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Abstract: A wide range of defects, failures, and degradation can develop at different stages in
the lifetime of photovoltaic modules. To accurately assess their effect on the module performance,
these failures need to be quantified. Electroluminescence (EL) imaging is a powerful diagnostic method,
providing high spatial resolution images of solar cells and modules. EL images allow the identification
and quantification of different types of failures, including those in high recombination regions, as well
as series resistance-related problems. In this study, almost 46,000 EL cell images are extracted from
photovoltaic modules with different defects. We present a method that extracts statistical parameters
from the histogram of these images and utilizes them as a feature descriptor. Machine learning
algorithms are then trained using this descriptor to classify the detected defects into three categories:
(i) cracks (Mode B and C), (ii) micro-cracks (Mode A) and finger failures, and (iii) no failures.
By comparing the developed methods with the commonly used one, this study demonstrates that the
pre-processing of images into a feature vector of statistical parameters provides a higher classification
accuracy than would be obtained by raw images alone. The proposed method can autonomously
detect cracks and finger failures, enabling outdoor EL inspection using a drone-mounted system for
quick assessments of photovoltaic fields.

Keywords: electroluminescence imaging; photovoltaic modules; defect classification; micro-cracks
(mode A); cracks (mode B and C); finger failures; pixel intensity histogram; statistical parameters;
machine learning classifiers

1. Introduction

With the significant increase in the necessity of photovoltaic (PV) energy generation to curb
climate change, the installation of large PV plants has grown significantly in the last decade [1]. As it
is desirable to operate these plants at their maximum capacity, monitoring the performance of the
installed PV modules is critical [2].
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Cracks in solar cells have received significant attention in the last years [3]. Cracks are often
classified into three modes: micro-cracks (Mode A) and cracks (Mode B and C) [4]. Generally,
a micro-crack Mode A does not have a significant impact on the output power. The loss due to
the impacted cell area is relatively low, as long as the different regions are electrically connected [4].
However, cracks (Mode B and C) do affect the power output of the PV module. Cells with Mode B
cracks exhibit an increase in resistance and lower voltage in the cracked regions [5], while cells with
Mode C form a wholly isolated and electrically disconnected cell area. In some cases, cracks (Mode B
and C) lead to reverse biasing of the solar cell [6]. In others, 16–25% of the cell area can be separated by
cracks parallel to the busbars [7]. The cracks can form due to mechanical stress during transportation
or manufacturing installation and maintenance of the modules [7]. A brief classification of the different
crack modes is provided in Reference [8].

Another common extrinsic fault type is finger interruptions, usually induced during cell
metallization and module interconnection. Finger breaks often result in increased series resistance and,
consequently, decreased output power [9,10].

Electroluminescence (EL) imaging has become an indispensable tool for distinguishing various
types of failures and different degradation mechanisms with high resolution [11]. EL imaging is based
on biasing the modules and measuring the emitted emission, which correlates with the radiative
recombination of carriers within the device [12]. As the local luminescence intensity is related to the
carrier concentration, faulty and disconnected regions appear darker, depending on the severity of the
fault. EL imaging has been used to detect a wide range of defects, such as micro-cracks and cracks,
finger interruptions, ribbon damage, and many more [3]. EL imaging can also quantify power losses
and the percentage of disconnected regions due to the gap between cell parts and cracks by modifying
the bias current [6,13]. Analyzing EL images is typically time-consuming [14] and requires expert
knowledge regarding the different defects. It is, therefore, expensive to perform on a large scale [15].
One possible path to improve the analysis is using machine learning (ML) to detect different defects
more accurately. A recent advancement has meant outdoor PL images could be obtained by switching
the operating module condition through modulating the shading on three cells connected to three
different bypass diodes using a high-power light-emitting diode (LED) array. PL has an additional
benefit over EL, as it is a contactless technique, and therefore does not require a qualified electrician to
change any wiring of the inspected PV system [16].

ML uses predictive or descriptive algorithms to optimize a performance model using a given
dataset [17]. The models are built based on the available data to make predictions without being
explicitly programmed to perform the task [18]. This study investigates the use of machine learning
(ML) to classify the defects mentioned above.

Recently, different ML algorithms have been used to classify various degradation types in EL
images. Fada et al. used a supervised ML algorithm to classify a database of 14,200 images into
three labels: good, busbar corrosion, and cracked [15]. They used three ML algorithms [support vector
machine (SVM), random forest (RF), and multilayer perceptron-artificial neural network (MLP-ANN)]
and compared their performance. The cracked cells’ classification accuracy was relatively low, especially
compared to the good and corroded groups, possibly due to the unbalanced dataset (as most cells
did not have any fault). Karimi et al., who manually categorized the database into four labels:
good, cracked, cell edge darkening, and heavily busbar corroded, later extended their study in
Reference [19]. They used an unsupervised clustering technique to correlate intrinsic patterns in the
images with the supervised labels. The method is based on binary classification (‘degraded’ and
‘non-degraded’ cells), achieving a mean accuracy of 98.9% and 98.2% for SVM and convolutional neural
network (CNN) ML algorithms. Additionally, several automated fault detection methods have been
proposed [20–22]. Sun et al., achieved an overall prediction accuracy of 98.4% using 2000 training
steps (25 epochs) [20], while Tseng et al., employed a binary clustering of features to detect only finger
interruptions. However, it seems challenging to detect defects with more elaborate structures due to
shape assumptions [21]. SVM and RF classifiers were evaluated in Reference [22] using two cell region
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extraction algorithms. The study focused on the cracked and faulty region’s geometry to distinguish
it from a healthy area. Another approach that integrates mini-batch k-means with state-of-the-art
clustering CNN has been proposed [23]. The method uses a feature drift compensation to reduce
errors caused by a feature mismatch. The technique demonstrates a high accuracy and can efficiently
compute millions of images, outperforming existing state-of-art clustering methods [14]. A different
approach that uses an independent component analysis (ICA) has been demonstrated to achieve a
93.4% accuracy with a relatively small training dataset of only 300 solar cell images [24]. However,
material defects such as finger interruptions are treated equally to cell cracks. Moreover, an algorithm
using anisotropic diffusion filtering to locate micro-cracks in polycrystalline solar cells is described in
Reference [25]. The method precisely detected the micro-cracks with an accuracy and sensitivity of
88% and 97%, respectively.

Recently, deep learning-based approaches have been suggested for classification [26–30]. A pre-
trained visual geometry group (Vgg)-16 CNN network architecture combined with an SVM decision
layer was used to classify different faults, achieving 90.2% accuracy [26]. The work was later
extended in Reference [27] by developing an enhanced CNN model proposing an algorithmic solution,
which extensively evaluated the model performance using different inputs (dataset sizes, learned
features, conventional solution, and more). The study demonstrated efficient defect detection of faults,
achieving a mean accuracy of 97.9%. A transfer learning-based solution was proposed by Ding et al. [28],
which can identify visible defects in large-scale PV plants and distributed rooftop systems. The study
uses an enhanced CNN-based model for classification, reaching a 98.9% mean accuracy. A visual
defect detection method based on multi-spectral deep CNN has also been proposed [29], achieving an
overall defect-recognition accuracy of 94.3%. The effectiveness of a data augmented method, auxiliary
classifier-progressive growing generative adversarial networks, was evaluated using three selected
CNN models [30]. It has been shown to improve the classification accuracy maximum by 14% in the
material defect category compared to a more traditional data augmentation approach.

In this study, we use extracted statistical parameters from the image histogram as a feature
descriptor. The vector is then fed into different ML classifiers to distinguish between various defects.
We demonstrate that processing the images into a feature vector of statistical parameters has a significant
advantage over the standard methods that use many features.

2. Methodology

In this study, 753 EL images of multi-crystalline silicon (mc-Si) aluminum and back surface
(Al-BSF) modules are used (~46,000 cell images). The modules are from different PV arrays installed in
various locations across the United Kingdom (Oxford-shire, Norfolk, Hampshire, and Somerset).

The EL images were acquired using a modified complementary metal-oxide-semiconductor
(CMOS) camera (Nikon D750) that was modified by replacing the embedded infrared filter with
a daylight filter (850–1700 nm). The images were acquired outdoors one hour before sunset,
at approximately 17:00 (during August–September 2016), with a tripod holding the camera perpendicular
to the module at a distance of 2–3 m. The exposure time ranged between 5 and 10 s, while the bias
current was fixed at 5A.

Two experts in EL-based PV diagnostics then classified the cell images into three classes: (i) cracks
(Mode B and C), (ii) finger failures and micro-cracks (Mode A), and (iii) no failures. Examples of
the three different classes are presented in Figure 1. Finger failures and micro-cracks (Mode A),
cracks (Mode B and C) are combined since the failures look similar in terms of structure, length,
and intensity. More importantly, they have a similar effect on the module’s output power. Cells that
contain more than one type of fault are labeled according to the more severe defect (i) > (ii) > (iii).
The following image processing and machine learning part will be discussed in the section below.
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Figure 1. EL cell images inflicted with different faults: (A) no failures; (B) finger failures (region marked
with light blue); (C) micro-crack Mode A (black); (D) cracks Mode B (olive green) and Mode C (white).

2.1. Image Processing

Before being used as an input for ML, the images need to be processed to correct several effects.
The correction processes are summarized in Figure 2 and discussed below.Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 15 
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Figure 2. The image processing procedure used in this study: (A) acquired raw EL measurements;
(B) the prospectively corrected normalized image; (C) busbar identification; (D) solar cell extraction;
and (E) busbar removal.

Firstly, despite the effort to keep the camera in the same position compared to the module,
variations always occur, especially when considering the measurement conditions (outdoor, evening,
possible wind). Furthermore, as the images are taken at an angle, they are distorted. Hence, the first
step is to correct the images for the perspective distortion [31–33] using a code developed in Matlab [34].
The active module area is aligned, and the perspective is fixed following the procedure of Reference [35],
as shown in Figure 2B. The cell images are then resized from 300 × 300 to 100 × 100 pixels to reduce
computation time. They are then normalized using min-max scaling features to standardize the dataset
for systematic analysis. Blurred images are identified using blur detection based on the modified
Laplacian matrix technique described in Reference [36].

An appropriate threshold value (0.80) is chosen, and EL images below this threshold are defined
as ‘blurred’ and discarded. The module images are then segmented into cells [37]. The module and cell
edges are computed by rotating the processed image at different angles and summing the pixel values
along the x and y axes to locate the horizontal and vertical lines, as shown in Figure 2C. If distortion is
identified, the images are perspective-corrected, using homography transformation [31,32]. Note that
this is a second distortion correction for the case where the correction on the module level is not
sufficient. Busbars are then removed from the cell images by first locating them (similar method to
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identifying the edges) and then adjusting pixel values to the neighboring pixels’ mean, as shown in
Figure 2E.

2.2. Machine Learning Classifiers

Three supervised ML algorithms (SVM, RF, and k-NN) are trained and compared using the feature
vectors (see below) and target labels [38,39]. The code was written using Python with its additional
packages of NumPy, Pandas, sklearn, SciPy, and matplotlib [40,41]. The code can be shared on GitHub
upon request. However, the authors would not be able to share the PI-Berlin dataset as it is not public.

Support Vector Machine: SVM’s core idea is finding a decision boundary (hyper-plane) that helps
separate space vector/dataset into classes. The decision boundary is searched through the maximum
margin classifier, which is decided by the support vectors. SVM generates an optimal hyperplane in an
iterative manner, which is used to minimize errors. The distance between the nearest points is known
as the margin. The hyper-plane is selected based on the maximum possible margin between support
vectors [17,42]. A radial basis function (RBF) is used as a kernel function in this study, and other
hyper-parameters like (penalty parameter ‘C’, gamma) are found by implementing a grid search to
find the optimal value [43].

Random Forest: RF is an ensemble of ML techniques that builds multiple decision tree classifiers
on random sub-samples of the training dataset. Each decision tree predicts the response by following
the tree’s decisions from the root to the leaf. The output of each decision tree is then averaged to
determine the prediction [44]. RF’s main advantage is leveraging the power of a large number of
randomly selected trees to represent the solution. Thus, instead of using one decision tree, RF uses all
the decision trees to determine the classification; this procedure reduces errors and uncertainties [42].
In this study, the number of trees selected was 5 and 10. The minimum number of samples that are
required to split an internal node is set to 25. The maximum depth of the tree is kept at five [45].

k-Nearest Neighbors: k-NN categorizes objects based on their nearest neighbors’ classes in the
dataset, assuming the neighbor objects are similar. This non-parametric method does not make any
assumptions regarding the underlying data distribution. Instead, it chooses to memorize the training
instances used in the supervised training. This method’s main limitation is its intensive time and
memory requirements [17,39]. In this study, parameters are selected by implementing a grid search
regarding neighbors [46].

3. Implemented Feature Vectors and Data Labelling

Figure 3 presents the procedure used in this study. This study’s focus is on the selection of the
feature vector (gray box in the diagram). The EL intensity of each of the pixels is used to determine the
intensity distribution across the image. Different derived statistical parameters are then calculated based
on the 1D pixel intensity histogram of high-resolution images (see Table A1). The proposed feature
vector V1 contains 16 statistical parameters reducing the feature vector’s dimension by encoding the
information into a smaller latent space to remove the redundant information from the data. This allows
an efficient and fast process compared to the traditional methods, which use the 2D spatial information
to identify the image’s defects. Finally, the developed feature vectors (V1 and V2) are used as an input
for the three ML classifiers, as shown in Figure 4, for classifying the defects in the images.

Figure 3. The training procedure used in this study.
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Figure 4. (A) Extracted statistical parameters (V1; 16 features); (B) combined pixel intensity histogram
and statistical parameters (V2; 271 features) used as inputs for three ML classifiers.

As discussed, the defects are classified into three classes: (i) cracks (Mode B and C) (Class 0),
(ii) finger failures and micro-cracks Mode A (Class 1), and (iii) no failures (Class 2). In total, 1385 defects
have been identified (see Table 1).

Table 1. Defect classification.

Module Images Cell Images ‘Class 0’ ‘Class 1’ ‘Class 2’

753 45,906 756 629 44,521
Balanced data-set 2185 756 629 800

Statistical output metrics [47] such as recall, precision, accuracy, and F1 score are defined and used
to evaluate the algorithms [47] (see definitions in Table 2).

Table 2. Extracted output metrics and their definition.

Parameter Accuracy (%) Recall (r) (%) Precision (p) (%) F1 Score (%)

Formulae
(

tp + tn

tp + fp + fn + tn

) (
tp

tp + fn

) (
tp

tp + fp

)
(2· p·r

p + r )

tp : True positive, fp : False positive, fn : False negative, tn : True negative.

The recall metric measures the percentage of total relevant results correctly classified by the
algorithm, while precision is the ratio between correctly labeled positive outcomes and the total
predicted positive outcomes. Accuracy is defined as the strength of the correlation between the
predicted and the actual labels [47]. It is given as the ratio between the number of correct predictions
and the total number of predictions. Nevertheless, accuracy is not the best representation of performance
on unbalanced datasets. Hence, the F1 score metric, defined as the harmonic mean of precision and
recall, is also computed in this study. It has been shown that the F1 score is a better indicator when
analyzing unbalanced datasets [47].

For the training stage, to prevent under-fitting or over-fitting, Class 2 (no failures) is downsampled
to 2185 cell images with approximately 700 cell images of each class label (as shown in Table 1).
The training is done on 75% of the dataset, while the remaining 25% is used to evaluate the algorithm
on previously unseen data (validation dataset) [48].
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4. Results and Performance Discussion

Performance Analysis

Figure 5 compares the F1 scores of the two feature vectors when they are used as inputs to the
three ML classifiers (SVM, RF, and k-NN) of the validation set. The validation has been repeated five
times to extract statistical parameters. In all cases, the proposed vector (V1) outperforms the combined
approach (V2), achieving higher F1 scores with lower variance. Hence, it can be concluded that the
larger number of pixel intensity features in the case of V2 (256) masks the unique features (16) that are
used by V1, substantially reducing the performance of the ML classifiers. No significant difference
can be observed between different ML algorithms. Note that a comparison between the training and
validation sets indicates that the data has not been over-fitted.

Figure 5. Statistical boxplot of the F1 score for the three ML classifiers.

Table 3 summarizes the two vectors’ performance using the other output metrics: accuracy,
recall, and precision. As can be seen, V1 performs better across all categories. We note that V1 as a
feature vector and RF as a classifier is the best combination for performance evaluation, achieving
99.6% accuracy.

Table 3. Overall results of implemented feature vectors and the different ML classifiers.

Feature Vectors Statistical Parameters (V1) Pixel Intensity Histogram + Statistical Parameters (V2)

ML Classifiers SVM RF k-NN SVM RF k-NN

F1 score (%) 94.3 98.3 97.1 80.9 83.9 82.1
Accuracy (%) 96.7 99.2 98.4 76.6 83.1 83.9

Recall (%) 93.8 97.9 96.3 79.9 81.9 80.6
Precision (%) 92.8 99.2 97.9 82.9 86.2 85.5

Table 4 compares the F1 scores obtained in this study and scores reported in the literature for
thorough analysis. The obtained F1 scores of V1 are higher than the scores reported for the isolated
in-depth training and transfer learning approaches [8,14]. They are also higher than those obtained by
the Kaze/VGG feature vector combined with an SVM classifier and spectral clustering algorithm [14,21].
It is noticeable that our scores are similar to the best-reported scores, despite the relatively small
dataset (2185 images) and without data augmentation. Moreover, the proposed method requires less
computational time in terms of feature extraction and training time because the feature vector’s size is
curtailed to 16 from 256 (standard).



Appl. Sci. 2020, 10, 8834 8 of 14

Table 4. Summary of the performance of various automated fault classification for EL images.

Research
Article

Method
(Vector) Classifier F1score

(%)
Accuracy

(%) Detected Defects EL Cell Images
(Dataset)

This study Statistical
parameters (V1)

RF 98.3 99.6 Cracks B and C
k-NN 97.1 98.5 micro-crack A 2185
SVM 94.3 96.7 finger failures

Cracked, busbar

[19] Haralicks
features SVM 98 98.9 corroded, edge and

busbar darkened, 6264

CNN 97 98.2
Spectral

clustering

[21] ROI location k-mean
method 92.1 99.1 Interrupted finger defects —-

Stochastic
gradient descent

SVM — 98.7
[15] MLP-ANN — 98.1 Cracked, corroded 14,200

RF — 96.9

NAG based
learning

Cracks (normal, linear, cross,
flaky, broken)[20] CNN — 98.4 6120

Isolated deep
learning[8] CNN 91.9 93 Different defects >7872

Transfer
learning via

t-SNE

Material defects, grid fingers,
deep and microcracks,

cell degradation[14] CNN 88.4 88.4 2624
Material defects, grid fingers,

deep and microcracks,
cell degradation[14] Kaze/VGG SVM 82.5 82.4 2624

Hough region
detection

Cracks B and C
[22] SVM 5.1 99.7 micro-crack A 47,244

RF 4.4 96.7 finger failures

Percentile region
detection

Cracks B and C
[22] RF 6.6 96.5 micro-crack A 47,244

SVM 4.1 99.7 finger failures

Table 4 also summarizes the reported accuracies. This study’s obtained accuracy is similar to the
highest reported accuracy that uses a two-image region/area detection algorithm for classification [22].
Despite the high overall precision, the two-region algorithm for EL cell images achieved a low F1 score
(5.1%) and recall (27.4%) values, probably due to an unbalanced dataset. The output metric results can
be improved by calculating the geometric mean for unbalanced class sizes. Moreover, this study’s
obtained accuracy is higher than recorded in Reference [15], which compares the supervised classifiers
(SVM and RF) with CNN using the stochastic gradient descent method. They achieved the overall best
accuracy, 98.77%, with the least computation time of (85.52 s) using the SVM classifier compared to
98.13% accuracy with (2250 s) of computation time using the CNN method. Moreover, Reference [19]
recorded 98% accuracy computing Haralicks features as a feature vector for detecting different failures
using an SVM classifier, as mentioned in Table 4.

The weighted accuracy of detecting each fault class is presented in Figure 6, evaluating the
performance for all the three individual classes independent of the number of observations considering
a balanced dataset. Each class’s accuracy is calculated to ensure that each label is correctly predicted
and that no specific class dominates the overall accuracy. V1 outperforms V2 in all cases, and the
combination of V1 and RF seems to be the best across the entire validation set. It is noticeable that
‘Class 1’ detection accuracy is lower than in the other two classes. We assume that some micro-cracks
and finger failures are falsely predicted as ‘No failures’. The reasons for this false prediction differ
between the two vectors. As the intensity and contrast of Class 1 are similar to healthy cells, feature
vector V1 is less sensitive to this fault. When V2 is used, it seems that as Class 1 failures affect only a
relatively small percentage of the acquired image, they are sometimes classified as statistical noise.

Figure 6 also displays the computed accuracy for each of the computed ML classifiers. The overall
accuracy values (see Table 3) give an unbiased estimate for correctly predicting the images’ actual class
labels from the final tuned algorithm. It should be noted that the weighted average accuracy of all the
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classes (92.1% (SVM), 95.4% (RF), and 94.9% (k-NN)) is lower than the overall accuracy (96.7% (SVM),
99.2% (RF), 98.4% (k-NN)) for the V2 feature vector. It gives equal contributions to the three classes’
predictive performance, which are independent of their number of observations, unlike those used
to compute the overall accuracy. The V1 feature vector’s overall accuracy indicates that the overall
performance is high compared to that of the V2 feature vector, even though the classifiers underperform
in the individual class 1 of all three classes. Furthermore, other output metric parameters (precision,
recall, true positives, false positives and more) are calculated (see Figure A1) and the performance of
the developed vectors are evaluated.

Figure 6. The accuracy scores of the developed feature vectors for the three ML classifiers.

Figure 7 presents represented images with their actual and predicted labels. We analyze the falsely
predicted images to evaluate the mislabels. Interestingly, many of the wrongly labeled cases are due to
other failures (such as striation rings) that have not been classified in this study. The algorithms have
classified these images as Class 0 or Class 1, although the actual classification (by the trainer) is Class 2
(no failure). This can be easily addressed by adding new classes. Other cases were misclassified due
to a small difference between neighboring pixel values in the EL image identified as statistical noise.
This can be improved using higher resolution images. It should be noted that standard deviation,
inactive area, sensitivity peak, entropy, and kurtosis are the most sensitive parameters for Class 0
failure type. In contrast, skewness, standard deviation, and kstat parameters played a significant role
in predicting Class 1 failures.

Figure 7. Qualitative evaluation of the correct and wrong predictions based on the proposed algorithms
actual and predicted class labels.
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5. Conclusions

The early detection of defects as cracks, micro-cracks, and finger failures in solar cells is important
for the production of PV modules. Analyzing EL images to locate and identify these failures is typically
a time-consuming manual process and requires expert knowledge.

In this paper, a machine learning-based failure identification method was presented. The technique
uses EL images to classify three classes of faults using a feature vector based on statistical parameters.
The feature vector has a significant advantage over the standard feature vector that uses all the
main output metrics. The developed feature vector achieves an accuracy and F1-score similar to
state-of-the-art reported results despite a smaller dataset. As the proposed method requires less
computation power and time, it will be valuable for outdoor EL inspection using intelligent unmanned
aerial vehicles or drone-mounted systems.
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Appendix A

Table A1. Derived statistical parameters from the pixel intensity histogram of an EL cell image [49,50].

Statistical Parameters Formulae

Cell level EL pixels ρEL−cell(k, i) =
nk

i
nk , 0 ≤ i < L, 1 ≤ k ≤ Nc

Mean µcell(k) = 1
L ·

∑L−1

i=0
ρEL−cell(k, i)

Standard deviation (SD) σcell(k) =

√
1
L ·(

∑L−1

i=0
ρEL−cell(k, i) − µcell(k))

2

Skewness γcell(k) = 1
L ·

∑L−1

i=0
(
ρEL−cell(k,i)−µcell(k)

σcell(k)
)

3

Kurtosis κcell(k) = 1
L ·

∑L−1

i=0
(
ρEL−cell(k,i)−µcell(k)

σcell(k)
)

4

Inactive area IEL−cell(k)(%) = 100·
∑TH

i=0
ρEL−cell(k, i)

Sensitivity peak Peak(k) = max(ρEL−cell(k, i))

Full-width FW(k) =
(

x
100 ·max(ρEL−cell(k, i)) − x

100 ·min(ρEL−cell(k, i))
)

Entropy εcell(k) = −
∑L−1

i=0
ρEL−cell(k, i)· log10 ρEL−cell(k, i)

Angular second moment ASMcell(k) =
∑L−1

i=0
ρEL−cell(k, i)

Kstat kn is the unique symmetric unbiased estimator o f the nth k− statistic
Variation computes the coe f f icient o f variation, the ratio o f biased SD to mean
Median computes the 50% percentile f rom the histogram o f the cell

Percentiles computes the 10% and 90% percentile f rom the histogram o f the cell
Zscore computes the zscore o f each sample value, relative to the mean and SD

Error of measurement evaluates the standard error o f the computed mean
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The solar cells in the test modules used in this study were analyzed individually by automatically
extracting the cell-level EL images. From each solar cell image, the cell-level EL intensity distribution,
pEL−Cell(k, i), is calculated [49], where k is the solar cell number, and i is the intensity level (gray level
occurrences) at a particular pixel position in a solar cell image. L is the maximum intensity level (256),
while Nc is the number of solar cells in a module. ni

k is the number of occurrences of gray level i in the
cell k, while nk is the total number of pixels in the image of the cell k.

From the cell-level image, distribution parameters are calculated for each solar cell, such as STD,
mean, median, skewness, kurtosis, as defined in Table A1.

Appendix B

Figure A1 provides an overall performance evaluation of V1 and V2 and highlights the correlation
between the actual and predicted labels. The percentage of solar cells predicted incorrectly in the
different class categories is significantly lower for V1. The recall value calculated by the algorithm is
highlighted in gold and represents the row (Total Col). Even though V2 measures an 81.9% recall value,
using V1 with the most dominant parameters improves the performance to a overall recall value of
97.9% for the RF classifier (see Table 3). A similar evaluation is inferred by correctly classifying the actual
positive outcome, which correlates with the predicted positive outcome calculated from Figure A1 and
reports as precision value highlighted in lavender and representing the column (Total line). As expected,
the V1 feature vector achieved a precision value of 99.2% (RF classifier), outperforming the combined
approach (V2) with 86.2%.

Figure A1. Confusion matrices of the implemented feature vectors (V1,V2) fed as an input to the RF
ML classifier.
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