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Abstract: This paper presents the discrete state space mathematical model of the end-effector in
industrial robots and designs the linear-quadratic-Gaussian controller, called LQG controller for short,
to solve the low frequency vibration problem. Though simplifying the end-effector as the cantilever
beam, this paper uses the subspace identification method to determine the output dynamic response
data and establishes the state space model. Experimentally comparing the influences of different
input excitation signals, Chirp sequences from 0 Hz to 100 Hz are used as the final estimation signal
and the excitation signal. The LQG controller is designed and simulated to achieve the low frequency
vibration suppression of the structure. The results show that the suppression system can effectively
suppress the fundamental natural frequency and lower vibration of end-effector. The vibration
suppression percentage is 95%, and the vibration amplitude is successfully reduced from ±20 µm to
±1 µm. The present work provides an effective method to suppress the low frequency vibration of
the end-effector for industrial robots.
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1. Introduction

The problem of vibration suppression has traditionally been a research hotspot of scholars,
and studies on vibration control are increasing year by year [1]. Due to the advantages of lightweight,
large output, fast response speed and high strain sensitivity, piezoelectric materials have been widely
used for vibration control and other occasions [2].What is more, a piezoelectric patch can be easily
attached to the cantilever structure which is the most used mechanism in the area of industrial robots
and the most easily simplified model for transportation robots [3,4]. Therefore, using piezoelectric
materials for vibration suppression of beam structures has been widely studied.

Piezoelectric material was introduced into the beam vibration by Crawley and Luis [5] for the
first time, and subsequently, it was widely used in robot structure. Some scholars use the positive
piezoelectric effect and the inverse effect to design sensor and actuator for robot. It achieved the
collection of the vibration signal through a sensor and gave a reverse vibration by the actuator in order
to achieve the mechanism vibration suppression, e.g., Tzou et al. [6,7], Shen et al. [8], Lin [9] and Lou [10].
However, soon the hysteresis characteristic of piezoelectric materials and the interference between
electrical signals appeared. Leang [11] found the influence of the time-delay effect of piezoelectric
materials on vibration suppression and started to study the hysteresis characteristics, as well as
Zhang [12], Chen [13], and so on. In addition, some scholars focused on separation of control signals.

Another research direction is only using piezoelectric materials as actuators. Dadfarnia [14] used
a piezoelectric (PZT) patch as actuator which is bonded on the surface of the flexible beam to suppress
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residual vibration. Qiu et al. [15] gave a vibration suppression method of two bending modes and
two torsional modes. At the background of this research direction, Chang et al. [16] discussed using
an auxiliary piezoelectric actuator to control vibration for high-speed linear robots. Because of the
minute output of piezoelectric material, it is often used in many pieces to achieve the precise vibration
suppression of robots. Jia et al. [17], Zehetner [18] and Douat et al. [19]. Yang et al. [20] studied the
accurate models of a flexible link and two surfaces bonded with piezoelectric patches, where the link
and the piezoelectric patches will be modelled through the use of Euler–Bernoulli beam theory (EBT).

When using PZT patch as actuator, in order to achieve vibration suppression, some people have
studied the model identification of the system. Narendra [21] carried out detailed research on system
identification and real-time control of dynamic systems, and realized adaptive control of nonlinear
systems. People of the same range studied the identification method based on dynamic system,
e.g., Abd Jalil [22], Sethi [23–25]. Elsley [26] of Rockwell International Science Center established
a self-learning double-layer back propagation (BP) neural network control system for unknown
characteristics and dynamic model systems, while Song [27] established neural network discrimination.
Chen et al. [28,29] studied an adaptive method and gave the relationship between the proportion of
low frequency components and the modal order. Some identification models came from experiments,
such as Takawa et al. [30].

The existing research on vibration control of beam structure lacks the research on industrial robot
with low frequency vibration. At the same time, under this working condition, most adaptive control
systems or feedback compensation systems cannot provide the feedback signals needed by the system
in real time. Therefore, a vibration controller based on linear system identification is proposed to solve
the problem of low frequency oscillation.

The remainder of this paper is organized as follows. The linear system identification and LQG
controller of the structure of cantilever beam are described in Section 2. In Section 3, the linear
identification system is designed. Furthermore, the LQG controller is presented in Section 4.
Conclusions are shown in Section 5.

2. Materials and Methods—Structure Design of Cantilever Beam

Since the first generation of industrial robots came out in 1945, the application of industrial robots
has gradually become more and more widespread [31]. More and more industrial robots replace
human to complete industrial tasks with unusual or difficult requirements. People have higher and
higher requirements for the quality of industrial robots. This paper mainly studies the transport
robot for glass substrate shown in Figure 1. Due to the heavy weight, large area and easy damaging
of the glass substrate, the position accuracy of the end-effector of the transport robot is required to
be high. In practice, the vibration of the end-effector is the lead cause of glass substrate damage.
Therefore, based on the end-effector of a glass substrate handling robot, a cantilever structure is
designed for system identification and vibration control.
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The end execution structure of the existing glass substrate handling robot is illustrated in Figure 2.
The overall structure is a rod-shaped structure with uniform mass distribution, large span and relatively
thin thickness. The upper surface is the contact surface of the glass substrate which is connected
by the glass substrate absorber. The end-effector is usually fixed to the arm by riveting or screw
insertion into the arm mounting hole. Most substrates are composed of rubber while the material of
the end-effector is steel and carbon fiber. Therefore, the structure can be simplified as a cantilever beam
model, as shown in Figure 3.
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From Figure 3, it can be found that the absorber is omitted after comparing the mass so that we can
simplify the end-effector into a thin cantilever beam. According to the actual length, width, and height
of the end-effector, we reduced in equal proportion. The structural parameters of the cantilever beam
designed and processed for system identification are 250 × 2 × 25 in mm. Additionally, on the left
there are 30 mm left to fix the end which is called exposed core. The specific structure is shown in
Figure 4. The parameters of the pasted piezoelectric ceramics are shown in Table 1.
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Table 1. The parameters of the pasted piezoelectric ceramic.

Parameters Symbol Value

Elastic constant (N/m2) C11 12.6 × 1010

C12 5.5 × 1010

C13 5.3 × 1010

C33 11.7 × 1010

C44 3.53 × 1010

Piezoelectric constant (C/m2) e31 −6.5
e33 23.3
e15 17.0

Dielectric constant (C/Vm) ε11 1.51 × 10−8

In this paper, the excited signal of the end-effector comes from the contacting end with the arm of
the robot. In order to restore the excitation of the end-effector as realistically as possible, we pasted a
piezoelectric sheet as close to the exposed core as we can in order to excite the vibration. The maximum
strain of a cantilever beam is at the clamp, so we pasted the other piezoelectric sheet near the excited
one to control the vibration. Expressing the actual output vibration characteristics of the system called
displacement acquisition point is 10 mm relative to the other end. The response of 0–300 Hz sinusoidal
sweep excitation signal of the cantilever beam is carried out by fast Fourier transform. As shown in
Figure 5, the first-order natural frequency of the structure is about 32.8 Hz, and the second-order natural
frequency is about 195 Hz. The two natural frequencies have a large distance on the horizontal axis.
The frequency domain response amplitude difference is large too. Therefore, the first-order vibration
mode of the structure is mainly considered in the identification process. Based on the structure of the
cantilever beam, this paper designs the experiment shown in Figure 6.
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3. Linear System Identification

3.1. Theoretical Design of Linear System Identification

Basing on the state space model of the system, the discrete state space model of linear time
invariant system is assumed to be as follows,

xk+1 = Axk + Buk + wk (1)

yk = Cxk + Duk + vk (2)

where:

xk—the n-dimensional state vector of the system
yk—the L-dimensional output observation vector
uk—the m-dimensional input observation vector, A ∈ Rn×m, C ∈ Rn×l, D ∈ Rl×m

ωk—the n-dimensional input noise vector
vk—the L-dimensional measurement noise vector.
[u(k), y(k)]—the input-output sequence of SISO object at time k

The parameter vector is defined as

θ =
[
vec(A)T, vec(B, G)T, vec(C)T, vec(D)T

]T
∈ Rd (3)

The vector length d = n2 + n(m + l) + lm is the total number of system parameters. vec(A) is the
straightening operation. The identification of system state space can be expressed as the estimate of
the parameter matrix A, B, C, D by giving the input-output observation sequence (UN, YN), so as to
minimize the value of the objective function as
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Basing on subspace identification method, the extended objective matrix of structure is proposed as

Γa =
[
C CA · · · CAa−1

]T
(5)

Hankel matrix of impulse response

Ht,a,b =


ht ht+1 L ht+b−1

ht+1 ht+2 L ht+b
M M M M

ht+a−1 ht+a L ht+a+b−2

 (6)

According to the corresponding time, the Hankel matrix is Up = U1,s,T in the past which at present
is Uc = Us,1,T and U f = Us+1,s,T in the future. Hankel matrices defining the future measurement noise
and input noise are denoted as M f , N f . The state sequence of a system is defined as

Xs =
[

xs+1 xs+2 · · · xs+T
]

(7)

Basing on the input–output matrix equation of the system Y f = ΓsXs + ΦsU f + Φs
wM f + N f .

Removing M f , N f and Hankel matrices U f by projection method gets Os = ΓsXs.
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Basing on the estimated state sequence Xs and extended observability matrix Γs, The parameter
matrix A, B, C, D of the system state space model can be obtained by solving the equations with the
least square method of N4SID regression.

∧

A
∧

B
∧

C
∧

D

 = argmin
A,B,C,D

‖

[
Xs+1

Yc

]
−

[
A B
C D

][
Xs

Uc

]
‖

2

F
(8)

3.2. Linear System Identification Experiment

System identification generally can be divided into off-line identification and on-line identification.
In this paper, this system model structure and system order have been determined and the background
is the industrial robot, so we used the off-line identification, as shown in Figure 7.
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This paper mainly studied the low-frequency vibration of the cantilever beam so the experimental
platform (illustrated as Figure 8) was built according to the cantilever beam model designed in Section 2.
By amplifying the voltage by 30 times, the power amplifier excites the vibration of the cantilever
structure. The laser displacement sensor gathers the displacement signal from the displacement
acquisition point. In the process of the experiment, different excitation signals were used to excite the
system vibration and collect the real-time signals.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 14 
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Figure 8. System identification experimental platform.

The order of state space identification is assumed to be 4, and the identification results are
presented in Table 2. The accuracy of the identification results is represented by the root mean square
value (MSE) of the actual output value and the output value of the identification model. In the process
of data acquisition, the laser displacement sensor is set in advance to carry out sliding average filtering
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with a length of 265 to reduce the influence of measurement noise. Because the output signal of a laser
displacement sensor is the absolute value of its measured displacement value, it is necessary for the
average and the trend of the output signal before identification. The identified system model is set as a
discrete state space model.

Table 2. Results of different identification system.

Excitation Signal Sampling Frequency (Hz) Root Mean Square Error

white Gaussian noise 1000 33.6493
500 6.2939
200 2.9043

PRBS sequence 1000 29.2545
500 15.7613
200 2.6542

0–100 Hz Chirp Signal 1000 14.2563
0–200 Hz Chirp Signal 1000 30.4611
0–300 Hz Chirp Signal 1000 26.1471

In the above table it can be seen that the difference of the excitation signal and sampling frequency
will have a significant impact on the identification results. In the above experiments, the optimal
performance (i.e., minimum MSE) of Gaussian white noise, Pseudo-Random Binary Sequence (shorted
as PRBS) sequence and chirp sweep signal are 2.9043, 2.6542 and 14.2563, respectively. The experiment
should be repeated many times to avoid the interference of external factors. By comparing the output of
actual and the identification space while three different kinds of signals excited the structure at different
frequencies, the optimal situation under different excitation signals is selected. The time-domain
differential value of the system is obtained by subtracting the actual output displacement of the system
and the output displacement of the identification space at the corresponding time, as shown in Figure 9.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 14 
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Figure 9 shows that the influence of different excitation signals on the system identification can be
directly represented by the time-domain differential curve. The experimental results show that in the
whole system identification process, the maximum output displacement differences of Gaussian white
noise, PRBS excitation signal and 1–100 Hz are 4.86 mm, 4.92 mm and 19.1 mm, respectively. Although
the values of Gaussian white noise. PRBS excitation signal are smaller than that of the chirps signal,
the identification results of these two have the similar time-varying identification difference deviation.
But the curve of 0–100 Hz Chirps is stable around line 0 and the maximum difference is focused on a
very short time. Therefore, considering the accuracy of identification results, the coverage of frequency
bandwidth and the real-time requirements of sampling frequency, this paper chooses 1–100 Hz Chirp
signal as the final estimation of the mathematical model and excitation signal of controller. The final
parameter matrix is as

A =


0.4933 −0.8513 0.0474 −0.0366
0.8514 0.5098 0.0324 −0.0139
−0.1372 0.0714 0.3828 0.3508

0.0797 −0.0527 0.0799 0.8603


B =


−0.0061
−0.0034
−0.0288

0.0157


C = [313.457− 221.691− 53.6114− 4.8011]
D = 0

4. Design and Simulation of LQG Controller

For the discrete state space, the link quality indicator regulator, abbreviated as LQI regulator, obtains

the optimal control rate by minimizing the linear quadratic cost function J(u) =
Y=∑
k=0

(zTQz + uTRu)

without considering the noise interference. Q and r are the weight matrix of cost function determined
by human. While the control strategy of the linear-quadratic-Gaussian controller shorted as LQG
controller is to minimize the error quadratic functional of linear systems disturbed by external noise.
It does not need the system state to be fully observable. Therefore, it is more suitable for this control
system to be calculated by adjusting the value of weight Q and r during designing. The state estimator
gives the state equation as

∧
x[k + 1|k] = A

∧
x[k|k− 1] + Bu[k] + L(y[k] −C

∧
x[k|k− 1] −Du[k]) (9)

According to the state estimation of Kalman filter and the optimal control matrix K obtained by
the LQI method, a 1-DOF position tracking controller is constructed. The structure diagram is shown
in Figure 10.
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Figure 11 illustrates the comparison of the Bode diagram between the identification system and
the original system. The amplitude of the identification system is consistent with the amplitude of the
Bode diagram of the actual input-output relationship between 0 Hz and 100 Hz. But there is a huge
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deviation beyond this range. As for the phase, there is an understandable delay between 0 Hz and
100 Hz, but there is no regular pattern during overstep.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 14 
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Figures 12 and 13 show the Bode diagram of the closed-loop system and the LQG controller.
Generally, the Bode diagram amplitude of the closed-loop system is less than 1 and the phase diagram
is basically maintained at 360 degrees when the frequency is below 100 Hz after adding the LQG
controller, which indicates that the closed-loop system can effectively suppress the vibration below
38.7 Hz.
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Figure 14 shows the results of the response for the open-loop system and the closed-loop system,
respectively. It can be seen that the amplitude of the closed-loop system has a rapid reduction which
means the dynamic performance of the system is significantly improved after adding the controller.
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Figure 14. Response curve of open and closed loop systems.

The system controller designed by appeal is simulated. The frequency of sinusoidal interference
signal is 35 Hz which is near the natural frequency, and the vibration amplitude is±20µm. The vibration
response of the structure is shown in Figure 15. It can be seen from Figure 15 that the vibration
amplitude of the structure is successfully reduced from ±20 µm to ±1 µm after the effective suppression
of the control system indicating that the vibration suppression percentage of the vibration suppression
system is as high as 95% without high frequency noise. When the vibration frequency of the excitation
signal is 50 Hz and the vibration amplitude is ±20 µm, the response of the system reaches about
±40 µm. The results are shown in Figure 16, and the control system completely loses the vibration
suppression effect. In conclusion, the LQG vibration suppression system has an obvious suppression
effect on vibration interference less than 38.7 Hz, but has no suppression effect on other vibration
signals higher than 38.7 Hz.
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5. Conclusions

In this paper, the vibration control of a cantilever beam is discussed. In order to solve the low
frequency vibration problem of industrial robot cantilever structure, a discrete state space mathematical
model based on subspace identification method is proposed. Based on the model, an LQG controller is
designed. The results of the simulation demonstrate that the LQG control method has a fast response
speed while the frequency range is limited, so it requires high accuracy of the identification model.
When the excitation frequency is lower than 38.7 Hz, the LQG controller designed in this paper can
effectively reduce the first-order frequency of the system and make the vibration amplitude reach 95%
and the vibration amplitude of the structure is successfully reduced from ±20 µm to ±1 µm.

This study provides a feasible method for the vibration control of the cantilever beam. The subspace
identification method is used to identify the discrete state of the system, which is suitable for industrial
transport robots with end-effectors. At the same time, the LQG controller designed based on the
identification results can control the vibration of the end-effector of the robot without the real-time
feedback signal of the system. This method can be implemented in vibration control of industrial
robots with an end-effector.
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