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Abstract: In the shipbuilding industry, the non-destructive testing for welding quality inspection
is mainly used for the permanent storage of the testing results and the radio-graphic testing which
can visually inspect the interior of the welded part. Experts are required to properly detect the test
results and it takes a lot of time and cost to manually Interpret the radio-graphic testing image
of the structure over 500 blocks. The algorithms that automatically interpret the existing radio-graphic
testing images to extract features through image pre-processing and classify the defects using neural
networks, and only partial automation is performed. In order to implement the feature extraction
and classification in one algorithm and to implement the overall automation, this paper proposes
a method of automatically detecting welding defect using Faster R-CNN which is a deep learning
basis. We analyzed the data to learn algorithms and compared the performance improvements using
data augmentation method to artificially increase the limited data. In order to appropriately extract
the features of the radio-graphic testing image, two internal feature extractors of Faster R-CNN were
selected, compared, and performance evaluation was performed.
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1. Introduction

The welding process accounts for more than 60% of the entire process in the shipbuilding
and offshore sector [1]. For the weld testing, there are various technologies such as radiographic
testing (RT), ultrasonic testing (UT) and magnetic testing (MT) used as non-destructive testing (NDT).
Of them, ship owners particularly prefer RT whose results can be stored permanently and that can
visually check the inside of the weld of all materials to other types of NDT.

Currently, technicians directly perform welding testing on structures of 500 blocks or more
to inspect the welding process in domestic and overseas shipyards. Since welding information
of more than 2000 locations per block is manually prepared, omissions and errors commonly occur,
which requires additional work, resulting in a huge amount of time and cost. To derive a consistent
and rational result from testing that is manually conducted, there is a need for an automation
and objectification system of testing that improves inspectors’ understanding.

Studies on automatic detection of the welding defects have been long conducted. Of them, ref. [2]
used image pre-processing as a method of extracting features, and classified the type of welding defects
using a neural network or Support Vector Machine (SVM) [3] for automatic identification. The form
of the neural network used here is multi-layer perceptron (MLP) that is used only for classifying
defects. Hence, it is not regarded as a neural network that classifies and reads images. Of various deep
learning algorithms, a convolutional neural network (CNN) that has recently been researched a lot for
image classification shows high performance compared to conventional algorithms. With regard to
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object detection, ref. [4] used CNN that achieved higher performance than previously used HOG [5] or
SIFT [6]. In [7] the boundaries of defects were classified based on image feature map extracted from
the neural network using CNN and SVM, but not only the boundaries of defects but also the types
of defects are important because NDT rules depending on the type of defect. Among the methods
of object detection using neural networks, Fast R-CNN [8] and Faster R-CNN [9] are mainly used for
object detection as they can classify the types and locations of objects in one network. In the medical
sector that handles radiographic images, research on object detection employing CNN has already been
underway. CNN detected features different to normal ones in chest radiographic images [10], and a
study was conducted to detect nerve regions using CNN in ultrasound images [11]. The performance
of detecting objects in radiographic images can be confirmed in several studies, and the possibility
of detecting defects in radiographic images using CNN was confirmed.

In this paper, we propose an algorithm that automatically detects the welding defects
in radiographic images by employing Faster R-CNN that shows high-performance in terms of accuracy.
We compared ResNet [12] and Inception-ResNet V2 [13] that showed high-performance in ImageNet
by configuring them as backbone networks. We conducted an experiment by analyzing the anchor
size in Faster R-CNN in a form suitable for defects. By taking into account the limited number of data,
we improved the accuracy of the proposed algorithm using data augmentation. | Table 1 describes the
method and features of defect detection.

2. Methodology

2.1. Convolutional Neural Network

It is a technology that mimics the structure of the optic nerve, and automatically learns features
necessary for the recognition of characters, images, objects, etc., starting from image processing.
Unlike conventional algorithms, CNN does not require a separate image pre-processing step because
it includes the feature extraction step. Further, various methods used when training a general neural
network can be applied to CNN in the same way. It learns the classification process by repeating
it multiples times to respond to various cases, thus resulting in high accuracy. A general CNN
structure consists of convolutional layers, pooling layers, fully-connected layers, and Softmax (Figure 1).
The convolutional layer corresponding to the feature extractor is composed of learnable filters. In each
filter, the region connected to the input volume is stacked into a depth dimension called an activation
map through the dot product of scalar multiples by element, and the stacked activation maps become
output volumes. After this, the size of the input volume is readjusted by extracting representative
values within a pixel unit of a certain size through the pooling layer. By stacking these configurations
in multiple layers, the features of an image are extracted and filters are learned.

To apply a feature map extracted from the feature extractor composed of the convolution layer
and the pooling layer to a classifier, 3D data is arranged and used as 1D data. The classifier
consists of the fully-connected layer and Softmax, which are the form of a conventional neural
network. By repeatedly training the fully-connected layer and Softmax along with the feature extractor,
it ultimately classifies which class an image belongs to. As for classification problems in general CNN,
only classes should be classified. However, class classification and location should be found when
there is an object, thus information about location should also be learned.

2.2. Faster R-CNN

R-CNN is an object detection algorithm based on CNN. In classifying an object while searching
all regions of an image with a filter of a certain size, it detects an object by learning region proposals
that are the ranges where the object is likely to be using CNN. Faster R-CNN, as shown in Figure 2a,
proposed a novel method by constructing a neural network in the conventional selective search as
a method of obtaining region proposals. This neural network is referred to as a region proposal
network (RPN), and learning is possible because the convolutional layer and fully-connected layer
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are configured. In addition, as it can use GPU operation, fast calculation is possible. RPN (Figure 2b)
creates intermediate layers through sliding window by receiving 256 or 512 dimensions from the feature
extractor. After this, it performs convolution with the classifier layer and regressor layer. The classifier
layer obtains outputs by applying a 1 x 1 filter. This layer creates an anchor box with k different sizes
and ratios generated for each sliding window, and assigns two scores, which indicates the existence
of an object. The regressor layer also applies a 1 x 1 filter, creates k anchor boxes, and then assigns
four coordinate values to indicate the coordinates of the bounding box. Learning is performed
by inputting the outputs from the two layers into the fully-connected layer through the region
of interest (Rol) pooling layer. By introducing RPN and the Rol pooling layer, Faster R-CNN addresses
the computational and structural issues of R-CNN and fast R-CNN, and greatly improves accuracy
and computation speed.
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Figure 1. General CNN structure. Consisted to feature extractor and classifier.
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Figure 2. (a) Faster R-CNN structure. (b) RPN takes an image as input and outputs a set of rectangular
object proposals, each with an objectness score.

Faster R-CNN constructed with RPN can be backpropagated end-to-end, thus has fewer
errors than before. In addition, from a structural perspective, as RPN can be implemented with
the convolutional layer, it can be constructed coupled with the feature extractor. Thus, performance
can be improved by applying several CNN structures that achieve high results in ImageNet.

2.3. ResNet

In forming a deep network, the gradient value becomes too large or saturated with small values,
resulting in a vanishing gradient problem that loses or slows the learning effect. ResNet added
an identity shortcut connection to the conventional neural network structure to obtain the learning
effect of the deep network. As the shortcut connection that connects the input to the output is directly
connected without parameters, only addition is added in terms of computation. Thus, it does not
significantly influence the computation amount. Deep networks can be easily optimized using this,
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and accuracy can be improved due to the increased depth. Figure 3a shows the block of residual
learning that composes ResNet [12]. Previously, H(x) was learned, but residual learning learns to
obtain H(x) — x. This modified method in this way learns in a direction where H(x) — x should be 0,
thus it is possible to easily detect movements with small inputs.

Filter
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F)=H(x)-x  |ReLU
‘ Weight layer

F(x)+x

L X
1dent1ty 1x1 Conv
1x1 Conv

1x1 Conv 1x1 Conv 3x3 Max pool

Previous layer|
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(a) Residual module (b) Inception-ResNet module

Figure 3. (a) Module learned to converge H(x) — x to zero. (b) 1 x 1 convolutions are used to compute
reductions before the expensive 3 x 3 and 5 x 5 convolutions.

2.4. Inception-ResNet V2

Inception-ResNet is a model that combines structural features and is divided into V1 and V2. V1
refers to a model that combines Inception V3 and ResNet, and V2 is a model that combines Inception
V4 and ResNet. Figure 3b shows the module A of Inception-ResNet [13]. It is similar to the form in the
Inception module, however, as the reduction module was used, pooling disappeared and the concept
of x identity in ResNet was introduced. The module form of Inception-ResNet V1 and Inception-ResNet
V2 are the same, but there are differences in the number of internal filters and the modification of stem.
The combined models have fast convergence speed compared to a single model. The Inception-ResNet
model improves performance due to the difference between Inception V3 and V4. The high recognition
rate and learning rate are verified through recent studies, and it is expected to achieve high outcomes
when used as the feature extractor of the welding defect detection algorithm.

3. Welding Defect Data

We compared two feature extractors to evaluate the performance, and applied data augmentation
to maximize the efficiency of a relatively small dataset. In the dataset, the defect types are composed
of porosity, lacks of fusion, slag, and cracks, but the labeling for each type is biased toward porosity.
Figure 4a shows the porosity, the most common defect type, with 569 defects included in the dataset.
Lack of fusion and slag shown in Figure 4b,c are similar in shape and the amount of data for each
class is small, thus they are grouped into a single defect that is classified as LoS (Lack or Slag).
For the LoS, 236 defects are included in the dataset. After learning, there are two classes classified by
the algorithm, that is, the porosity and LoS. The dataset is composed of radiographic testing images
taken differently depending on the steel plate, pipe, and pipe size, thus it can be read and evaluated
without dividing the weld after learning. The radiographic testing image of the weld of the pipe
is composed of a relatively small pixel size by removing the background on both sides as well as
the upper and lower base materials.
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(a) Porosity

(b) Slag

(c) Lack of fusion

Figure 4. welding defect.

3.1. Pre-Processing

The pixel size of the images that make up the dataset is approximately 4900 x 1200 or higher,
which is high quality. High-definition images degrade the learning rate, and it is difficult to expect
good performance with an increase in the number of parameters to learn. To classify and read the taken
image of the weld using radiographic testing, the information about the relevant radiographic image
is marked on the base material. To remove noise arising from defects in the base metal or film,
we removed the rest except for the weld and used it as the training data along with the information
marked. Although noise is removed from the radiographic testing image, the longitudinal direction is
maintained at a pixel size of 4900 or higher. Thus, it is necessary to reduce the size of the image by taking
account of the learning rate and learning environment. In this study, we segmented the radiographic
testing images to fit the weld into Sections 2-5 (Figure 5). The segmented image becomes smaller from
4900 pixels to less than 980 pixels, and the learning rate was reduced from 1.7 s to 0.3 s per epoch.
Most cracks or slag are present in the longitudinal direction of the weld. These defects were segmented
by the segmented image, thus an increased effect could be obtained from the relevant defect data.
The total number of data increased to 341 from the 134 through image segmentation. Of them, there
are 321 training data and 20 validation data.

Figure 5. Divided radio-graphic testing image.
3.2. Small Object in Faster R-CNN

As a result of labeling and then measuring the size of defects appearing in the weld, as shown
in Figure 6, the porosity is made up of the size of 10 to 40 pixels, and defects classified as
the LoS, 340 pixels in the longitudinal direction. In MS COCO object detection competition [14],
small (Area < 32%), medium (322 < Area < 962), and large (96> < Area) are classified according to
the pixel area, so the welds belong to both small and large object. We modified the size of the anchor
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box and the number of region proposal recommendations among the hyper parameters of Faster
R-CNN to effectively detect the welding defects. To theoretically estimate the size of the anchor box
generated in RPN, we selected the size and aspect ratio by taking into account intersection over union
(IoU) according to [15].
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Figure 6. Number of instances and defect size (pixel).

In PASCAL VOC, regions where IoU is 0.5 or more are determined as true positive in Table 2 [16].
IoU is the ratio of the overlapped region between the labeled region and the estimated region, and is
defined as:
(Sgt —d)?

IolU = .
Sét + Si‘ — (Sgt —d)?

@

S¢t represents the length of the labeled region (ground truth) and S, represents the length
of the estimated region. 4 is the distance between the two regions, and is generated in longitudinal
and vertical directions when the IoU is the lowest. Since IoU > 0.5 should be valid, S4 > Sg.
Expressing Equation (1) for S 4:

(Sgt —d)*(1+t7") — 83, > 55. )

The threshold t is 0.5, and 4 is 8 since it is set as stride in the convolutional layer. For the
relationship between S4 and S¢t, an appropriate size of the anchor box is selected by considering
S¢t/ S according to [16]. By taking into account the pixel size of the LoS as well as the porosity, we set
the size of the anchor box to be used in the experiment to 10, 40 and 80 pixels, and a total of 3 aspect
ratios, which are 1:1, 1:5 and 5:1, to be suitable for the LoS.

Table 1. Features by defect detection algorithm.

Defect Detection Features

Rapidly extract features through noise reduction and enhancement

Image Preprocessing & NN of contrast, classifying defect classes using neural networks.

Features are extracted using the learned CNN and defect regions are

CNN and SVM classified using SVM.

Using CNN and neural networks, features extraction, region
Faster R-CNN proposal, and defect classification are learned(evaluated)
in one network.

Table 2. Confusion matrix.

Prediction Positive Prediction Negative

Condition Positive  True Positive (TP) False Negative (FN)

Condition Negative  False Positive (FP) True Negative (TN)
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4. Experiments and Results

We trained ResNet and Inception-ResNet V2 that were to be compared using the training
data. After applying data augmentation to each algorithm, we evaluated a total of four things
by training them one more time. During the training process, by analyzing the convergence
of the loss values for the training data and the mean Average Precision(mAP) of the algorithm
for the evaluation data, we designated the point at which the mAP for the evaluation data was highest

as the end point. The detection rate-recall graph of the algorithms for the porosity and LoS is shown
in Figure 7, respectively.
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Figure 7. Precision-recall curve. Calculate the average precision of porosity and loss according to
PASCAL VOC [16] criteria. The solid line represents porosity, and the dotted line represents LoS for
each model.

Table 3 shows the result of evaluating the performance of the algorithm. Overall, the detection
rate of the LoS was significantly lower than that of the porosity, and 0.265 was measured as the highest
performance in the algorithm that applied data conversion to ResNet. When comparing the feature
extractor, ResNet showed relatively higher performance than Inception-ResNet V2. The difference
was approximately 0.2 before data conversion was applied while the difference was approximately
0.27 after data conversion. The results of applying data conversion to the two algorithms that were to be
compared showed higher performance than before applying it. When applying it to Inception-ResNet
V2, the performance improved by approximately 0.008, and for ResNet, it improved by approximately
0.074. In contrast, the classification of confusion matrix based on the value of IoU > 0.5 as shown
in Figure 8, more classification errors in the ResNet than Inception-ResNet V2. This shows that

the classification of defect classes is lower than that of other models, but the performance of locations
is better.
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Table 3. Comparison of ResNet and Inception applied to Faster R-CNN. Performance improves with
data augmentation for each model.

Network Porosity Los mAP
ResNet 0.774 0.141 0458
Inception-ResNet V2 0.443 0.061 0.252
ResNet with Aug. 0.800 0.265 0.532

Inception-ResNet V2 with Aug. 0.389 0.130  0.260
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Figure 8. Prediction result. (a) ResNet (b) Inception-ResNet V2 (c) ResNet with Data augmentation
(d) Inception-ResNet V2 with Data augmentation.

The welding defect detection results show that, for the welding defects occurring in the edge
of the weld as seen in Figure 9a or in the longitudinal direction as seen in Figure 9b, the LoS welding
defect detection do not operate normally. The porosity has similar training and evaluation data,
and has a high overall detection rate. As the results labeled by expert opinions do not contain film
defects, the circular defects shown in the evaluation data are not generated as data, thus resulting
in performance degradation.

(a) Porosity detection (b) LoS detection

Figure 9. Result of prediction.

5. Conclusions

In this study, as the size of defects belonged to an object that was smaller than the size of existing
objects, we set the size of the anchor box and aspect ratio to be suitable for small objects, and set
the number of region proposal recommendations through an experiment. As the algorithms to be
used in the experiment, we compared ResNet and Inception-ResNet V2 with the feature extractor
of Faster R-CNN, and proposed ResNet with the highest performance. Because of the characteristics
of shipyard radiographic testing, data is limited and the number of images that can be secured for each
type of defect is extremely small. Therefore, data conversion is an essential element in the automatic
welding defect detection algorithm. In this study, we used data conversion for efficient training
and performance improvement. The experimental results show that data conversion could increase
the performance by 0.074 in radiographic testing images. As the types of defects that actually occurred
in the field were limited, we did not cover all of the welding defects when constructing a dataset,
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but covered specific welding defects to increase practicality. We analyzed the dataset and then divided
it into the porosity and LoS, but the learning performance was different because the number of defects
for each image varied. For the porosity, 569 defects were learned but for LoS, 236 defects were learned,
thus leading to a result that was biased toward the porosity. We increased the data of the LoS through
data conversion and image segmentation, but could not significantly decrease the biased results.

In this study, we used 321 radiographic testing images, and we will improve the accuracy
of the algorithm by securing additional images in the future. In addition, by applying the actual
defect reading application regulations, we will revise the pass and fail as the final result, and link
the algorithm with welding testing automation. By newly setting the structure of the algorithm
based on additional research, we will construct it to be suitable for the welding defects. Further,
by taking into account various other defects as well as two defects covered in this study, we will
expand the application range of the algorithm to automatically detect defects occurring in other
industries other than the shipbuilding industry.
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