the unknown value of ai, a lot of methods have been proposed, such as the least-squares

method, Gram–Schmidt orthogonal method [18], Householder transformation method [19],
etc. However, these methods have problems such as poor fitting accuracy or slow fitting speed,
which makes them difficult to be used in actual wavefront detection systems. Traditional methods
can no longer meet the requirements of high-precision dynamic wavefront measurement. To get an
algorithm with high accuracy and faster calculation speed, we introduced the state-of-the-art deep
convolutional neural networks.

2.2.1. Models

The whole system includes two neural network modules, as shown in Figure 2 The role of net1 is
to unwrap the phase calculated by the phase-shifting method. In the previous chapter, we mentioned
that the wrapped phase value is limited to (−π, +π]; however, there is such a relationship between the
wrapped phase and the true phase, as formulated in Equation (7):

ϕtrue phase(x, y) = ϕwrapped phase(x, y) + 2π ∗ k(x, y). (7)

Here, k(x, y) represents the wrap count of each pixel, k(x, y) ∈ Z. In the wrapped phase, it can
be seen that there are obvious dividing lines between regions with different wrap count. Therefore,
we can use image segmentation to separate these regions. Inspired by Segnet [20], net1 adopts
the encoder–decoder structure, which can segment these regions well and give their classification
results. The last layer of net1 is the softmax layer, and the output is a feature map with 11 channels,
which represents 11 classification probability value of each pixel. We extract the category index n(x, y)
with the largest probability value to represent the final classification result of the pixel. There is
a one-to-one correspondence between the classification result n(x, y) and the wrap count k(x, y),
as formulated in Equation (8):

k(x, y) = n(x, y) − 5 (8)
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where n(x, y) ∈ {0, 1, . . . , 9, 10}, k(x, y) ∈ {−5,−4, . . . , 4, 5}. In general conditions, the measuring beam
phase change caused by the deformable mirror is small, and the wrap count k(x, y) corresponding
to its wrapped phase is usually in the range of [−1, 1]. However, to make this method applicable to
scenarios with large phase changes, we generated some wavefront maps with larger phase values in
the training dataset, and the wrap counts calculated from these maps can reach the range up to [−5, 5].
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learning wavefront analysis system, including two neural network modules net1 and net2, and the
relationship between the two modules. (b) The structure of net1. (c) The structure of net2.

Since the unwrapped phase of net1 is not completely correct, it may wrongly estimate the wrap
count at individual points, causing these points to have a large deviation from the true value, as shown
in Figure 3b,c. To solve this problem, we propose a smooth method to further process the output result,
as formulated in Equations (9) and (10).

Through a global search, we get the value V(x, y) of each pixel and subtract it by the average
value V′(x, y) of its 3× 3 neighborhood:

γ = V(x, y) −V′(x, y). (9)
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If the difference γ is greater than the threshold T or less than −T, then subtract or add 2π to the
value of the pixel:

V(x, y) =


V(x, y) + 2π, γ < −T
V(x, y), −T < γ < T
V(x, y) − 2π, γ > T

. (10)

T is an empirical value, and it works better when equal to 4. After 10 iterations, most of the
bad points will be corrected except for some areas with dense bad points, as shown in Figure 3d.
Comparing Figure 3c,d, we find that the bad points are clustered into regions, and the values of all
points in a region have the same difference of 2πk with the true values. To further correct these regions,
we use the Sobel operator to detect the edges and then extract the whole regions. We calculate the
average value of an area and subtract it by the average value of adjacent edge pixels outside the area.
According to the difference value and Equation (10), the correct value can be obtained. Eventually,
we can get a well-restored wavefront, as shown in Figure 3e,f.
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Due to the long-distance transmission, the wavefront captured by the detector will have some
noise. When the wavefront is noisy, it will severely affect the aberration analysis. To reduce the influence
of noise, we use the 3*3 Gaussian kernel with a sigma of 1 to filter the restored wavefront. After that,
we can get a wavefront distribution, which is conducive to the subsequent aberration analysis.

The role of net2 is to make a further analysis based on the true phase map and fit the coefficients of
the Zernike polynomial required for wavefront reconstruction and correction. It adopts the structure of
a deep convolutional neural network as a whole, and five residual blocks [21] are added to accelerate
the learning process and improve the fitting accuracy. Finally, two fully connected layers are used,
and we directly output the first 36 Zernike coefficients.

2.2.2. Training Data Generated

The neural network only works well after being trained, and it needs a lot of training data.
According to the function of net1, the wrapped phase is needed as the input, and the wrap count
corresponds to the output label. We also need the true phase map as the final result reference.
Specifically, the true phase map was simulated by performing arithmetic operations (addition or
subtraction) on 7–15 two-dimensional Gaussian functions with random mean and variance. Then,
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wrap the true phase to get the wrapped phase. Finally, according to Equation (7), the wrap count can
be calculated.

Net2 needs the true phase map as the input and Zernike coefficients as the output label. However,
the Zernike coefficients calculated according to the true phase map have errors and cannot be used
as the training label of the net2. The method of using random numbers as the Zernike coefficients
to reconstruct the wavefront cannot produce the type of the true phase we desire. To ensure that the
training data of net1 and net2 are of the same type, we proposed a novel method to generate the training
data: First, the covariance matrix method is used to fit the first 36 Zernike coefficients corresponding
to the true phase map, as formulated in Equations (11)–(24). For N points on a wavefront, the phase
value of each point can be expressed as:

Wi = a0 + a1Z1i + a2Z2i + · · ·+ ajZji + · · ·+ anZni (11)

where the index i = 1, · · · , N, and n = 36. Zji. represents the value of the j-th Zernike polynomial at
the i-th point. The average value of the N points is expressed as:

W = a0 + a1Z1 + a2Z2 + · · ·+ ajZj + · · ·+ anZn. (12)

Here, Zj is defined as Zj =
1
N

N∑
i=1

Zji. Subtracting Equation (12) from Equation (11), the function

can be expressed as:
Umi = a1U1i + a2U2i + · · ·+ ajUji + · · ·+ anUni (13)

where Umi = Wi−W and Uji = Zji−Zj. According to the Gram–Schmidt orthogonalization method [18],
a linear combination of Uj can be used to reconstruct a set of orthogonal polynomials Pj on discrete
data points:

Um = C1P1 + C2P2 + · · ·+ CjPj + · · ·+ CnPn (14)

where Pk and Pj are orthogonal,
N∑

i=1
PjiPki = 0. Then, we construct the polynomials Pj according to the

following function: 
U1

U2
...

Un

 =


1 0 · · · 0
a21 1 · · · 0
· · · · · · · · · 0
an1 an2 · · · 1




P1

P2
...

Pn

 . (15)

Due to the orthogonality of P1i and P2i, we can get the value of α21 as follows:

N∑
i=1

P1iP2i =
N∑

i=1

U2iP1i −α21

N∑
i=1

P1iP1i = 0 (16)

α21 =

∑N
i=1 U2iP1i∑N
i=1 P1iP1i

=

∑N
i=1 U2iU1i∑N
i=1 U1iU1i

=
A12

A11
. (17)

Here, Ajk represents the covariance of Zj and Zk, which is the covariance of Uj and Uk.
The expression of Ajk is as follows:

Ajk =
1
N

∑N

i=1
UjiUki =

1
N

∑N

i=1

(
Zji −Zj

)(
Zki −Zk

)
=

1
N

∑N

i=1
ZjiZki −ZjZk. (18)
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By analogy, we can get all the values of αjk, which can be expressed as:

αjk =

∑N
i=1 UjiPki∑N
i=1 PkiPki

( j > k). (19)

According to Equation (15), when the index j < k, αjk is equal to zero, when j = k, αjk is equal to
one. Thus, we can get the polynomials Pj. Then, we use the least square method to find the value of
the coefficients Cj when the variance σ2 is minimum; the functions can be expressed as:

σ2 =
1
N

N∑
i=1

Umi −

n∑
j=1

CjPji


2

(20)

∂σ2

∂Cj
= −

2
N

N∑
i=1

Pji

Umi −

n∑
j=1

CjPji

 (21)

Cj =

∑N
i=1 UmiPji∑N
i=1 PjiPji

. (22)

Combining Equations (13) and (15), we can get the relationship between Cj and aj, which can be
expressed as:

(C1C2 · · ·Cn) = (a1a2 · · · an)


1 0 · · · 0

a21 1 · · · 0
· · · · · · · · · 0
an1 an2 · · · 1

 (23)

aj = Cj −
∑n

i=j+1
αijai, (j = 1, 2, · · · , n− 1). (24)

When the index j = n, an is equal to Cn. According to Equation (12), a0 is equal to W−
∑n

j=1 ajZj.
Thus, we can get the value of the first 36 Zernike coefficients of the wavefront

Since the number of the detected points is limited, the Zernike coefficients fitted here are not
accurate. So, we reconstructed the wavefront based on the obtained Zernike coefficients and generated
a new wavefront phase map. In this way, we not only get the phase map of the desired type but
also ensure that the corresponding Zernike coefficients are accurate. We also added 20–50% salt and
pepper noise with a random value within [−2, 2] to a little part of the training dataset of net1 to
improve its anti-noise ability. A training dataset consisting of 10,000 pairs was generated, and 100 pairs
were generated for testing. The image size is 201 × 201 pixels. Figure 4 shows the data used in the
training process.

2.2.3. Training Networks

The two networks are trained separately. Net1 carry out classification tasks, so it is appropriate to
choose cross-entropy as the loss function, as formulated in Equation (25):

loss1 = −
1
M

∑M

i=1

∑
x,y

logp(x, y). (25)

M is the number of samples in each batch of training data, and p(x, y) is the probability value of
the correct classification result. Adam optimizer [22] was used, the learning rate is initially set to 0.001,
and the learning rate decay rate is 0.99. The batch size is set to 8, and the maximum training epoch
is 20.
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The output result of net2 is the first 36 Zernike coefficients; to evaluate the quality of the fitting
result, we choose mean square error (MSE) as the loss function, as formulated in Equation (26):

loss2 =
1
M

M∑
i=1

(
ŷi − yi

)2
(26)

where yi is the logits value, and ŷi is the label value. Adam optimizer was used, the learning rate
is initially set to 0.0001, and the learning rate decay rate is 0.99. The batch size is set to 8, and the
maximum training epoch is 40.

Both networks were implemented using the TensorFlow framework (Google) and were computed
on the i7 8700k CPU (Inter) and RTX 2070 GPU (NVIDIA).

3. Experiment

To validate the effectiveness of this deep learning wavefront detection method we proposed,
we successively conducted simulation experiments and real experiments in general environment. First,
we conducted a simulation experiment. We extracted two sets of wrapped phases with a signal-to-noise
ratio (SNR) of 9 and a signal-to-noise ratio (SNR) of 3 from the test dataset of net1. Then, we input these
data separately to the net1, branch cut algorithm, and quality-guided phase unwrapping algorithm
to get the unwrapped phases. We compared these results with the real phase and observed the net1
performance with the two other methods according to the errors. The output results are shown in
Figures 5 and 6.

From Figure 5, we can see that there are some errors between the output calculated by each
method and the true phase. These errors are mainly caused by incorrect estimation of the wrap
counts of the points on the wrapped phase so that there are differences of 2πk between the calculated
wavefronts and the real wavefront at these points. These errors are represented as spikes in the
difference maps. The more spikes and the greater its value in the difference map, the greater the error
of the output result, which also indicates the poor performance of the method. According to Figure 5
and Table 1, we can see that these methods all have good performance when dealing with a wrapped
phase with less noise (SNR = 9). Among them, the output result of Goldstein’s branch cut algorithm
has the highest accuracy, with the root mean square error (RMSE) of 0.06 and calculation time of 1.94 s.
The net1 uses the least computation time. It only takes 1.04 s to complete the work, and the error is
comparable to Goldstein’s branch cut algorithm, with an RMSE of 0.07. Compared with the other
two algorithms, the quality-guided algorithm performs poorly. Not only the calculation time is long
(12.48 s), the accuracy of its output results is also relatively low, with an RMSE of 0.22.
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Figure 6. The output results of the wrapped phase with SNR = 3.

Table 1. Accuracies (RMSEs) and time consumption of different phase-unwrapping algorithms
(SNR = 9).

Net1 Branch Cut Quality-Guided

RMSE 0.07 0.06 0.22
Time 1.04 s 1.94 s 12.48 s

When dealing with a noisy wrapped phase map (SNR = 3), as shown in Figure 6, the accuracy of
the output results of the three methods are all reduced. As the noise becomes denser, more spikes
appear in the difference maps, and their value may become larger. Goldstein’s branch cut algorithm,
which performed well before, was a bit disappointing this time. From Table 2, we found the accuracy
of the output result is greatly reduced, the RMSE is 1.48. As to the quality-guided algorithm, due to
the increased noise, the calculation error is transmitted and amplified, which caused the error to occur
in regions. The performance of the deep learning method is still stable enough; it has an excellent
performance in the face of a noisy image, with an RMSE of 0.37.
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Table 2. Accuracies (RMSEs) and time consumption of different phase-unwrapping algorithms
(SNR = 3).

Net1 Branch Cut Quality-Guided

RMSE 0.37 1.48 1.02
Time 1.06 s 1.97 s 12.73 s

After that, we selected two sets of distorted wavefronts from the test dataset and used net2 and
the least-squares method to fit their first 36 Zernike coefficients, as shown in Figure 7. It can be seen
that the fitting speed of the least-squares method is faster; it only takes 0.5 s to complete the calculation.
However, the fitting accuracy of the least-squares method is poor, and there is a large deviation between
the fitting result and the true value; the RMSE is 1.94 and 1.13, respectively. This is because the use of
Zernike polynomials as the basis function is not orthogonal on the discrete sampling points, which will
cause the equations to appear ill-conditioned and greatly affect the fitting accuracy. The fitting speed
of the net2 is slower; it takes about 0.9 s to complete the fitting process. However, the trained neural
network can better fit the corresponding Zernike coefficients and has high fitting accuracy with RMSE
of 0.16 and 0.17, which is a better choice to be used to analyze and guide wavefront correction.

Finally, to see how the wavefront detection system performs in the real environment, we built a
detection system and conducted a series of wavefront detection experiments, as shown in Figure 8.
Here, a laser diode (Changfu Technology, Beijing, China) with the power of 150 mW and wavelength of
532 nm was used as the light source. The laser passes through the beam expander and collimator and is
divided into two parts by the beam splitter. The reference beam illuminates vertically on the mirror M1
controlled by the precision linear stage (Physik Instrumente, Karlsruhe, Germany), and the measuring
beam illuminates on the deformable mirror. By adjusting the tightening screws, we can apply different
forces to the deformable mirror to generate different distorted wavefronts. Then, according to the
measurement requirements of the four-step phase-shifting method, we controlled the precision linear
stage to move in one direction four times; each time, the reference beam phase changed by π/2. Finally,
the fringe patterns were recorded by the camera (Daheng Image Vision, Beijing, China), as shown
in Figure 9.

According to the relationships between the trigonometric functions, we can calculate the wrapped
phase corresponding to the wavefront (Figure 10a). After that, we input the wrapped phase into our
net1 and get the unwrapped phase (Figure 10b). What is more, we also used the Goldstein’s branch cut
algorithm to process the wrapped phase and compared the output result with that of net1, which are
expressed in Figure 10c,d. It can be seen that the outputs of these two methods are almost identical,
which indirectly proves that net1 can effectively process the wrapped phase. To further analyze the
wavefront aberration, we input the unwrapped phase to net2 and fit the corresponding first 36 Zernike
coefficients, as shown in Figure 10e and Table 3. To analyze the accuracy of the fitting results, we used
the fitted Zernike coefficients to reconstruct the wavefront (Figure 10f) and calculated the difference
between the reconstructed wavefront and the real wavefront in the circular domain, as shown in
Figure 10g. The difference expressed in Figure 10g shows that the overall error is small and is controlled
within ±0.5; the RMSE is 0.6133. There is a large error at the border of the wavefront at individual
points. After analysis, this is caused by the detection error of the camera. Through experiments in the
real environment, the wavefront detection system can satisfactorily complete the wavefront detection
and analysis works, which proves that it is an accurate and effective wavefront detection method.
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Figure 10. Output results of the real experiments. (a) Wrapped phase obtained by the four-step
phase-shifting method, (b) unwrapped phase calculated by net1, (c) unwrapped phase calculated
by Goldstein’s branch cut algorithm, (d) the difference of the two unwrapped phases, (e) Zernike
coefficients fitted by net2, (f) reconstructed wavefront, (g) errors of the reconstructed wavefront.

Table 3. Zernike coefficients fitted by net2.

a1 a2 a3 a4 a5 a6
1.7944 0.6126 0.27979 −0.96737 −1.01558 −0.44856

a7 a8 a9 a10 a11 a12
−0.00485 0.11478 −0.02006 −0.14852 −0.07189 −0.09368

a13 a14 a15 a16 a17 a18
−0.11007 −0.07977 −0.06551 0.04326 −0.11056 −0.09216

a19 a20 a21 a22 a23 a24
−0.14109 0.04773 0.09532 0.5545 0.06727 0.10555

a25 a26 a27 a28 a29 a30
0.05787 −0.01177 −0.06569 −0.01927 0.05708 0.00327

a31 a32 a33 a34 a35 a36
−0.03634 −0.04515 −0.04231 0.02874 0.05204 −0.0082

4. Conclusions

In this work, we present a new deep learning wavefront sensing method. First, we designed an
interference system to detect distorted wavefront and generated multiple interference fringe patterns
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by phase-shifting method, which greatly improved the anti-noise ability and broke the dependence
of the wavefront detection system to the dark environment. Second, we designed a neural network
system to analyze the detected wavefront. The two neural network modules in the system were used
to unwrap the phase and fit the Zernike coefficients. Compared with other traditional algorithms,
the wavefront analysis neural network system not only has higher measurement accuracy but also
greatly reduces the calculation time. Finally, simulation and experiments have proved the effectiveness
of the system under different working conditions. In the future, we wish to apply the new wavefront
detection system to radar research to achieve dynamic measurement and correction of the wavefront.
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