iriried applied
L sciences

Article

SAR and LIDAR Datasets for Building Damage
Evaluation Based on Support Vector Machine and
Random Forest Algorithms—A Case Study of
Kumamoto Earthquake, Japan

Masoud Hajeb 109, Sadra Karimzadeh 2-34*( and Masashi Matsuoka *

1 Department of Civil Engineering, Azarbaijan Shahid Madani University, Tabriz 5375171379, Iran;

Hajeb.masoud1@gmail.com

Department of Remote Sensing and GIS, University of Tabriz, Tabriz 5166616471, Iran

3 Institute of Environment, University of Tabriz, Tabriz 5166616471, Iran

Department of Architecture and Building Engineering, School of Environment and Society, Tokyo Institute of
Technology 4259-G3-2 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan; matsuoka.m.ab@m.titech.ac.jp
Correspondence: sadra.karimzadeh@gmail.com or sa.karimzadeh@tabrizu.ac.ir or
karimzadeh.s.aa@m.titech.ac.jp

check for
Received: 27 October 2020; Accepted: 10 December 2020; Published: 14 December 2020 updates

Abstract: The evaluation of buildings damage following disasters from natural hazards is a crucial
step in determining the extent of the damage and measuring renovation needs. In this study,
a combination of the synthetic aperture radar (SAR) and light detection and ranging (LIDAR) data
before and after the earthquake were used to assess the damage to buildings caused by the Kumamoto
earthquake. For damage assessment, three variables including elevation difference (ELD) and texture
difference (TD) in pre- and post-event LIDAR images and coherence difference (CD) in SAR images
before and after the event were considered and their results were extracted. Machine learning
algorithms including random forest (RDF) and the support vector machine (SVM) were used to
classify and predict the rate of damage. The results showed that ELD parameter played a key role in
identifying the damaged buildings. The SVM algorithm using the ELD parameter and considering
three damage rates, including D0 and D1 (Negligible to slight damages), D2, D3 and D4 (Moderate to
Heavy damages) and D5 and D6 (Collapsed buildings) provided an overall accuracy of about 87.1%.
In addition, for four damage rates, the overall accuracy was about 78.1%.

Keywords: damage assessment; airborne SAR; LIDAR; Kumamoto; earthquake

1. Introduction

Immediate response and planning for rescue and reconstruction operations are essential after an
earthquake. Field survey is time-consuming and costly and, in some cases, this is impossible due to road
closures [1-4]. Hence, several remote sensing datasets and methods have been proposed to accelerate
this work. One of the best ways to assess earthquake damage is to use space borne and airborne
information before and after the event [5]. Synthetic aperture radar (SAR) is one of the most powerful
tools for monitoring natural and unnatural events on Earth that can collect information during the day
and night without being affected by weather conditions. Other advantage of this monitoring system is
fast observations on a large scale [6]. Airborne light detection and ranging (LIDAR) is another efficient
remote sensing technology that measures distance by sending a pulsed laser at a target and analyzing
the reflected light. LIDAR sensors collect data in the form of three-dimension cloud points. Landslide
detection and damage assessment of buildings are the main capabilities of this method [7-11]. LIDAR
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data is mainly used to generate a high-resolution digital elevation model (DEM). Various studies have
referred to the great capability of LIDAR images to assess building damages but the cost issues of this
type of information and its dependence on weather conditions have made this type of information
unavailable to some extent. Nevertheless, when it is available, this type of data is very valuable in
assessing the damage [11,12]. Using the combination of these two techniques or through each of them
separately some research studies have been done. For example, Liu et al. used multitemporal airborne
LIDAR data to investigate landslides caused by the Kumamoto earthquake. Their study demonstrated
the appropriate ability of this method to detect landslides [8]. Yamazaki et al. conducted research using
pre- and post-event LIDAR images. They studied the parameters of correlation coefficient difference
and elevation difference in both images to detect landslides and earthquake damage. Their results
confirmed the advantage of this method in landslide detection [13]. Karimzadeh et al. using SAR
images and sequential coherence methods, conducted a study about the Sarpole-Zahab earthquake
(Iran). They used 56 pre- and co-event SAR images and studied the effect of parameters such as seasonal
changes and the height of buildings [1]. Hajeb et al. used correlation coefficient, SAR interferometry
and texture analysis methods to evaluate the damage of structures caused by Sarpole-Zahab earthquake.
Using the random forest algorithm, they obtained an overall accuracy of 86.3% in evaluating damaged
buildings [14]. Miura et al. developed an automatic structural damage detection method using
post-disaster aerial images and the deep learning method, about the 2016 Kumamoto and the 1995 Kobe
earthquakes. Their results showed that this method achieved high accuracy in damage assessment [15].
Nowadays, various imaging and ground control systems have been developed. Along with their
development, it is necessary to have methods for more accurate and faster analysis of information
collected from these systems. Machine learning is one of the most popular tools in remote sensing and
seismology, which is used to assess the damage to buildings. In this method, the response variables
and the related explanatory variables, which can be qualitative or quantitative values, are inputted
into the algorithm. The algorithm analyzes these inputs and finds the relation between the response
variables and the related explanatory variables. It then categorizes the new input variables using the
analysis performed [16]. Bai et al. using ALOS-2/PALSAR-2 SAR images and applying the machine
learning method, researched the 2016 Kumamoto earthquake. In this evaluation, they performed
building damage mapping using only post-event SAR images and mapping using multi-temporal SAR
images [6]. In addition, Bai et al. conducted a study using high-resolution images and a machine
learning-based damage assessment method. They concluded that this method could provide good
results in identifying damaged areas [17].

2. Earthquake and Study Area

On 14 April 2016, an earthquake with a magnitude of 6.2 Mw hit the Kumamoto Prefecture,
Japan. The epicenter of the foreshock and main shock was located at the Hinagu and Futugawa fault,
respectively. The epicenter of foreshock was reported 12.0 km beneath Mount Kinpo that is located in
the northwest of Kumamoto city center. While this was thought to be the main shock, on 16 April
another earthquake with a magnitude of 7.0 Mw struck the region. The epicenter of this event was
located under Higashi Ward of Kumamoto in the Kyushu Region in southwest Japan. The first shock
was known as foreshock and the second as the main shock. However, most of the damage was in
the eastern suburbs of Kumamoto in Mashiki. Because of this earthquake, 55 people died and more
than 3000 people injured and many people became homeless. The collapse of about 8700 structures
and severe damage to more than 35,000 buildings and numerous landslides across the mountains of
Kyushu were other effect of this earthquake. Numerous studies have been conducted to assess the
damage caused by this event, some of which were mentioned above. In this study, the combination of
SAR and LIDAR data has been used for this purpose [5,8,12,18]. The location of pre- and post-event
LIDAR data and the study area used in this research are illustrated in Figures 1 and 2. In addition,
registration date and other details of SAR and LIDAR images are shown in Table 1.
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Figure 1. The location of pre- and post-event light detection and ranging (LIDAR) data and the study

area [19].
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Figure 2. Location of the pre-event (a) and post-event (b) DSMs and study area. DSMs acquired by
Asia Air Survey Co., Ltd. (Tokyo, Japan) [20,21].

Table 1. Registration date and other details of synthetic aperture radar (SAR) and LIDAR data.

SAR
Type Date Polarization Spatla'l Path Direction Mode
Resolution
Sentinel-1 3 March 2016 \A% 20 m D Interferometric Wide
Sentinel-1 20 April 2016 \AY% 20m D Interferometric Wide
Sentinel-1 27 June 2016 \'AY% 20 m D Interferometric Wide
LIDAR
Collection . . .
Platform Date Data Provider Area Point Density
Airborne . A
LIDAR 15 April 2016 Asia Air Survey Co., Ltd. 151.56 km? 2.94 pts/m?
Airborne . A 2 2
LIDAR 23 April 2016 Asia Air Survey Co., Ltd. 95.85 km 4.47 pts/m
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3. Methodology

In this study, three most common methods of damage assessment including elevation difference,
coherence difference and texture difference have been used. In addition, machine-learning algorithms
including RDF and SVM have been used to classify the information obtained from these methods.
By using these methods in analyzing LIDAR and SAR images, valuable information can be obtained.
Moreover, three computer programs including ENVI v.5.3, ArcGIS v.10.7.1 and XLSTAT v.2020 were
used for buildings damage assessment. ENVI and ArcGIS, which are powerful tools for analyzing
maps and other geographic information, were used to analyze SAR and LIDAR data. In addition,
XLSTAT, which is an efficient tool for statistical data analysis, was used for machine learning.

3.1. Coherence

The coherence method has been used for damage assessment in several studies with successful
results [1,13,22]. One of its applications is to measure the deformation and displacement of plates
caused by earthquakes. In this method, the coherence extracted from the images before and after the
event is subtracted. If the obtained result has a high value, it can be a reason for the destruction in
the area. A simple or normalized difference method can be used to calculate the CD before and after

the event.
N Ypre = Yco
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where ypre and v, are pre- and co-event coherence images, respectively [1].

3.2. Texture Analysis

The textural properties of the areas can change over time due to natural or man-made events.
These factors can affect the texture of the images in a natural or man-made event. By using the TD in
the images before and after the event, different levels of damage can be identified. This method is used
to classify land cover and assess the damage and other applications [23,24]. The seven second-order
texture including Mean, Variance, Homogeneity, Dissimilarity, Contrast, Entropy and Correlation
features were used in this study. The abovementioned features in the five window sizes (3 X 3,5 x 5,
7%x7,9%9,11 x 11) in the DSM images pre- and post-event were calculated separately and then the
value obtained in the two images was subtracted.

Gray-level co-occurrence matrix (GLCM) is a statistical method for evaluating texture that
considers the spatial relations between pixels. In order to calculate the second-order statistics, the pixel
values of the image must first be converted to GLCM (Figure 3).
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Figure 3. An example of Gray Level Co-occurrence Matrix (GLCM).
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Mean (GLCM): The mean is applied to measure the average gray-level in the specific window on
GLCM showing the location of distribution [24,25].

Y plid). @

Variance (GLCM): The variance is used to measure the gray-level variance and it is a measure of
heterogeneity feature. It shows the condition of spreading the data around the mean [25].

N-1
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Homogeneity (GLCM): The homogeneity calculates the number of homogeneous pixel values in a
selected window in an image. If an image is homogeneous, a co-occurrence matrix will be formed
with a combination of upper and lower values of P[i,j]. Otherwise a matrix with uniform values is

created [24,25]. .
> Zj mp(iri)- @

Contrast (GLCM): The contrast GLCM feature indicates the local difference of pixel values in
neighboring pixels. If the values of local variation are high, the p(i, j) will be concentrated away from
the basic diagonal and the amount of contrast will be greater. [24,25].
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Dissimilarity (GLCM): The dissimilarity GLCM is dissimilar to variance and similar to the
contrast [24,26].
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Entropy (GLCM): The entropy GLCM feature indicates the content of the information. If all entries
in P [i, j] are of the same size, the entropy value will be higher and if the entries do not have equal
values, the entropy value will be lower. [24,25,27].

=Y. Y pliiNlog((i,j)). )
j

Correlation (GLCM): The correlation GLCM shows the scale of image linearity. If an image has a
significant linear structure, its value will be high [25].
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3.3. Machine Learning

Machine learning is a computer tool that, by using the algorithms developed in it, can learn
the numerical and visual patterns in data and images and use it to predict and categorize new data.
The main part of machine learning is the training data in which the algorithms receive two types of
data from the user. The first data is the input (extracted data of analysis) and the second is the output
(rate of damages data, extracted from field survey). They learn the patterns and make predictions
about new data. Today, machine learning is used in medical sciences, robotics, damage assessment and
so forth. [14,16,28]. Conventional algorithms in this system include random forest (RDF), the support
vector machine (SVM) and K-nearest neighbor (KNN). In this study, we used RDF and SVM.
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3.3.1. Random Forest (RDF)

A random forest algorithm consists of a group of decision trees, each of which depends on a
random vector and the same distribution of all forest trees. In addition, the amount of error in the
forest depends on the power of each tree and the connection between them. This algorithm is of the
supervised type that generates the forest algorithm randomly. RDF uses several decision trees to
create accurate predictions. Classification and regression are the main applications of this algorithm.
Any decision tree can easily work with complex data and make decisions from it [29,30]. In the
regression problem, the result is the average of all trees (Equation (10)) and in the classification problem,
we obtain the final answer by voting between the trees (Figure 4).

1 B
F(X) == Ty(x). 9
(=33 1) ©)
|
1
RDF Classifier I SVM Classifier
1
.
Dataset i x2 H1 =
m 1
' =]
! o~ <
@ @ e (o] | o o © 2
a ] a @ e , a el : D o
6o @80 S0 C® C® SO 60 @0 | o (=N
Tree 1 Tree? Tree 3 Tree 4 : h -
i i I | S
Predict D1 Predict D2 Predict D3 Predict D1 i -
| | | J ) *® @ [
| e * o
- 1
Result=D1@ ! o]

Figure 4. Classification process of random forest (RDF) in (left) and support vector machine (SVM)
in (right).

3.3.2. Support Vector Machine (SVM)

SVM is a non-parametric statistical monitoring method used for classification and regression.
The SVM algorithm can be used wherever there is a need to identify patterns or classify objects in
specific classes. In this method, each data sample is represented as a point in the n-dimensional space
in the data scatter diagram. The value of each feature related to the data determines one of the point
coordinate parameters in the graph. The SVM classification base is a linear classification of data
and in linear segmentation of data, a more reliable line is chosen. [16,31]. Figure 4 makes it easier
to understand. As you can see, the H3 does not divide the two batches. H1 does this with a small
margin and H2 separates the two categories with a maximum margin. Figure 5 shows the flowchart of
methods used for damage assessment using machine-learning algorithms.

D ={(X;, Yy)IX; € RP, Y; € {-1, 1}};‘: 1 (10)
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Figure 5. The flowchart of methods used for damage assessment using Machine Learning algorithms.

3.4. Damage Classification

In this study, we considered seven damage rates based on the Architectural Institute of Japan (AlJ)
including DO, D1, D2, D3, D4, D5 and D6, which due to the limited ability of the methods, the number
of rates has been reduced to 3 and 4 levels. In the first case, four damage rates (4DR), including DO and
D1 (Negligible to slight damages), D2 and D3 (Moderate damages), D4 and D5 (Very Heavy damage)
and D6 (Collapsed buildings) and in the second case, three damage rates (3DR), including D0 and
D1 (Negligible to slight damages), D2, D3 and D4 (Moderate to Heavy damages) and D5 and D6
(Collapsed buildings) have been considered. It should be noted that the truth data (damage rate of
structures) used in this study were extracted from the research of Goto et al. [32]. The total number of
buildings studied in two cases was 18,445 buildings, which are shown separately in Table 2.

Table 2. The number of structures in the study area and the number of structures intended for training
and prediction in 3 and 4 rate of damages.

4DR
Group Name Damage Level Number of Total Number of Training Number of Prediction
up & Buildings Buildings Buildings
DO, D1 Negligible to Slight 2634 700 1934
D2, D3 Moderate 13,007 700 12,307
D4, D5 Very heavy 1676 700 973
D6 Collapsed 1128 700 428
3DR
G N D Level Number of Total Number of Training Number of Prediction
roup Name amage Leve Buildings Buildings Buildings
DO, D1 Negligible to Slight 2634 1000 1634
D2, D3, D4 Moderate to Heavy 14,683 1000 13,683
D5, D6 Very heavy to 1128 1000 128

Collapsed
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3.5. Training and Prediction Dataset

In the machine learning method, part of the data must be allocated for algorithm training. If more
training data is given to the algorithm, its analysis will be better and it can have more accurate
estimation results. But in this study, due to the low number of buildings in group D6 (1128 buildings),
we had to choose the number of data in proportion to this group. Therefore, fewer buildings were
selected to the algorithm training, which in turn reduces the accuracy of the assessment. The number
of selected buildings for training and estimation in 3DR and 4DR cases are shown in Table 2. Also,
Figure 6 shows the position of buildings in 3DR mode.

Location of training and prediction dataset‘

Training Dataset

D0 D1:1000 buildings
@ D2 D3 D4:1000 buildings
@ D5 D6:1000 buildings

Predicting Dataset

DO D1:1634 buildings

@ D2 D3 D4:13683 buildings
@ D5 D6:128 buildings

Figure 6. Location of training (a) and prediction (b) dataset of the study area. Green points (intact
buildings), Blue points (low to medium damage) and Red points (Collapsed buildings) (3DR).

4. Results

For better understanding of the effectiveness of ELD, TD and CD methods, each was first analyzed
separately and then three methods were combined. Due to the variability of window size in texture
analysis, this method was first examined in five window sizes. The results showed that 3 x 3 window
size had the best performance (Figure 7), so we chose it as the final result of this method according to
damage states explained in Figure 8. It should be noted that among the 7 parameters of this method,
mean and variance parameters provided the highest overall accuracy. In the next stage of analysis,
the results of DSMs were extracted, which showed that this method has an ability to assess the damage
so that it provided an overall accuracy of 78.1% for 4DR state (Figure 9). In addition, in 3DR state,
the overall accuracy was 87.1%. In damage detection using remote sensing images that are viewed
vertically, since direct information about the damage of columns, walls and internal components
of the building is not available, the roof of the structure plays a key role in classifying the damage.
In some cases, in moderately damaged buildings, residents may cover the roof of the building with a
blue plastic tarp to prevent water penetration. This makes it difficult to detect moderate damage in
blue tarp-covered ceilings in post-event images [15]. Also, by considering other factors that reduce
the accuracy of the results, such as the horizontal difference in the images caused by landslides and
the great imbalance in the three groups of damage, it can be said that the evaluation provided an
acceptable accuracy) Figure 11). According to the experimental results of this study, if the number of
response variables (in this study: the number of damage rates) is increased, the amount of training
data should be increased accordingly. Otherwise, the algorithm will not have the correct analysis
and estimation. In this study, due to the low number of buildings with a damage rate of D2 to D6,
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it was not possible to increase the number of training data. If the number of training data increased,
there would be no data to estimate. For example, the number of structures in the collapsed group was
1128 structures. From these, 1000 structures were used for machine training and 128 structures for
predicting. Basically, the number of training data in each group should be the same, so in the other
groups, the number of this data was selected in proportion to the D6 group. Despite this fact, most
of the time, after earthquakes or other catastrophes, there is no balance in the data and this problem
must be solved in another way. On the other hand, having a large number of structures in the study
area and multiplicity of variables reduce the efficiency of algorithms and the accuracy of the results.
To reduce the impact of these problems, better results can be obtained by dividing large areas into
several small areas and by performing several separate analyses.

TEXTURE Analysis
95.00%
85.00% o— o— —0 —
B 75.00% -
§  65.00% —_—
g 55.00% . 5 . R N
é 45.00% v/ v;
35.00%
3*3 5%5 7*7 9%9 11711
—0— SVM_Mean & Variance 86.10% 85.50% 84.70% 84.60% 79.10%
—i— SVM_7 features 71.90% 68.30% 68.10% 65.30% 60.50%
—e—RDF_Mean & Variance ~ 51.10% 51.01% 50.20% 48.20% 48.05%
———RDF_7 features 48.60% 48.10% 47.10% 42.10% 41.30%
Window size

Figure 7. Texture analysis results considering 5 window sizes using RDF and SVM algorithms (3DR).

In the following part of the study, the pre-processed coherence data of pre- and post-event were
subtracted from each other. After using machine learning algorithms, despite the significant advantage
of this method, which has been emphasized in various researches, it resulted in very low accuracy.
The results of CD method showed that this method is not able to detect minor to moderate damages.
For example, in 3DR case, by examining the results, it was found that the algorithm classified the
majority of D2 data as underestimation in the almost intact group (Negligible to Slight damage) and
categorized the majority of D4 data as overestimation in the Collapsed group. In addition, group D3 is
divided between groups depending on the extent of damages.
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Figure 8. The Architectural Institute of Japan scale (AI]) [15,33].

In the last part of the study, the values of the above three methods were combined. The results
showed that the TD and CD, despite their good capabilities, led to poorer results in this evaluation in
combination with the ELD (Table 3).

Prediction result
5. 80.00% . e
g S R \ /
S 40.00% N - A
< 2000% TD (Mean &
Variance) ELD CD Combination
——SVM 76.70% 78.20% 33.01% 69.30%
—+—RDF 53.10% 35.23% 37.71% 40.17%
Methods

Figure 9. Prediction results of RDF and SVM algorithms by considering texture difference (TD)
(Mean and Variance), elevation difference (ELD), coherence difference (CD) and Combination of three

methods (4DR).
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Table 3. Producer accuracy, user accuracy and overall accuracy [34] for RDF and SVM classifiers by
considering the combination method (3DR).

Combination of 3 Methods

Type of Accuracy SVM (%) RDF (%)
Producer Accuracy (D0, D1) 26.13 14.44
Producer Accuracy (D2, D3, D4) 55.09 94.85
Producer Accuracy (D5, D6) 91.19 5.1
User Accuracy (DO, D1) 35.01 79.06
User Accuracy (D2, D3, D4) 78.79 34.52
User Accuracy (D5, D6) 61.17 66.40
Overall Accuracy (3 category) 74.1 39.2

Examining the results of this study and various researches were done with SVM and RDF
algorithms; it can be experimentally concluded that the SVM algorithm using LIDAR images leads
to higher accuracy than the RDF algorithm. In addition, the performance of the RDF algorithm in
evaluating SAR images in compared to the SVM algorithm is better (Figure 10). Although the RDF is
known as a strong classifier due to its “bagged decision tree” nature, which can split data on a subset
of features, as mentioned above, the main reason for the low overall accuracy in RDF were the increase
in the number of damage rates (response variables) and lack of enough training data. In general,
we can say that, when we use several different datasets its performance and accuracy may reduce [35].
On the other hand, SVM provides better results when multiple datasets and smaller training set is
available [35]. Table 4 shows some previous studies in which SVM and RDF algorithms were used
for damage/land classification. Figures 12 and 13 also show the estimated results, of the SVM and
RDF algorithms.
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Figure 10. The estimation results of the building conditions by RDF algorithm by considering 4 methods.

The green spots represent the intact buildings, blue spots show low to moderate damage and the red
spots represent the collapsed buildings. In addition, the Receiver’s Operating Characteristic (ROC) [36]

curve (3DR) is shown.
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Classification by SVM algorithm
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Table 4. Some examples of research done with RDF and SVM algorithms using LIDAR images.

No Research Type of Data Algorithm Accuracy Event
1 Moya et al. [5] LIDAR SVM 92% Kumamoto earthquake
2 Rastiveis et al. [37] LIDAR SVM 91.59% Haiti earthquake
3 Axel and Aardt [38] LIDAR SVM 78.90% Haiti earthquake
4 Torres et al. [39] LIDAR SVM 78.8% Lorca earthquake
5 Mehdi Rezaeian [40] LIDAR SVM 80% Kobe earthquake
6 Singh et al. [35] Landsat, ALOS SVM 8% Cambodia forests

and LIDAR RDF 66%

5. Discussion

The ELD method showed that the calculation of changes in the height of buildings in pre- and
post-event LIDAR images provides valuable information. Through this method, a quick and acceptable
assessment can be made after earthquakes and other disasters. TD is another method that can be
applied for both SAR and LIDAR images. In this study, it was used to assess changes in textural
features in pre- and post-event LIDAR images (in five window sizes). The results showed that this
method has a good ability to assess the damage of buildings. Despite several advantages of CD method,
poor results were obtained. It can be said that one of the main reasons of very low overall accuracy of
this method is the overestimation or underestimation evaluation of the algorithms, which eliminates
the low to moderate rate of damage from the results. Regarding the fusion of the above three methods
together or in fact, the combination of two sensors data, it can be said that this method could not
improve the overall accuracy of the evaluation. The results of SVM algorithm demonstrated that this
algorithm could provide an acceptable estimate using LIDAR images and by considering ELD and TD
methods. In the present study, the RDF algorithm provided low accuracy. The main reason is that
this algorithm, by increasing the response variables (in this study: the number of degrees of damage),
requires more training data for accurate analysis and estimation.

6. Conclusions

In this study, a combination of SAR and LIDAR images was used for evaluation. The CD parameter
in pre- and co-event SAR images and the TD (in five window sizes) and the ELD parameters in pre- and
post-event LIDAR images were analyzed. To classify and predict the results, machine learning-based
algorithms, including RDF and SVM were used. In the first step, the LIDAR images were preprocessed
and pre- and post-event DSMs were extracted. Then, the variation between the two images was
calculated by simple differentiation. In the second step, the seven second-order texture parameters
(Mean, Variance, Homogeneity, Dissimilarity, Contrast, Entropy and Correlation) in 5 window sizes
(B3x3,5%5,7%x7,9x%x9,11 x 11) were calculated separately for pre- and post-event images. Then,
the differences of the extracted parameters in the two images were computed. In the third step,
after analyzing the SAR data and creating coherence images, the difference between both images was
calculated. In order to estimate and categorize the results, machine-learning algorithms including RDF
and SVM were used. Part of the data was allocated for algorithms training and the rest of the data
was used to predict the rate of damages. This study was performed in two cases: in the first case,
3 damage rates and in the second case, 4 damage rates were considered. The SVM algorithm using
the ELD parameter and considering three damage rates provided an overall accuracy of about 87.1%.
In addition, in 4 damage rates, the overall accuracy was about 78.1%. The results showed that methods
based on LIDAR images are more efficient. Regarding the methods used to analyze these images,
we conclude that:

1. In the future, the LED method can be a good alternative to field research, which is very time
consuming and costly.
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2. Among seven texture properties mentioned in the previous sections, mean and variance played a
more effective role in the results. According to the results from this method, it can be considered
as a complement to other methods. In a separate experiment with two damage rates, the overall
accuracy of this method increased about 10%.

The CD method based on SAR data provided poor results in identifying the three damage rates.
In evaluating the two groups of damage, including intact buildings (DO, D1, D2) and collapsed group
(D3, D4, D5, D6), the overall accuracy of this method increased to about 60%. Another factor that could
increase the accuracy of this method about 8% was the division of study areas, which made it easier to
make algorithms decisions. In general, it can be said that this method cannot still be replaced by field
study because it has low ability to evaluate buildings with moderate to low damage.

Regarding the current capability of machine learning algorithms, for future work, it is
recommended that building damage assessments be performed in several separate sections with
less data, rather than an integrated analysis for a large area. In addition, the effects of landslides on
reducing the accuracy of the results can be investigated.
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