Supplementary Materials

Energetic and Structural Studies of Two Biomass-Derived Compounds: 6- and 7-hydroxy-1-indanones

Ana L. R. Silva* and Maria D. M. C. Ribeiro da Silva

Research Center in Chemistry-CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal; mdsilva@fc.up.pt

* Correspondence: <u>analuisa.rs@fc.up.pt</u>

This supplementary information includes:

- data of all the combustion calorimetry experiments of 6-hydroxy-1-indanone and 7-hydroxy-1-indanone (**Tables S1 and S2**);

- the values of standard molar heat capacities in the gaseous phase for the compounds studied (**Table S3 and S4**);

- Conformational analysis of the hydroxy-1-indanones studied and their corresponding total electronic energy plus the internal thermal energy (**Table S5**);

- G3(MP2)//B3LYP results for 6HI and 7HI conformers (Table S6);

- G3(MP2)//B3LYP calculated absolute enthalpies, at T = 298.15 K, and experimental gas-phase values for all the atoms/molecules used (**Table S7**).

Acronyms used throughout this supplementary data:

6HI for 6- hydroxy-1-indanone **7HI** for 7-hydroxy-1-indanone

Combustion Calorimetry:

The calibration experiments were made in an oxygen atmosphere at p = 3.04 MPa, with 1.00 cm³ of deionized water added to the bomb; the energy equivalent of the calorimeter was determined from the combustion of benzoic acid (NIST SRM 39j) having a massic energy of combustion, under standard bomb conditions, of $-(26434 \pm 3)$ J.g⁻¹. From six calibration experiments $\varepsilon_{cal} = (16002.6 \pm 1.7)$ J K⁻¹, for an average mass of water added to the calorimeter of 3119.6 g; the mentioned uncertainty is the standard deviation of the mean.

Samples of both compounds were burnt in pellet form, with a small amount of nhexadecane, as auxiliary of combustion, under oxygen at p = 3.04 MPa, with 1.00 cm³ of deionised water added to the bomb;

The calorimeter temperatures were measured to $\pm(1 \times 10^{-4})$ K, at time intervals of 10 s, with a quartz crystal thermometer (Hewlett-Packard HP 2804 A), interfaced to a PC; the ignition occurs at *T* = (298.150 ± 0.001) K;

n-Hexadecane (Aldrich, mass fraction > 0.999), stored under nitrogen was used as auxiliary combustion. The massic energy of combustion of the sample used, was determined in our laboratory as $\Delta cu^{\circ} = -(47136.7 \pm 2.3)$ J.g⁻¹;

The cotton thread fuse (empirical formula: CH_{1.686}O_{0.843}) had a standard massic energy of combustion [S1], $\Delta_c u^\circ = -16240 \text{ J.g}^{-1}$;

The ignition energy was determined from the change in potential difference on discharge of a 1400 F condenser across a platinum wire;

Pressure coefficient of specific energy $(\partial u/\partial p)_T = -0.2$ J.g⁻¹.MPa⁻¹ (typical value for organic compounds [S2]);

The nitric acid formed in the calorimetric experiments was determined using Devarda's alloy method [S3] and the energy correction for the formation of 0.1 mol.dm⁻³ HNO₃(aq) [S4] from N₂ (g), O₂ (g) and H₂O (l) was based on -59.7 kJ.mol⁻¹;

Corrections for carbon formation relied on the standard massic energy of combustion of carbon [S5], $\Delta_c u^\circ = -32.76 \text{ kJ.g}^{-1}$.

Specific density of the studied compounds at T = 298.15 K:

 $\rho = 1.305 \text{ g} \text{ cm}^{-3} \text{ for 6HI and 7HI [S6];}$

For both isomers, the value of the massic heat capacity, at T = 298.15 K, was calculated as 1.251 J.K⁻¹.g⁻¹ using Kopp's rule [S7].

m(CO ₂ , total) /g	1.19849	1.26901	1.26883	1.47623	1.57394	1.36481
<i>m</i> (cpd) /g	0.29270	0.33901	0.28455	0.43000	0.42348	0.37995
<i>m</i> (fuse) /g	0.00241	0.00298	0.00259	0.00269	0.00257	0.00244
<i>m</i> (n-hexadec.) /g	0.13252	0.11509	0.16206	0.10402	0.14088	0.11099
Ti /K	298.1507	298.1583	298.1504	298.1506	298.1511	298.1584
Tf /K	299.1597	299.2012	299.2272	299.3179	299.4124	299.2596
$\Delta T_{ m ad}$ /K	0.92660	0.96091	0.99929	1.09238	1.18980	1.02233
f /(J·K 1)	15.97	15.99	16.12	16.15	16.34	16.07
$\Delta m(H_2O)/g$	0.0	0.0	0.0	0.0	0.0	0.0
$-\Delta U(\text{IBP})/\text{J}$	14841.61	15391.22	16006.59	17497.87	19058.74	16375.66
$\Delta U(HNO_3)/J$	0.85	0.52	0.78	0.54	0.90	0.40
$\Delta U(ign) /J$	1.20	1.20	0.76	0.69	0.59	0.71
ΔU_{Σ} /J	6.93	7.65	7.17	9.39	9.78	8.43
$\Delta U(\text{carb.}) / J$	-	-	_	10.23	3.96	-
$-\Delta U$ (n-hexadec.) /J	6246.75	5425.08	7639.01	4903.10	6640.83	5231.58
$-\Delta U$ (fuse) /J	39.14	48.40	42.06	43.69	41.74	39.63
$-\Delta_c u^{\varrho} / (J \cdot g^{-1})$	29203.76	29230.91	29230.61	29189.26	29209.05	29202.84
		% CO ₂ =	$(100.09 \pm 0.04)^{b}$			
$-<\Delta_c u^{\circ}>=(29211.1\pm 6.8) \text{ J}\cdot\text{g}^{-1b}$						

Table S1. Standard (p° = 0.1 MPa) mass energy of combustion of crystalline **6HI**, at *T* = 298.15 K.

 $m(\text{CO}_2$. total) is the total mass of CO_2 recovered in the experiment; m(cpd) is the mass of compound burnt in each experiment; m(fuse) is the mass of fuse (cotton) used in each experiment; m(n-hexadec.) is the mass of n-hexadecane used in each experiment; T_i is the initial temperature rise; T_i is the final temperature rise; ΔT_{ad} is the corrected temperature rise; -i is the energy equivalent of contents in the final state; $\Delta m(\text{H}_2\text{O})$ is the deviation of the mass of water added to the calorimeter from 3119.6 g; $\Delta U(\text{IBP})$ is the

energy change for the isothermal combustion reaction under actual bomb conditions and includes $\Delta U(ign)$; $\Delta U(HNO_3)$ is the energy correction for the nitric acid formation; $\Delta U(ign)$ is the electrical energy for ignition; ΔU is the standard state correction; $\Delta U(carb.)$ is the correction energy for carbon soot formation; $\Delta U(n-hexadec.)$ is the energy of combustion of the n-hexadecane; $\Delta U(fuse)$ is the energy of combustion of the fuse (cotton); Δcu° is the standard massic energy of combustion. ^{*a*} Mean value and standard deviation of the mean.

m(CO2, total) /g	1.19166	1.29231	1.43019	1.70668	1.25306	1.46551
<i>m</i> (cpd) /g	0.31994	0.35721	0.39439	0.48449	0.33607	0.35971
<i>m</i> (fuse) /g	0.00246	0.00244	0.00276	0.00220	0.00298	0.00290
<i>m</i> (n-hexadec.) /g	0.10688	0.10802	0.11943	0.13117	0.11249	0.16053
T _i /K	298.1505	298.1509	298.1509	298.1506	298.1508	298.1511
T _f /K	299.1339	299.2027	299.3015	299.4955	299.1817	299.3610
$\Delta T_{ m ad}$ /K	0.89996	0.97109	1.07336	1.27201	0.94699	1.13122
$_{\rm f} / (J \cdot K^{-1})$	15.90	16.00	16.15	16.43	15.98	16.29
$\Delta m(H_2O)/g$	3.0	0.0	0.0	0.0	0.0	0.0
$-\Delta U(\text{IBP})/\text{J}$	14426.27	15554.29	17192.69	20375.17	15168.24	18119.68
$\Delta U(HNO_3)/J$	0.64	0.46	0.92	0.92	0.55	0.74
$\Delta U(ign) /J$	1.04	1.21	1.20	1.20	1.20	1.21
ΔU_{Σ} /J	7.16	7.93	8.86	10.92	7.58	8.71
ΔU (carb.) /J	_	22.44	-	-	-	-
$-\Delta U$ (n-hexadec.) /J	5038.08	5091.88	5629.44	6183.04	5302.38	7566.80
$-\Delta U$ (fuse) /J	39.95	39.63	44.82	35.73	48.40	47.10
$-\Delta_c u^{\circ}/(\mathbf{J}\cdot\mathbf{g}^{-1})$	29194.34	29217.64	29180.88	29194.73	29188.34	29179.97

Table S2. Standard (p° = 0.1 MPa) mass energy of combustion of crystalline 7HI, at *T* = 298.15 K.

% CO₂ = $(100.01 \pm 0.04)^{b}$

$-<\Delta_{c}u^{\circ}>=(29192.6\pm 5.6) \text{ J}\cdot\text{g}^{-1}b$

m(CO2. total) is the total mass of CO₂ recovered in the experiment; m(cpd) is the mass of compound burnt in each experiment; m(fuse) is the mass of fuse (cotton) used in each experiment; m(n-hexadec.) is the mass of n-hexadecane used in each experiment; T_i is the initial temperature rise; T_i is the final temperature rise; ΔT_{ad} is the corrected temperature rise; i is the energy equivalent of contents in the final state; $\Delta m(\text{H2O})$ is the deviation of the mass of water added to the calorimeter from 3119.6 g; $\Delta U(\text{IBP})$ is the energy change for the isothermal combustion reaction under actual bomb conditions and includes $\Delta U(\text{ign})$; $\Delta U(\text{HNO3})$ is the energy for carbon soot formation; $\Delta U(\text{ign})$ is the energy of combustion of the n-hexadecane; $\Delta U(\text{fuse})$ is the energy of combustion of the fuse (cotton); Δcu° is the standard massic energy of combustion.^{*a*} Mean value and standard deviation of the mean.

Т/К	$C^{\circ}_{p, m}(g) / J.k^{-1}.mol^{-1}$
200	109.24
250	134.39
298.15	158.69
300	159.62
350	183.90
400	206.51
450	227.12
500	245.65
550	262.23
600	277.05

Table S3. Standard (p^{2} = 0.1 MPa) molar heat capacities in the gaseous phase for **6HI**.

 $C_{p,m}^{\circ}(g) = -3.705 \times 10^{-7} T^3 + 1.130 \times 10^{-4} T^2 + 5.218 \times 10^{-1} T + 3.043$

Table S4. Standard (p^{2} = 0.1 MPa) molar heat capacities in the gaseous phase for **7HI**.

<i>T /</i> K	$C^{\circ}_{p,m}(g) / J.k^{-1}.mol^{-1}$
200	104.50
250	129.66
298.15	154.23
300	155.16
350	179.80
400	202.80
450	223.77
500	242.66
550	259.56
600	274.68

 $C_{p,m}^{\circ}(g) = -4.186 \times 10^{-7} T^3 + 1.748 \times 10^{-4} T^2 + 5.033 \times 10^{-1} T - 1.139 \times 10^{-1}$

Table S5. Conformational analysis of the hydroxy-1-indanones studied and their corresponding total electronic energy plus the internal thermal energy, $E^{\circ}_{298.15 \text{ K}}$ (1 a.u. = 2625.5 kJ mol⁻¹).

7-hydroxy-1-indanon : (7HI)

Table S6. G3(MP2)//B3LYP results for 6HI and 7HI conformers.					
Compound	Conformer	$H_{\rm m}^{\circ} a$	G m [°] a	$\Delta Grel(i)b$	$\chi_i c$
6HI	Ia	-497.476511	-497.520876	0.00	0.731
	IIa	-497.475404	-497.519932	2.48	0.269
7HI	Ib	-497.486145	-497.529484	0.00	1.000
	IIb	-497.473271	-497.517709	30.92	0.000

^{*a*} In Hartrees. ^b Value calculated according to this formula:

^{*a*} In Fratures. $\Delta G_{rel}(i) = G_{m}^{\circ}(i) - G_{m}^{\circ}$ (conformer I); In kJ mol⁻¹. ^{*c*} Value calculated using the formula $\chi = \frac{e^{-\frac{e^{-RT}}{RT}}}{\sum_{i=1}^{n} e^{-\frac{AGred(i)}{RT}}}$.

Table S7. G3(MP2)//B3LYP absolute enthalpies (in Hartrees*) and experimental enthalpies of formation (in kJ·mol⁻¹). in the gaseous state. at T = 298.15 K. for the studied compounds and the auxiliary atoms/molecules used in the gas-phase working reactions.

Compounds studied / Auxiliar	Experimental enthalpies	
atoms and molecules	absolute enthalpies	of formation (298.15 K)
Carbon (³ P)	-37.788425	(716.7 ± 0.5) ^[S8]
Hydrogen(² S)	-0.499780	$(218.00 \pm 0.01)^{S8]}$
Oxygen(³ P)	-74.989704	$(249.2 \pm .1)^{S8]}$
6-Hydroxy-1-indanone (6HI)	-497.476213	$-(240.2 \pm 3.1)^a$
7-Hydroxy-1-indanone (7HI)	-497.486146	$-(265.6 \pm 3.0)^{a}$
Benzene	-231.835136	$(82.6 \pm 0.7)^{[S9]}$
1-Indanone	-422.32525	$-(64.0 \pm 3.7)^{[S10]}$
Phenol	-306.986464	$-(96.4\pm0.9)^{[59]}$
Ethane	-79.651018	$-(83.8 \pm 0.3)^{[59]}$
Cyclopentanone	-270.127404	$-(192.1 \pm 1.7)^{[59]}$
Naphthalene	-385.22368	$(150.3 \pm 1.4)^{[S9]}$
1-Hydroxynaphthalene	-460.375327	$-(30.4 \pm 1.6)^{[59]}$

S7 of S5

2-Hydroxynaphthalene	-460.3746	$-(29.9 \pm 1.7)^{[59]}$
Toluene	-271.074374	$(50.1 \pm 1.1)^{[S11]}$
6-Methyl-1-indanone	-461.564681	$-(95.1 \pm 2.8)^{[S12]}$
α-Tetralone	-461.565278	$-(95.27 \pm 0.77)^{[S13]}$
7-Hydroxy- α -tetralone	-536.716925	[-271.0] °

^{*a*} This work. ^{*b*} Value estimated at the G3(MP2)//B3LYP level of theory. ^{*c*} Value estimated from the DFT calculations with the B3LYP functional and the 6-311G** basis set.

 $^{*}1$ Hartree = 2625.5 kJ·mol⁻¹

REFERENCES

- [S1] Coops J, Jessup RS, van Nes K (1956) In Experimental Thermochemistry; Vol. 1, F.D. Rossini, Ed.; Interscience: New York, Chapter 3
- [S2] Washburn EW (1933) Standard states for bomb calorimetry. J Res Nat Bur Stand 10:525-558
- [S3] Vogel AI (1978) Quantitative Inorganic Analysis; Longman: London
- [S4] Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982), J Phys Chem Ref Data 11(suppl. 2)
- [S5] Medvedev VA, Cox JD, Wagman DD (eds). (1989) CODATA key values for thermodynamics. New York: Hemisphere Publishing Corporation.
- [S6] https://www.lookchem.com/6-Hydroxy-1-indanone/ (accessed in 01/08/19).
- [S7] Hurst JE, Harrison BK (1992) Estimation of liquid and solid heat capacities using a modified Kopp's rule. Chem Eng Comm 112:21-30
- [8] Chase Jr MW (1998) J Phys Chem Ref Data, Monograph 9, 1-1951
- [S9] Pedley JP (1994) Thermochemical data and structures of organic compounds, Thermodynamics Research Centre. College Station, Texas.
- [S10] Matos MAR, Miranda MS, Monte MJS, Santos LMNBF, Morais VMF, Chickos JS, Umnahanant P, Liebman JF (2007) J. Phys. Chem. A 2007 111:11153-11159
- [S11] Roux MV, Temprado M, Chickos JS, Nagano Y (2008) Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. J Phys Chem Ref Data 37:1855-1996
- [S12] Silva ALR, Lima ACMO, Ribeiro da Silva MDMC (2018) Energetic characterization of indanone derivatives involved in biomass degradation. J Therm Anal Calorim 134:1267–1276
- [S13] Verevkin SP (1998) Thermochemistry of aromatic ketones. Experimental enthalpies of formation and structural effects. Thermochim Acta 310:229-235