SCADA Data-Based Support Vector Machine Wind Turbine Power Curve Uncertainty Estimation and Its Comparative Studies
Abstract
:Featured Application
Abstract
1. Introduction
2. Scientific Novelty and Importance of This Research
3. Wind Turbine Power Curve Monitoring
4. Data Description and Preparation
Air Density Correction for Improving Power Curve Accuracy
5. Methodologies
5.1. SVM Models—Theoretical Descriptions
5.2. Uncertainty Estimation–Theoretical Descriptions
5.2.1. Pointwise CIs for modelled SVM power curve
5.2.2. Simultaneous CIs for Modelled SVM Power Curve
6. Results and Discussions
6.1. SVM-Based Power Curve Model
6.2. SVM Power Curve Uncertainty Analysis
6.3. Comparative Studies of the Proposed Methodologies
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
ANNs | Artificial neural networks |
CIs | Confidence intervals |
ERM | Empirical risk minimisation |
GP | Gaussian process |
GWEC | Global Wind Energy Council |
SVM | Support vector machine |
SRM | Structural risk minimisation |
SVC | Support vector classification |
SVR | Support vector regression |
K | The general covariance matrix |
KKT | Karush–Kuhn–Tucker |
SCADA | Supervisory control and data acquisition |
σ | Kernel width/scale |
ξ | Insensitive zone |
C | Box constraint |
α | Significance level |
B | Bias |
MAE | Mean absolute error |
Coefficient of determination | |
RMSE | Root-mean-squared error |
RBF | Radial basis function |
W | Space weight coefficient vector |
WTs | Wind turbines |
Slack variables |
References
- GWEC Report Entitled ‘GWEC Forecasts 817 GW of Wind Power in 2021’. Available online: https://gwec.net/global-wind-report-2019/ (accessed on 20 October 2020).
- Ioannou, A.; Angus, A.; Brennan, F. A life-cycle techno-economic model of offshore wind energy for different entry and exit instances. Appl. Energy 2018, 221, 406–424. [Google Scholar] [CrossRef]
- Honrubia-Escribano, A.; Martín-Martínez, S.; Honrubia-Escribano, A.; Gómez-Lázaro, E. Wind turbine reliability: A comprehensive review towards effective condition monitoring development. Appl. Energy 2018, 228, 1569–1583. [Google Scholar]
- Agarwal, A. Wind turbine operations and maintenance market—Global market size, trends, and key country analysis to 2025. Technol. Rep. Glob. Data 2017. Available online: https://www.pes.eu.com/wind/global-wind-operations-and-maintenance-market-set-to-hit-27-4-billion-by-2025-says-globaldata/#:~:text=The%20global%20wind%20operations%20and,research%20and%20consulting%20firm%20GlobalData (accessed on 20 October 2020).
- Kolios, A.; Walgern, J.; Koukoura, S.; Pandit, R.; Chiachio-Ruano, J. Open O&M: Robust O&M open access tool for improving operation and maintenance of offshore wind turbines. In Proceedings of the 29th European Safety and Reliability Conference (ESREL), Hannover, Germany, 22–26 September 2019; pp. 452–459. [Google Scholar]
- Scheu, M.N.; Tremps, L.; Smolka, U.; Kolios, A.; Brennan, F. A systematic Failure Mode Effects and Criticality Analysis for offshore wind turbine systems towards integrated condition based maintenance strategies. Ocean Eng. 2019, 176, 118–133. [Google Scholar] [CrossRef]
- Qiao, W.; Zhang, P.; Chow, M.-Y. Condition monitoring, diagnosis, prognosis, and health management for wind energy conversion systems. IEEE Trans. Ind. Electron. 2015, 62, 6533–6535. [Google Scholar] [CrossRef]
- Tian, Z.; Jin, T.; Wu, B.; Ding, F. Condition based maintenance optimisation for wind power generation systems under continuous monitoring. Renew. Energy 2011, 36, 1502–1509. [Google Scholar] [CrossRef]
- Bussel, G.J.W.; Zaaijer, M.B. Reliability, availability and maintenance aspects of large-scale offshore wind farms, a concepts study. In Proceedings of the MAREC 2001: 2-day International Conference on Marine Renewable Energies, London, UK, 2001; Volume 113, p. 226. [Google Scholar]
- Lu, B.; Li, Y.; Wu, X.; Yang, Z. A review of recent advances in wind turbine condition monitoring and fault diagnosis. In Proceedings of the IEEE Power Electronics and Machines in Wind Applications (PEMWA), Lincoln, Nebraska, 24–26 June 2009; pp. 1–7. [Google Scholar]
- Qian, P.; Ma, X.; Zhang, D.; Wang, J. Data-Driven Condition Monitoring Approaches to Improving Power Output of Wind Turbines. IEEE Trans. Ind. Electron. 2018, 66, 6012–6020. [Google Scholar] [CrossRef] [Green Version]
- Moeini, R.; Entezami, M.; Ratkovac, M.; Tricoli, P.; Hemida, H.; Hoeffer, R.; Baniotopoulos, C. Perspectives on condition monitoring techniques of wind turbines. Wind Eng. 2019, 43, 539–555. [Google Scholar] [CrossRef]
- Bangalore, P.; Patriksson, M. Analysis of SCADA data for early fault detection, with application to the maintenance management of wind turbines. Renew. Energy 2018, 115, 521–532. [Google Scholar] [CrossRef]
- Herp, J.; Pedersen, N.L.; Nadimi, E.S. A Novel Probabilistic Long-Term Fault Prediction Framework beyond SCADA. J. Phys. Conf. Ser. 2019, 1222, 012043. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Feng, Y.; Sun, J.; Zhang, W.; Infield, D. Applying thermophysics for wind turbine drivetrain fault diagnosis using SCADA data. IET Renew. Power Gener. 2016, 10, 661–668. [Google Scholar] [CrossRef] [Green Version]
- Dao, P.B.; Staszewski, W.J.; Barszcz, T.; Uhl, T. Condition monitoring and fault detection in wind turbines based on co-integration analysis of SCADA data. Renew. Energy 2018, 16, 107–122. [Google Scholar] [CrossRef]
- Qiu, Y.; Feng, Y.; Infield, D. Fault diagnosis of wind turbine with SCADA alarms based multidimensional information processing method. Renew. Energy 2020, 145, 1923–1931. [Google Scholar] [CrossRef]
- Qiu, Y.; Feng, Y.; Tavner, P.; Richardson, P.; Erdős, F.G.; Chen, B. Wind turbine SCADA alarm analysis for improving reliability. Wind. Energy 2011, 15, 951–966. [Google Scholar] [CrossRef]
- Chen, B.; Qiu, Y.; Feng, Y.; Tavner, P.; Song, W. Wind turbine SCADA alarm pattern recognition. In Proceedings of the IET Conference on Renewable Power Generation (RPG 2011), Edinburgh, UK, 6–8 September 2011. [Google Scholar]
- Leahy, K.; Gallagher, C.; O’Donovan, P.; Bruton, K.; O’Sullivan, D.T.J. A robust prescriptive framework and performance metric for diagnosing and predicting wind turbine faults based on SCADA and alarms data with case study. Energies 2018, 11, 1738. [Google Scholar] [CrossRef] [Green Version]
- Burton, T.; Sharpe, D.; Jenkins, N.; Bossanyi, E. Wind Energy Handbook; Wiley-Blackwell: Hoboken, NJ, USA, 2011; ISBN 0471489972. [Google Scholar] [CrossRef]
- Dupré, A.; Drobinski, P.; Badosa, J.; Briard, C.; Plougonven, R. Air Density Induced Error on Wind Energy Estimation. Ann. Geophys. Discuss. 2019. [Google Scholar] [CrossRef]
- Koukoura, S.; Carroll, J.; McDonald, A. An insight into wind turbine planet bearing fault prediction using SCADA data. In Proceedings of the European Conference of the PHM Society, Utrecht, The Netherlands, 30 January 2018; Volume 4. [Google Scholar]
- Thapar, V.; Agnihotri, G.; Sethi, V.K. Critical analysis of methods for mathematical modelling of wind turbines. Renew. Energy 2011, 36, 3166–3177. [Google Scholar] [CrossRef]
- Dongre, B.; Pateriya, R.K. Adaptive filter–based power curve modeling to estimate wind turbine power output. Wind. Eng. 2019. [Google Scholar] [CrossRef]
- Khalfallah, M.; Koliub, A. Suggestions for improving wind turbines power curves. Desalination 2007, 209, 221–229. [Google Scholar] [CrossRef]
- Marčiukaitis, M.; Žutautaitė, I.; Martišauskas, L.; Jokšas, B.; Gecevičius, G.; Sfetsos, A. Non- linear regression model for wind turbine power curve. Renew. Energy 2017, 113, 732–741. [Google Scholar] [CrossRef]
- Raj, M.M.; Alexander, M.; Lydia, M. Modeling of wind turbine power curve. In Proceedings of the ISGT 2011, Kollam, India, 1–3 December 2011; pp. 144–148. [Google Scholar]
- Kusiak, A.; Zheng, H.; Song, Z. On-line monitoring of power curves. Renew. Energy 2009, 34, 1487–1493. [Google Scholar] [CrossRef]
- Lydia, M.; Kumar, S.S.; Selvakumar, A.I.; Kumar, G.E.P. Wind farm power prediction based on wind speed and power curve models. In Intelligent and Efficient Electrical Systems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 15–24. [Google Scholar]
- Ciulla, G.; D’Amico, A.; di Dio, V.; Brano, V.L. Modelling and analysis of real-world wind turbine power curves: Assessing deviations from nominal curve by neural networks. Renew. Energy 2019, 140, 477–492. [Google Scholar] [CrossRef]
- Sheibat-Othman, N.; Othman, S.; Tayari, R.; Sakly, A.; Odgaard, P.F.; Larsen, L.F.S. Estimation of the wind turbine yaw error by support vector machines. IFAC-PapersOnLine 2015, 48, 339–344. [Google Scholar] [CrossRef]
- Pandit, R.; Infield, D. Gaussian Process Operational Curves for Wind Turbine Condition Monitoring. Energies 2018, 11, 1631. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.; Stephen, B.; Galloway, S. Wind turbine condition assessment through power curve copula modelling. IEEE Trans. Sustain. Energy 2012, 3, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V.N. Principles of risk minimisation for learning theory. In Advances in Neural Information Processing Systems; Morgan Kaufman: San Mateo, CA, USA, 1992; pp. 831–838. [Google Scholar]
- Vapnik, V.N. Statistical Learning Theory; John Wiley and Sons: New York, NY, USA, 1998. [Google Scholar]
- Santos, P.; Villa, L.F.; Reñones, A.; Bustillo, A.; Maudes-Raedo, J.M. An SVM-based solution for fault detection in wind turbines. Sensors 2015, 15, 5627–5648. [Google Scholar] [CrossRef] [Green Version]
- Dahhani, O.; El-Jouni, A.; Boumhidi, I. Assessment and control of wind turbine by support vector machines. Sustain. Energy Technol. Assess. 2018, 27, 167–179. [Google Scholar] [CrossRef]
- Mohandes, M.A.; Halawani, T.O.; Rehman, S.; Hussain, A.A. Support vector machines for wind speed prediction. Renew. Energy 2004, 29, 939–947. [Google Scholar] [CrossRef]
- Zeng, J.; Qiao, W. Short-Term Wind Power Prediction Using a Wavelet Support Vector Machine. IEEE Trans. Sustain. Energy 2012, 3, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Mu, H.; Yi, X.; Yang, Y.; Chen, G. Fault Diagnosis of Wind Turbine Based on PCA and GSA-SVM. In Proceedings of the Prognostics and System Health Management Conference (PHM-Paris), Paris, France, 2–5 May 2019; pp. 13–17. [Google Scholar] [CrossRef]
- Pandit, R.K.; Infield, D. SCADA based non-parametric models for condition monitoring of a wind turbine. J. Eng. 2019, 2019, 4723–4727. [Google Scholar]
- Jin, T.; Tian, Z. Uncertainty analysis for wind energy production with dynamic power curves. In Proceedings of the 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems, Singapore, 14–17 June 2010; pp. 745–750. [Google Scholar] [CrossRef]
- De Brabanter, K.; De Brabanter, J.; Suykens, J.A.K.; De Moor, B. Approximate Confidence and Prediction Intervals for Least Squares Support Vector Regression. IEEE Trans. Neural Netw. 2010, 22, 110–120. [Google Scholar] [CrossRef]
- Pandit, R.K.; Infield, D. SCADA-based wind turbine anomaly detection using Gaussian process models for wind turbine condition monitoring purposes. IET Renew. Power Gener. 2018, 12, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
- IEC Standard. Wind Turbines—Part 12–1: Power Performance Measurements of Electricity Producing Wind Turbines (IEC 61400-12-1:2017); ICE: Geneva, Switzerland, 2017. [Google Scholar]
- Pandit, R.K.; Infield, D.; Kolios, A. Gaussian process power curve models incorporating wind turbine operational variables. Energy Rep. 2020, 6, 1658–1669. [Google Scholar] [CrossRef]
- Pandit, R.K.; Infield, D.; Carroll, J. Incorporating air density into a Gaussian process wind turbine power curve model for improving fitting accuracy. Wind. Energy 2019, 22, 302–315. [Google Scholar] [CrossRef] [Green Version]
- Boser, B.E.; Guyon, I.M.; Vapnik, V. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory—COLT, Pittsburgh, PA, USA, 27–29 July 1992; p. 144, ISBN 089791497X. [Google Scholar] [CrossRef]
- Rice, S.O. The distribution of the maxima of a random curve. Am. J. Math. 1939, 61, 409. [Google Scholar] [CrossRef]
- Sun, J.; Loader, C.R. Simultaneous confidence bands for linear regression and smoothing. Ann. Stat. 1994, 22, 1328–1345. [Google Scholar] [CrossRef]
- Eubank, R.L.; Speckman, P.L. Confidence Bands in Nonparametric Regression. J. Am. Stat. Assoc. 1993, 88, 1287. [Google Scholar] [CrossRef]
- Abdi, H. Bonferroni and Sidak corrections for multiple comparisons. In Encyclopedia of Measurement and Statistics; Salkind, N.J., Ed.; Sage: Thousand Oaks, CA, USA, 2007; pp. 103–107. [Google Scholar]
- Support Vector Machine Regression Models, Matlab Toolbox. Available online: https://uk.mathworks.com/help/stats/support-vector-machine-regression.html (accessed on 23 August 2020).
- Tao, L.; Siqi, Q.; Zhang, Y.; Shi, H. Abnormal Detection of Wind Turbine Based on SCADA Data Mining. J. Math. Probl. Eng. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
Start Timestamp | End Timestamp | Measured Data | Filtered Data | Training Data | Validation Data |
---|---|---|---|---|---|
101/09/2012 00:00 A.M. | 30/11/2012 23:50 P.M. | 13,250 | 7918 | 5542 | 2376 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandit, R.; Kolios, A. SCADA Data-Based Support Vector Machine Wind Turbine Power Curve Uncertainty Estimation and Its Comparative Studies. Appl. Sci. 2020, 10, 8685. https://doi.org/10.3390/app10238685
Pandit R, Kolios A. SCADA Data-Based Support Vector Machine Wind Turbine Power Curve Uncertainty Estimation and Its Comparative Studies. Applied Sciences. 2020; 10(23):8685. https://doi.org/10.3390/app10238685
Chicago/Turabian StylePandit, Ravi, and Athanasios Kolios. 2020. "SCADA Data-Based Support Vector Machine Wind Turbine Power Curve Uncertainty Estimation and Its Comparative Studies" Applied Sciences 10, no. 23: 8685. https://doi.org/10.3390/app10238685
APA StylePandit, R., & Kolios, A. (2020). SCADA Data-Based Support Vector Machine Wind Turbine Power Curve Uncertainty Estimation and Its Comparative Studies. Applied Sciences, 10(23), 8685. https://doi.org/10.3390/app10238685