Estimating Slump Flow and Compressive Strength of Self-Compacting Concrete Using Emotional Neural Networks
Abstract
:1. Introduction
2. Material and Methods
2.1. Dataset Employed
- (a)
- Training phase: Included the required data for the design of the proposed models. Sixty-three out of 90 (70%) datasets were used as the training phase.
- (b)
- Testing phase: Included the remaining data (30%) to evaluate the performance of the proposed models with an independent dataset.
- (c)
- Validation phase: Here, all the data (90 datasets) was used to qualify a model’s performance with a large amount of dataset.
2.2. Models Design and Evaluation
2.2.1. GMDH Model
2.2.2. MPMR Model
2.2.3. ENN Model
2.2.4. ANN-PSO Model
2.2.5. Models Processing and Performance Evaluation
2.3. Sensitivity Analysis
3. Results and Discussion
3.1. Slump Flow Modeling
3.2. Compressive Strength Modeling
3.3. The Sensitivity of Input Variables
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghazanfari, N.; Gholami, S.; Emad, A.; Shekarchi, M. Evaluation of GMDH and MLP Networks for Prediction of Compressive Strength and Workability of Concrete. Bull. de la Société R. des Sci. Liège 2017, 86, 855–868. [Google Scholar]
- Sonebi, M.; Grünewald, S.; Cevik, A.; Walraven, J. Modelling fresh properties of self-compacting concrete using neural network technique. Comput. Concr. 2016, 18, 903–921. [Google Scholar] [CrossRef] [Green Version]
- Sobhani, J.; Najimi, M.; Pourkhorshidi, A.R.; Parhizkar, T. Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models. Constr. Build. Mater. 2010, 24, 709–718. [Google Scholar] [CrossRef]
- Elemam, W.E.; Abdelraheem, A.H.; Mahdy, M.G.; Tahwia, A.M. Optimizing fresh properties and compressive strength of self-consolidating concrete. Constr. Build. Mater. 2020, 249, 118781. [Google Scholar] [CrossRef]
- Gholhaki, M.; Kheyroddin, A.; Hajforoush, M.; Kazemi, M. An investigation on the fresh and hardened properties of self-compacting concrete incorporating magnetic water with various pozzolanic materials. Constr. Build. Mater. 2018, 158, 173–180. [Google Scholar] [CrossRef]
- Timur Cihan, M. Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods. Adv. Civ. Eng. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Öztaş, A.; Pala, M.; Özbay, E.; Kanca, E.; Çaǧlar, N.; Bhatti, M.A. Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. 2006, 20, 769–775. [Google Scholar] [CrossRef]
- Jalal, M.; Mansouri, E.; Sharifipour, M.; Pouladkhan, A.R. Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles. Mater. Des. 2012, 34, 389–400. [Google Scholar] [CrossRef]
- Sabet, F.A.; Libre, N.A.; Shekarchi, M. Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash. Constr. Build. Mater. 2013, 44, 175–184. [Google Scholar] [CrossRef]
- Leung, H.Y.; Kim, J.; Nadeem, A.; Jaganathan, J.; Anwar, M.P. Sorptivity of self-compacting concrete containing fly ash and silica fume. Constr. Build. Mater. 2016, 113, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Samui, P.; Kim, D. Comparison of machine learning techniques to predict compressive strength of concrete. Comput. Concr. 2018, 21, 463–470. [Google Scholar]
- Belalia Douma, O.; Boukhatem, B.; Ghrici, M.; Tagnit-Hamou, A. Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput. Appl. 2017, 28, 707–718. [Google Scholar] [CrossRef]
- Ding, Z.; An, X. Deep Learning Approach for Estimating Workability of Self-Compacting Concrete from Mixing Image Sequences. Adv. Mater. Sci. Eng. 2018, 2018, 6387930. [Google Scholar] [CrossRef] [Green Version]
- Biswas, R.; Samui, P.; Rai, B. Determination of compressive strength using relevance vector machine and emotional neural network. Asian J. Civ. Eng. 2019, 20, 1109–1118. [Google Scholar] [CrossRef]
- Madandoust, R.; Bungey, J.H.; Ghavidel, R. Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models. Comput. Mater. Sci. 2012, 51, 261–272. [Google Scholar] [CrossRef]
- Madandoust, R.; Ghavidel, R.; Nariman-Zadeh, N. Evolutionary design of generalized GMDH-type neural network for prediction of concrete compressive strength using UPV. Comput. Mater. Sci. 2010, 49, 556–567. [Google Scholar] [CrossRef]
- Jang, Y.; Ahn, Y.; Kim, H.Y. Estimating Compressive Strength of Concrete Using Deep Convolutional Neural Networks with Digital Microscope Images. J. Comput. Civ. Eng. 2019, 33, 1–11. [Google Scholar] [CrossRef]
- Nikoo, M.; Torabian Moghadam, F.; Sadowski, Ł. Prediction of concrete compressive strength by evolutionary artificial neural networks. Adv. Mater. Sci. Eng. 2015, 2015, 849126. [Google Scholar] [CrossRef]
- Safiuddin, M.; Raman, S.N.; Salam, M.A.; Jumaat, M.Z. Modeling of compressive strength for self-consolidating high-strength concrete incorporating palm oil fuel ash. Materials 2016, 9, 396. [Google Scholar] [CrossRef]
- Yang, D.-S.; Park, S.-K.; Lee, J.-H. A prediction on mix proportion factor and strength of concrete using neural network. KSCE J. Civ. Eng. 2003, 7, 525–536. [Google Scholar] [CrossRef]
- Sadowski, Ł.; Nikoo, M.; Nikoo, M. Concrete compressive strength prediction using the imperialist competitive algorithm. Comput. Concr. 2018, 22, 355–363. [Google Scholar]
- Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Bahadori, A.; Zandi, Y.; Salih, M.N.A.; Nguyen, H.; Dou, J.; Song, X.; Poi-Ngian, S. Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete. Appl. Sci. 2019, 9, 5534. [Google Scholar] [CrossRef] [Green Version]
- Tien Bui, D.; Abdullahi, M.M.; Ghareh, S.; Moayedi, H.; Nguyen, H. Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete. Eng. Comput. 2019, in press. [Google Scholar] [CrossRef]
- Golafshani, E.M.; Pazouki, G. Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method. Comput. Concr. 2018, 22, 419–437. [Google Scholar]
- Koopialipoor, M.; Nikouei, S.S.; Marto, A.; Fahimifar, A.; Jahed Armaghani, D.; Mohamad, E.T. Predicting tunnel boring machine performance through a new model based on the group method of data handling. Bull. Eng. Geol. Environ. 2019, 78, 3799–3813. [Google Scholar] [CrossRef]
- Strohmann, T.; Grudic, G.Z. A formulation for minimax probability machine regression. Adv. Neural Inf. Proc. Syst. 2003, 15, 785–792. [Google Scholar]
- Kumar, M.; Mittal, M.; Samui, P. Performance assessment of genetic programming (GP) and minimax probability machine regression (MPMR) for prediction of seismic ultrasonic attenuation. Earthq. Sci. 2013, 26, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Samui, P.; Kim, D.; Jagan, J.; Roy, S.S. Determination of Uplift Capacity of Suction Caisson Using Gaussian Process Regression, Minimax Probability Machine Regression and Extreme Learning Machine. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019, 43, 651–657. [Google Scholar] [CrossRef]
- Sharghi, E.; Nourani, V.; Molajou, A.; Najafi, H. Conjunction of emotional ANN (EANN) and wavelet transform for rainfall-runoff modeling. J. Hydroinformatics 2019, 21, 136–152. [Google Scholar] [CrossRef] [Green Version]
- Nourani, V. An Emotional ANN (EANN) approach to modeling rainfall-runoff process. J. Hydrol. 2017, 544, 267–277. [Google Scholar] [CrossRef]
- Kumar, S.; Roshni, T.; Himayoun, D. A Comparison of Emotional Neural Network (ENN) and Artificial Neural Network (ANN) Approach for Rainfall-Runoff Modelling. Civ. Eng. J. 2019, 5, 2120–2130. [Google Scholar] [CrossRef]
- Lotfi, E.; Akbarzadeh, M. Practical emotional neural networks. Neural Netw. 2014, 59, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Fourie, A.; Chen, Q. Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill. Constr. Build. Mater. 2018, 159, 473–478. [Google Scholar] [CrossRef]
- Kaloop, M.R.; Kumar, D.; Samui, P.; Gabr, A.R.; Hu, J.W.; Jin, X.; Roy, B. Particle Swarm Optimization algorithm-Extreme Learning Machine (PSO-ELM) model for predicting resilient modulus of stabilized aggregate bases. Appl. Sci. 2019, 9, 3221. [Google Scholar] [CrossRef] [Green Version]
- Liong, S.-Y.; Lim, W.-H.; Paudyal, G. River stage forecasting in Bangladish: Neural network approach. J. Comput. Civ. Eng. 2000, 14, 1–8. [Google Scholar] [CrossRef]
- Aiyer, B.G.; Kim, D.; Karingattikkal, N.; Samui, P.; Rao, P.R. Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine. KSCE J. Civ. Eng. 2014, 18, 1753–1758. [Google Scholar] [CrossRef]
- Choudhary, R.; Gupta, R.; Nagar, R. Impact on fresh, mechanical, and microstructural properties of high strength self-compacting concrete by marble cutting slurry waste, fly ash, and silica fume. Constr. Build. Mater. 2020, 239, 117888. [Google Scholar] [CrossRef]
Oxide Composition | C | FA | LP | SF |
---|---|---|---|---|
CaO (%) | 62.70 | 4.18 | 96.40 | 0.54 |
SiO2 (%) | 20.20 | 52.00 | - | 90.20 |
Al2O3 (%) | 6.00 | 21.54 | - | 0.45 |
Fe2O3 (%) | 3.30 | 5.96 | 0.10 | 0.37 |
MgO (%) | 2.00 | 1.05 | 2.31 | 4.26 |
SO3 (%) | 2.20 | 0.37 | - | 0.32 |
Specific surface area (m2/kg) | 360 | 420 | 535 | 23,530 |
Specific gravity | 3.15 | 2.38 | 2.80 | 2.22 |
Item | Powder (kg/m3) | C (%) | FA (%) | LP (%) | SF (%) | W/P | SP (%) | Sand: Dolomite |
---|---|---|---|---|---|---|---|---|
content | 500 | 65 | 20 | 10 | 5 | 0.38 | 1.15 | 1:1 |
Variable | C (kg/m3) | FA (kg/m3) | LP (kg/m3) | SF (kg/m3) | W (kg/m3) | SP (kg/m3) | CG (kg/m3) | FG (kg/m3) | S (mm) | CS (MPa) |
---|---|---|---|---|---|---|---|---|---|---|
Average | 325.00 | 100.00 | 50.00 | 25.00 | 190.01 | 6.25 | 816.66 | 816.66 | 708.28 | 41.31 |
Maximum | 382.50 | 150.00 | 100.00 | 50.00 | 215.50 | 7.50 | 865.00 | 865.00 | 925.00 | 62.30 |
Minimum | 270.60 | 50.00 | 0.00 | 0.00 | 165.00 | 5.00 | 768.30 | 768.30 | 400.00 | 20.90 |
Model Parameters | Nn | Ln | α |
---|---|---|---|
S | 15 | 5 | 0.3 |
CS | 10 | 4 | 0.3 |
Statistical Parameter | GMDH | MPMR | ENN | ANN-PSO |
---|---|---|---|---|
Training | ||||
RMSE (mm) | 42.00 | 3.77 | 22.23 | 30.29 |
MAE (mm) | 33.61 | 1.20 | 12.97 | 20.91 |
r (%) | 91.63 | 99.94 | 97.73 | 95.76 |
PE (%) | 8.00 | 0.72 | 4.23 | 5.77 |
Testing | ||||
RMSE (mm) | 41.75 | 43.34 | 13.26 | 28.67 |
MAE (mm) | 33.87 | 31.89 | 9.53 | 21.52 |
r (%) | 82.80 | 86.76 | 98.67 | 91.99 |
PE (%) | 13.05 | 13.54 | 4.14 | 8.96 |
Overall | ||||
RMSE (mm) | 30.48 | 23.95 | 20.16 | 42.54 |
MAE (mm) | 24.55 | 10.41 | 11.09 | 31.93 |
r (%) | 94.89 | 97.15 | 97.80 | 90.17 |
PE (%) | 5.81 | 4.56 | 3.84 | 8.10 |
Statistical Parameter | GMDH | MPMR | ENN | ANN-PSO |
---|---|---|---|---|
Training | ||||
RMSE (MPa) | 3.41 | 1.74 | 2.49 | 3.20 |
MAE (MPa) | 2.62 | 1.25 | 1.64 | 2.12 |
r (%) | 93.76 | 98.40 | 96.70 | 94.56 |
PE (%) | 8.24 | 4.21 | 6.02 | 7.73 |
Testing | ||||
RMSE (MPa) | 3.65 | 4.08 | 2.78 | 2.88 |
MAE (MPa) | 2.85 | 3.11 | 2.04 | 2.09 |
r (%) | 89.79 | 86.97 | 94.36 | 93.54 |
PE (%) | 10.62 | 11.86 | 8.08 | 8.37 |
Overall | ||||
RMSE (MPa) | 3.47 | 2.67 | 2.59 | 3.09 |
MAE (MPa) | 2.66 | 1.81 | 1.77 | 2.43 |
r (%) | 92.78 | 95.84 | 96.07 | 94.47 |
PE (%) | 8.39 | 6.45 | 6.26 | 7.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaloop, M.R.; Samui, P.; Shafeek, M.; Hu, J.W. Estimating Slump Flow and Compressive Strength of Self-Compacting Concrete Using Emotional Neural Networks. Appl. Sci. 2020, 10, 8543. https://doi.org/10.3390/app10238543
Kaloop MR, Samui P, Shafeek M, Hu JW. Estimating Slump Flow and Compressive Strength of Self-Compacting Concrete Using Emotional Neural Networks. Applied Sciences. 2020; 10(23):8543. https://doi.org/10.3390/app10238543
Chicago/Turabian StyleKaloop, Mosbeh R., Pijush Samui, Mohamed Shafeek, and Jong Wan Hu. 2020. "Estimating Slump Flow and Compressive Strength of Self-Compacting Concrete Using Emotional Neural Networks" Applied Sciences 10, no. 23: 8543. https://doi.org/10.3390/app10238543
APA StyleKaloop, M. R., Samui, P., Shafeek, M., & Hu, J. W. (2020). Estimating Slump Flow and Compressive Strength of Self-Compacting Concrete Using Emotional Neural Networks. Applied Sciences, 10(23), 8543. https://doi.org/10.3390/app10238543