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Abstract: The hump behavior of gate-normal nanowire tunnel field-effect transistors (NWTFETs) is
investigated by using a three-dimensional technology computer-aided design (TCAD) simulation.
The simulation results show that the hump behavior degrades the subthreshold swing (SS) and
on-current (Ion) because the corners and sides of nanowires (NWs) have different surface potentials.
The hump behavior can be successfully suppressed by increasing the radius of curvature (R) of NWs
and reducing gate insulator thickness (Tins).

Keywords: hump behavior; corner; surface potential; gate-normal nanowire tunnel field-effect
transistor (NWTFET)

1. Introduction

The aggressive downscaling of metal oxide semiconductor field-effect transistors (MOSFETs) has
raised some problems regarding the off-current (Ioff) and supply voltage [1]. A tunnel field-effect
transistor (TFET) has been considered as one of the most promising candidates for extremely low-power
applications thanks to its low Ioff and abrupt on–off switching [2,3]. However, TFETs suffer from
low on-current (Ion) [4]. For higher Ion, several strategies have been proposed: the introduction
of low bandgap materials [5], and hetero-gate-dielectric (HG) [6] and hetero-material-gate (HMG)
structures [7]. Additionally, gate-normal TFETs were proposed to boost Ion by increasing the tunneling
cross-sectional area [8–11]. The band-to-band tunneling (BTBT) generation of gate-normal TFETs
occurs perpendicular to the channel in the gate–source overlap region. Thus, the gate-normal tunneling
area can be enlarged by increasing the gate–source overlap length (Lov) to increase Ion.

Recently, silicon nanowire (SiNW) TFETs have been developed for superior subthreshold swing
(SS), Ioff, and short-channel-effect immunity [12,13]. The fabrication of SiNW TFETs using a top-down
process has great advantages in terms of being a reproducible process, having compatibility with
CMOS and having good control over the dimensions, while a bottom-up process has been seriously
limited due to a difficulty in the fabrication process [14–16]. In this manuscript, as shown in Figure 1,
gate-normal NWTFETs are discussed, which combine the advantages of gate-normal TFETs and
NWFETs. One of the most serious problems of gate-normal NWTFETs is the hump behavior stemming
from the three-dimensional corner effect: the surface potentials are different between the corner and
side of an NW. This means that different BTBT turn-on voltages exist in an NW, which induces the
hump behavior of degrading SS and Ion [17]. Thus, it is necessary to suppress the corner effect of
gate-normal NWTFETs. There are several studies on the hump behavior of TFETs and various methods
of mitigating hump behavior [18–21]. However, this study discusses the hump behavior originated
from the geometrical effect of the three-dimensional NW structure. Even if many studies have been
performed regarding the corner effect of NWMOSFETs [22–25], that of gate-normal NWTFETs has
rarely been discussed.
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studies have been performed regarding the corner effect of NWMOSFETs [22–25], that of gate-normal 
NWTFETs has rarely been discussed. 

 
Figure 1. (a) Bird’s eye and (b) cross-sectional views of simulated gate-normal nanowire tunnel field-
effect transistors (NWTFETs) with the normalized radius of curvature (Rnorm) of 0. 

In this manuscript, the hump behavior of gate-normal NWTFETs is investigated and its solution 
is proposed by three-dimensional (3D) technology computer-aided design (TCAD) simulation. 

2. Device Structure and Simulation Methodology 

Figure 1 shows the bird’s eye and cross-sectional views of gate-normal NWTFETs. It features a 
gate–source overlapped thin intrinsic epitaxial layer to fix the tunnel width. The device parameters 
are summarized in Table 1. The channel length (Lch) is 20 nm. The gate–source overlap length (Lov) is 
40 nm. Both the inner width (Winner) and inner height (Hin ner) are 20 nm, respectively. The gate 
insulator thickness (Tins) is 2 nm. The epi-layer thickness (Tepi) is 2 nm. The source (NS) and drain 
doping concentrations (ND) are 1020 cm-3, respectively. 

3D TCAD device simulation has been performed by using a commercial simulator [26]. For the 
accurate calculation of the BTBT generation rate, a dynamic nonlocal BTBT model is used after 
calibration [27]. Additionally, the Shockley–Read–Hall recombination, Philips unified mobility 
model and Fermi distribution are used in our simulation. On the contrary, quantization effects and 
the gate leakage current have not been considered. The threshold voltage (VT) is defined as the gate 
voltage (VG) when the drain current (ID) is equal to 0.1 nA/μm, while the turn-on voltage (Vturn-on) is 
defined as VG when ID is equal to 0.01 fA/μm. The Ion and Ioff are defined as ID when the overdrive 
voltages (VG - Vturn-on) are 0.5 V and −0.2 V, respectively. The average SS (SSavg) is calculated from VG = 
Vturn-on to VG = Vturn-on + 0.5 V. Drain-induced barrier thinning (DIBT) is calculated as the VT difference 
between VD = 0.05 V and 0.5 V. 

Table 1. Device parameters for simulation. 

Parameters Values 
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Winner, Hinner 20 nm 
Tins 2 nm 

Figure 1. (a) Bird’s eye and (b) cross-sectional views of simulated gate-normal nanowire tunnel
field-effect transistors (NWTFETs) with the normalized radius of curvature (Rnorm) of 0.

In this manuscript, the hump behavior of gate-normal NWTFETs is investigated and its solution
is proposed by three-dimensional (3D) technology computer-aided design (TCAD) simulation.

2. Device Structure and Simulation Methodology

Figure 1 shows the bird’s eye and cross-sectional views of gate-normal NWTFETs. It features a
gate–source overlapped thin intrinsic epitaxial layer to fix the tunnel width. The device parameters
are summarized in Table 1. The channel length (Lch) is 20 nm. The gate–source overlap length (Lov)
is 40 nm. Both the inner width (Winner) and inner height (Hin ner) are 20 nm, respectively. The gate
insulator thickness (Tins) is 2 nm. The epi-layer thickness (Tepi) is 2 nm. The source (NS) and drain
doping concentrations (ND) are 1020 cm-3, respectively.

Table 1. Device parameters for simulation.

Parameters Values

Lch 20 nm
Lov 40 nm

Winner, Hinner 20 nm
Tins 2 nm
Tepi 2 nm
NS 1 × 1020 cm−3 (p-type)
ND 1 × 1020 cm−3 (n-type)

Nch, Nepi Intrinsic

3D TCAD device simulation has been performed by using a commercial simulator [26]. For the
accurate calculation of the BTBT generation rate, a dynamic nonlocal BTBT model is used after
calibration [27]. Additionally, the Shockley–Read–Hall recombination, Philips unified mobility model
and Fermi distribution are used in our simulation. On the contrary, quantization effects and the
gate leakage current have not been considered. The threshold voltage (VT) is defined as the gate
voltage (VG) when the drain current (ID) is equal to 0.1 nA/µm, while the turn-on voltage (Vturn-on) is
defined as VG when ID is equal to 0.01 fA/µm. The Ion and Ioff are defined as ID when the overdrive
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voltages (VG − Vturn-on) are 0.5 V and −0.2 V, respectively. The average SS (SSavg) is calculated from
VG = Vturn-on to VG = Vturn-on + 0.5 V. Drain-induced barrier thinning (DIBT) is calculated as the VT

difference between VD = 0.05 V and 0.5 V.

3. Simulation Results and Discussion

3.1. Analysis of Hump Behavior of Gate-Normal NWTFETs

Figure 2 shows the simulated transfer curves of the gate-normal NWTFETs, which show clear
hump behavior degrading SS and Ion. Two noteworthy phenomena are observed. First, hump behavior
occurs and the SS is abruptly changed around VG = 0.7 V. In order to analyze the hump behavior,
the electron BTBT generation rates in the gate–source overlap region are simulated at around VG = 0.7 V
at VD = 0.5 V. As shown in Figure 3, gate-normal BTBT occurs at the corners earlier than at the sides,
which is called the corner effect. To be specific, the area wherein BTBT occurs is extended from the
corner to the side as VG increases. In addition, the electron BTBT generation rate is not constant
through the NW, and is stronger at the corner. This means that different BTBT turn-on voltages exist in
an NW, which induce the hump behavior. Second, as shown in Figure 2, the hump becomes more
severe as VD decreases. At low VD, it is vulnerable to the hump because the influence of the gate
increases as the VD decreases, while the hump is more affected by the structure of the gate.
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Figure 2. Transfer curves of the gate-normal NWTFETs for VD values of 0.5 V and 0.05 V. It is shown
that gate-normal NWTFETs suffer from hump behavior, which degrades SS and Ion.

The definition of the corner and side of an NW is shown in Figure 4. Because the tunneling
width is determined by the epi-layer thickness (Tepi), gate-normal tunneling occurs mainly in the
epi-layer [28]. Thus, by integrating electron BTBT generation rates over the cross-section of an NW,
electron BTBT generation rates per channel length are calculated. In order to evaluate the influence of
the corners on ID, the electron BTBT generation rates at the corners and sides are compared with each
other. Figure 5 shows that gate-normal tunneling occurs first in the corner region and then in the side
region of an NW. The corner effect is dominant at a low VG while it becomes less strong as VG increases.
Thus, it degrades the on–off transition abruptness of the total electron BTBT generation rates. Figure 6a
shows the 2D contour of electrostatic potential. As shown in Figure 6b,c, the surface potential is higher
at the corner than at the side in the entire range of VG. This is because the charge at the corner is shared
by the surrounding gate. The charge sharing effect at the corner contributes to the higher surface
potential compared with the side one [29,30]. The difference in surface potentials in an NW affects the
energy band diagrams of gate-normal NWTFETs. Figure 7 shows the energy band diagrams extracted,
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at the corner and side, from the middle of the gate–source overlap region, respectively. Gate-normal
tunneling, which is a main current mechanism of the gate-normal NWTFETs, occurs vertically in the
gate–source overlap region, whereas the current is conducted laterally along the gate-controlled surface
channel [10]. Then, in order to induce gate-normal tunneling, the band alignment in the direction
perpendicular to the channel in the gate–source overlap region should be required [28]. When the VG

is 0.6 V, the conduction energy band edge (EC) of the epi-layer is aligned with the valence energy band
edge (EV) of the source region at the corner, while the EC of the epi-layer is not aligned with the EV of
the source region at the side. This is because the higher surface potential of the corner leads the energy
band of the surface to shift down, which causes the gate-normal tunneling to turn on early. Thus,
the corner and side of an NW have different BTBT turn-on voltages, which induce the hump behavior.

1 
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Figure 3. 3D and 2D contour plots of electron band-to-band tunneling (BTBT) generation rates of
gate-normal NWTFETs at VG = 0.6V, 0.7V, and 0.8V at VD = 0.5V.
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3.2. Hump Suppression by Rounding NW Corners and Reducing Gate Insulator Thickness

In order to improve the SS and Ion of the gate-normal NWTFETs, the hump behavior must be
suppressed. In this paragraph the radius of curvature (R) of an NW and Tins are optimized for the
suppression of the hump behavior. The normalized R (Rnorm) is defined as 2R/Winner. The three
Rnorm values are discussed as shown in Figure 8: 0, 0.4, and 1. Figure 9 shows the simulated transfer
curves of the gate-normal NWTFETs with various Rnorms ranging from 0 to 1. As the Rnorm increases,
the hump behavior becomes weaker because the surface potential difference between the corner and
side becomes smaller, as shown in Figure 10. The surface potential difference in an NW becomes 0
as Rnorm becomes 1. In addition, as the corner behavior is alleviated, the short channel behavior is
suppressed down [22,23]. Thus, it is observed that the Vturn-on increases, the SSavg improves, the Ion/Ioff

ratio increases, and the DIBT decreases, as shown in Figure 11. In the case of a cylindrical NW whose
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Rnorm is 1, the gate-normal BTBT evenly occurs on the entire surface. The gate-normal NWTFET whose
Rnorm is 1 shows a twofold higher Ion and a 5.4-fold higher Ion/Ioff than that whose Rnorm is 0.
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Another way to suppress the hump behavior is to reduce the Tins. Figure 12 shows the simulated
transfer curves with various Tinss. As Tins decreases, that hump is suppressed and the SS is improved
because the gate’s controllability over the channel becomes better. The surface potential on the
gate–source overlap region increases as the Tins decreases. However, as shown in Figure 13a,
the potential at the side becomes higher than that at the corner as the Tins decreases. It should be noted
that the potential at the corner is less sensitive to Tins than that at the side because the corners of an
NW are surrounded by the gate [17]. Thus, as shown in Figure 13b, the surface potential difference
between the corner and side decreases as the Tins decreases. In other words, the difference in BTBT
turn-on voltages in an NW is reduced, which means less hump behavior.
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4. Conclusions

The hump behavior of gate-normal NWTFETs is analyzed by using 3D TCAD simulation. It is
discussed that the hump originates from the corner effect induced by the surrounding gate. BTBT occurs
at the corner earlier than at the side due to the higher surface potential at the corner. By increasing
Rnorm and decreasing Tins, the hump behavior can be suppressed. Cylindrical gate-normal NWTFETs
with low Tins are recommended for extremely low-power applications.
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