From Light to Displacement: A Design Framework for Optimising Spectral-Domain Low-Coherence Interferometric Sensors for In Situ Measurement
Abstract
:1. Introduction
Sensor Applications in Industry
2. Fundamental Principles
2.1. Mathematical Formulation
Signal Analysis for Singular Reflecting Objects
2.2. Extracting Spatial Depth from Spectral Interferogram
2.3. Signal Noise
2.4. Measurement Range
2.4.1. Maximum Range—Nyquist Theory
2.4.2. Sensitivity Fall-Off
Finite Pixel Width
Finite Spectrometer Resolution
Signal Strength
3. LCI System Design Framework
3.1. Axial Resolution
3.2. Lateral Resolution
3.2.1. Operating outside the Region of Focus
3.3. Motion Artefacts and Fringe Washout
3.3.1. Axial Motion Effects
3.3.2. Lateral Motion Effects
3.4. Dispersion Compensation
3.5. Design Exemplar
- Axial resolution: 5 m
- Operating range: 2.5 mm
- Measurement speed: 200 mm/s
- Lateral resolution: 20 m
4. Signal Processing Algorithms
4.1. Resampling Captured Interferogram
4.2. Windowing Signal
4.3. Fixed Pattern Noise Removal
4.4. Zero-Padding
4.5. Locate Signal Peak(s)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schwenke, H.; Knapp, W.; Haitjema, H.; Weckenmann, A.; Schmitt, R.; Delbressine, F. Geometric error measurement and compensation of machines—An update. CIRP Ann. 2008, 57, 660–675. [Google Scholar] [CrossRef]
- Uhlmann, E.; Mullany, B.; Biermann, D.; Rajurkar, K.P.; Hausotte, T.; Brinksmeier, E. Process chains for high-precision components with micro-scale features. CIRP Ann. 2016, 65, 549–572. [Google Scholar] [CrossRef]
- Altintas, Y.; Aslan, D. Integration of virtual and online machining process control and monitoring. CIRP Ann. 2017, 66, 349–352. [Google Scholar] [CrossRef]
- Li, Z.; Wang, G.; He, G. Surface quality monitoring based on time-frequency features of acoustic emission signals in end milling Inconel-718. Int. J. Adv. Manuf. Technol. 2018, 96, 2725–2733. [Google Scholar] [CrossRef]
- Fang, F.Z.; Zhang, X.D.; Weckenmann, A.; Zhang, G.X.; Evans, C. Manufacturing and measurement of freeform optics. CIRP Ann. 2013, 62, 823–846. [Google Scholar] [CrossRef]
- Gao, W.; Haitjema, H.; Fang, F.Z.; Leach, R.K.; Cheung, C.F.; Savio, E.; Linares, J.M. On-machine and in-process surface metrology for precision manufacturing. CIRP Ann. 2019, 68, 843–866. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Swanson, E.A.; Lin, P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [Green Version]
- Kirtane, T.S.; Wagh, M.S. Endoscopic optical coherence tomography (OCT): Advances in gastrointestinal imaging. Gastroenterol. Res. Pract. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Schmitt, J.M. Optical Coherence Tomography (OCT): A Review. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 1205–1215. [Google Scholar] [CrossRef] [Green Version]
- Targowski, P.; Iwanicka, M. Optical Coherence Tomography: Its role in the non-invasive structural examination and conservation of cultural heritage objects—A review. Appl. Phys. A Mater. Sci. Process. 2012, 106, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Zhang, Z.; Markl, D.; Zeitler, J.A.; Shen, Y. A Review of the Applications of OCT for Analysing Pharmaceutical Film Coatings. Appl. Sci. 2018, 8, 2700. [Google Scholar] [CrossRef] [Green Version]
- Hovell, T.; Matharu, R.S.; Petzing, J.N.; Justham, L.; Kinnell, P. Lensless fiber-deployed low-coherence interferometer for in situ measurements in nonideal environments. Opt. Eng. 2020, 59, 1–11. [Google Scholar] [CrossRef]
- Hovell, T.; Petzing, J.; Justham, L.; Kinnell, P. in situ measurement of electrochemical jet machining using low coherence interferometry. In Proceedings of the Euspen’s 20th International Conference & Exhibition, Geneva, Switzerland, 8–12 June 2020. [Google Scholar]
- Choma, M.A.; Sarunic, M.V.; Yang, C.H.; Izatt, J.A. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 2003, 11, 2183–2189. [Google Scholar] [CrossRef] [Green Version]
- Bosselmann, T.; Ulrich, R. High-Accuracy Position-Sensing with Fiber-Coupled White-Light Interferometers. In Proceedings of the 2nd International Conference on Optical Fiber Sensors, Stuttgart, Germany, 5–7 September 1984. [Google Scholar] [CrossRef]
- Takada, K.; Yokohama, I.; Chida, K.; Noda, J. New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl. Opt. 1987, 26, 1603–1606. [Google Scholar] [CrossRef]
- Youngquist, R.C.; Carr, S.; Davies, D.E.N. Optical coherence-domain reflectometry: A new optical evaluation technique. Opt. Lett. 1987, 12, 158–160. [Google Scholar] [CrossRef]
- Gilgen, H.H.; Novak, R.P.; Salathe, R.P.; Hodel, W.; Beaud, P. Submillimeter Optical Reflectometry. J. Light. Technol. 1989, 7, 1225–1233. [Google Scholar] [CrossRef]
- Liang, H.; Cucu, R.; Dobre, G.M.; Jackson, D.A.; Pedro, J. Application of OCT to Examination of Easel Paintings. In Proceedings of the Second European Workshop on Optical Fibre Sensors, Santander, Spain, 9–11 June 2004. [Google Scholar]
- Targowski, P.; Gora, M.; Wojtkowski, M. Optical Coherence Tomography for Artwork Diagnostics. Laser Chem. 2006, 2006. [Google Scholar] [CrossRef] [Green Version]
- Kononenko, V.V.; Konov, V.I.; Pimenov, S.M.; Volkow, P.V.; Goryunov, V.A.; Ivanov, V.V.; Novikov, M.A.; Markelov, V.A.; Tertysnik, A.D.; Ustavshikov, S.S. Control of laser machining of poly crystalline diamond plates by the method of low-coherence optical interferometry. Quantum Electron. 2005, 35, 622–626. [Google Scholar] [CrossRef]
- Wiesner, M.; Ihlemann, J.; Muller, H.H.; Lankeanu, E.; Huttmann, G. Optical coherence tomography for process control of laser machining. Rev. Sci. Instrum. 2010, 81, 033705. [Google Scholar] [CrossRef] [Green Version]
- Webster, P.J.L.; Wright, L.G.; Mortimer, K.D.; Leung, B.Y.; Yu, J.X.Z.; Fraser, J.M. Automatic real-time guidance of laser machining with inline coherent imaging. J. Laser Appl. 2011, 23, 022001. [Google Scholar] [CrossRef]
- Purtonen, T.; Kalliosaari, A.; Salminen, A. Monitoring and adaptive control of laser processes. Phys. Procedia 2014, 56, 1218–1231. [Google Scholar] [CrossRef] [Green Version]
- Kononenko, V.V.; Bushuev, E.V.; Zavedeev, E.V.; Volkov, P.V.; Luk’yanov, A.Y.; Konov, V.I. Low-coherence interferometry as a tool for monitoring laser micro- and nanoprocessing of diamond surfaces. Quantum Electron. 2017, 47, 1012–1016. [Google Scholar] [CrossRef]
- Wiesauer, K.; Pircher, M.; Goetzinger, E.; Bauer, S.; Engelke, R.; Ahrens, G.; Gruetzner, G.; Hitzenberger, C.K.; Stifter, D. En-face scanning optical coherence tomography with ultra-high resolution for material investigation. Opt. Express 2005, 13, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Groves, R.M.; Benedictus, R. Signal processing in optical coherence tomography for aerospace material characterization. Opt. Eng. 2013, 53, 033201. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Groves, R.M.; Benedictus, R. 3D monitoring of delamination growth in a wind turbine blade composite using optical coherence tomography. NDT E Int. 2014, 64, 52–58. [Google Scholar] [CrossRef]
- Kirillin, M.Y.; Alarousu, E.; Fabritius, T.; Myllylä, R.; Priezzhev, A.V. Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study. J. Eur. Opt. Soc. 2007, 2, 07031. [Google Scholar] [CrossRef]
- Tuukka, P.; Jakub, C.; Erkki, A.; Risto, M. Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry. Opt. Rev. 2010, 17, 218–222. [Google Scholar] [CrossRef]
- You, J.; Kim, S. Optical inspection of complex patterns of microelectronics products. CIRP Ann. Manuf. Technol. 2008, 57, 505–508. [Google Scholar] [CrossRef]
- Czajkowski, J.; Prykäri, T.; Alarousu, E.; Palosaari, J.; Myllylä, R. Optical Coherence Tomography as a Method of Quality Inspection for Printed Electronics Products. Opt. Rev. 2010, 17, 257–262. [Google Scholar] [CrossRef]
- Majumdar, A.; Huang, H. Development of an in-fiber white-light interferometric distance sensor for absolute measurement of arbitrary small distances. Appl. Opt. 2008, 47, 2821–2828. [Google Scholar] [CrossRef]
- Donato, A.D.; Pietrangelo, T.; Anzellotti, A.; Monti, T.; Morini, A.; Farina, M. Infrared imaging in liquid through an extrinsic optical microcavity. Opt. Lett. 2013, 38, 5094–5097. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Gao, F.; Jiang, X. On-line surface inspection using cylindrical lens-based spectral domain low-coherence interferometry. Appl. Opt. 2014, 53, 5510–5516. [Google Scholar] [CrossRef] [PubMed]
- Park, H.M.; Jung, H.W.; Joo, K.N. Dual low coherence scanning interferometry for rapid large step height and thickness measurements. Opt. Express 2016, 24, 28625–28632. [Google Scholar] [CrossRef] [PubMed]
- Park, H.M.; Joo, K.N. High-speed combined NIR low-coherence interferometry for wafer metrology. Appl. Opt. 2017, 56, 8592–8597. [Google Scholar] [CrossRef]
- Krauter, J.; Osten, W. Nondestructive surface profiling of hidden MEMS using an infrared low-coherence interferometric microscope. Surf. Topogr. Metrol. Prop. 2018, 6, 015005. [Google Scholar] [CrossRef] [Green Version]
- Cheymol, G.; Brichard, B.; Villard, J.F. Fiber optics for metrology in nuclear research reactors-Applications to dimensional measurements. IEEE Trans. Nucl. Sci. 2011, 58, 1895–1902. [Google Scholar] [CrossRef]
- Amaral, M.M.; Raele, M.P.; Caly, J.P.; Samad, R.E.; Nilson, D.; Freitas, A.Z. Roughness measurement methodology according to DIN 4768 using optical coherence tomography (OCT). In Proceedings of the Modeling Aspects in Optical Metrology II, Munich, Germany, 15–16 June 2009. [Google Scholar] [CrossRef]
- Quinsat, Y.; Tournier, C. In situ non-contact measurements of surface roughness. Precis. Eng. 2012, 36, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Koller, D.M.; Hannesschläger, G.; Leitner, M.; Khinast, J.G. Non-destructive analysis of tablet coatings with optical coherence tomography. Eur. J. Pharm. Sci. 2011, 44, 142–148. [Google Scholar] [CrossRef]
- Meemon, P.; Yao, J.; sung Lee, K.; Thompson, K.P.; Ponting, M.; Baer, E.; Rolland, J.P. Optical Coherence Tomography Enabling Non Destructive Metrology of Layered Polymeric GRIN Material. Sci. Rep. 2013, 3, 1709. [Google Scholar] [CrossRef] [Green Version]
- Karim, F.; Bora, T.; Chaudhari, M.B.; Habib, K.; Mohammed, W.S.; Dutta, J. Optical fiber-based sensor for in situ monitoring of cadmium sulfide thin-film growth. Opt. Lett. 2013, 38, 5385–5388. [Google Scholar] [CrossRef]
- Brezinski, M.E. Optical Coherence Tomography: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Drexler, W.; Fujimoto, J.G. Optical Coherence Tomography Technology and Applications; Springer: Berlin/Heidelberg, Germany, 2014; Volume 1. [Google Scholar]
- Leitgeb, R.; Hitzenberger, C.K.; Fercher, A.F. Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 2003, 11, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.H.; Tearney, G.J.; Bouma, B.E.; Park, B.H.; de Boer, J.F. High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength. Opt. Express 2003, 11, 3598–3604. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.M.; Mazilu, M.; Chow, T.H.; Lee, W.M.; Taguchi, K.; Ng, B.K.; Sibbett, W.; Herrington, C.S.; Brown, C.T.A.; Dholakia, K. In-fiber common-path optical coherence tomography using a conical-tip fiber. Opt. Express 2009, 17, 2375–2384. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chng, X.K.B.; Adie, S.G.; Boppart, S.A.; Carney, P.S. Multifocal interferometric synthetic aperture microscopy. Opt. Express 2014, 22, 16606–16618. [Google Scholar] [CrossRef] [Green Version]
- Ralston, T.S.; Marks, D.L.; Carney, P.S.; Boppart, S.A. Real-time interferometric synthetic aperture microscopy. Nat. Phys. 2007, 3, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Mason, J.H.; Davies, M.E.; Bagnaninchi, P.O. Blur resolved OCT: Full-range interferometric synthetic aperture microscopy through dispersion encoding. Opt. Express 2020, 28, 3879–3894. [Google Scholar] [CrossRef]
- Wiley, C.A. Pulsed Doppler Radar Methods and Apparatus. U.S. Patent 3196436, 13 August 1954. [Google Scholar]
- Yun, S.H.; Tearney, G.J.; de Boer, J.F.; Bouma, B.E. Motion artifacts in optical coherence tomography with frequency-domain ranging. Opt. Express 2004, 12, 2977–2998. [Google Scholar] [CrossRef] [Green Version]
- Markl, D.; Hannesschläger, G.; Buchsbaum, A.; Sacher, S.; Khinast, J.G.; Leitner, M. In-line quality control of moving objects by means of spectral-domain OCT. Opt. Lasers Eng. 2014, 59, 1–10. [Google Scholar] [CrossRef]
- You, J.W.; Chen, T.C.; Mujat, M.; Park, B.H.; de Boer, J.F. Pulsed illumination spectral-domain optical coherence tomography for human retinal imaging. Opt. Express 2006, 14, 6739–6748. [Google Scholar] [CrossRef] [Green Version]
- Moneron, G.; Boccara, A.C.; Dubois, A. Stroboscopic ultrahigh-resolution full-field optical coherence tomography. Opt. Lett. 2005, 30, 1351–1353. [Google Scholar] [CrossRef]
- Drexler, W.; Morgner, U.; Kärtner, F.X.; Pitris, C.; Boppart, S.A.; Li, X.D.; Ippen, E.P.; Fujimoto, J.G. In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 1999, 24, 1221–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtkowski, M.; Srinivasan, V.J.; Ko, T.H.; Fujimoto, J.G.; Kowalczyk, A.; Duker, J.S. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express 2004, 12, 2404–2422. [Google Scholar] [CrossRef]
- Hitzenberger, C.K.; Baumgartner, A.; Drexler, W.; Fercher, A.F. Dispersion effects in partial coherence interferometry: Implications for intraocular ranging. J. Biomed. Opt. 1999, 4, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Hillman, T.R.; Sampson, D.D. The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography. Opt. Express 2005, 13, 1860–1874. [Google Scholar] [CrossRef]
- Marks, D.L.; Oldenburg, A.L.; Reynolds, J.J.; Boppart, S.A. Autofocus algorithm for dispersion correction in optical coherence tomography. Appl. Opt. 2003, 42, 3038–3046. [Google Scholar] [CrossRef] [PubMed]
- Cense, B.; Nassif, N.; Chen, T.C.; Pierce, M.C.; Yun, S.H.; Park, B.H.; Bouma, B.E.; Tearney, G.J.; de Boer, J.F. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express 2004, 12, 2435–2447. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Xu, J.; Wang, R.K. Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source. Biomed. Opt. Express 2016, 7, 4734–4748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorrer, C.; Belabas, N.; Likforman, J.P.; Joffre, M. Spectral resolution and sampling issues in Fourier-transform spectral interferometry. J. Opt. Soc. Am. B 2000, 17, 1795–1802. [Google Scholar] [CrossRef]
- Hu, Z.; Rollins, A.M. Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer. Opt. Lett. 2007, 32, 3525–3527. [Google Scholar] [CrossRef]
- Payne, A.; Podoleanu, A.G. Direct electronic linearization for camera-based spectral domain optical coherence tomography. Opt. Lett. 2012, 37, 2424–2426. [Google Scholar] [CrossRef]
- Liu, X.; Balicki, M.; Taylor, R.H.; Kang, J.U. Towards automatic calibration of Fourier-Domain OCT for robot-assisted vitreoretinal surgery. Opt. Express 2010, 18, 24331–24343. [Google Scholar] [CrossRef] [PubMed]
- Nassif, N.; Cense, B.; Park, B.H.; Pierce, M.C.; Yun, S.H.; Bouma, B.E.; Tearney, G.J.; Chen, T.C.; de Boer, J.F. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt. Express 2004, 12, 367–376. [Google Scholar] [CrossRef] [PubMed]
First Seen in Literature | Application Domain | Publications |
---|---|---|
1984 | Absolute ranging for detecting faults in fibre optic cables | [15,16,17,18] |
2004 | Art and Archaeology inspection | [10,19,20] |
2005 | Measurement during laser machining | [21,22,23,24,25] |
2005 | Material investigation | [26,27,28] |
2007 | Investigation of paper structure | [29,30] |
2008 | Electronic board and micro-electronics | [31,32] |
2008 | Profiling measurements | [33,34,35,36,37,38] |
2009 | Nuclear research reactor | [39] |
2009 | Surface roughness measurements | [40,41] |
2011 | Measurement of tablet coatings offline and online | [11,42] |
2013 | Measurement of optical components such as GRIN material | [43] |
2013 | Tracking film growth | [44] |
2020 | Measurement in liquid jets | [13] |
Window Function | Hann | Hamming | Taylor | Blackman |
---|---|---|---|---|
PSF FWHM (m) | 0.81 | 0.7 | 0.45 | 1.23 |
SNR (dB) | 39.09 | 33.92 | 22.13 | 38.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hovell, T.; Petzing, J.; Justham, L.; Kinnell, P. From Light to Displacement: A Design Framework for Optimising Spectral-Domain Low-Coherence Interferometric Sensors for In Situ Measurement. Appl. Sci. 2020, 10, 8590. https://doi.org/10.3390/app10238590
Hovell T, Petzing J, Justham L, Kinnell P. From Light to Displacement: A Design Framework for Optimising Spectral-Domain Low-Coherence Interferometric Sensors for In Situ Measurement. Applied Sciences. 2020; 10(23):8590. https://doi.org/10.3390/app10238590
Chicago/Turabian StyleHovell, Tom, Jon Petzing, Laura Justham, and Peter Kinnell. 2020. "From Light to Displacement: A Design Framework for Optimising Spectral-Domain Low-Coherence Interferometric Sensors for In Situ Measurement" Applied Sciences 10, no. 23: 8590. https://doi.org/10.3390/app10238590
APA StyleHovell, T., Petzing, J., Justham, L., & Kinnell, P. (2020). From Light to Displacement: A Design Framework for Optimising Spectral-Domain Low-Coherence Interferometric Sensors for In Situ Measurement. Applied Sciences, 10(23), 8590. https://doi.org/10.3390/app10238590