
applied
sciences

Article

Cyber Firefly Algorithm Based on Adaptive Memory
Programming for Global Optimization

Peng-Yeng Yin 1,2,*, Po-Yen Chen 1, Ying-Chieh Wei 2 and Rong-Fuh Day 1

1 Department of Information Management, National Chi Nan University, No. 1, University Rd., Puli,
Nantou 54561, Taiwan; s100213516@ncnu.edu.tw (P.-Y.C.); rfday@ncnu.edu.tw (R.-F.D.)

2 Institute of Strategy and Development of Emerging Industry, National Chi Nan University, No. 1,
University Rd., Puli, Nantou 54561, Taiwan; s103245908@ncnu.edu.tw

* Correspondence: pyyin@ncnu.edu.tw

Received: 12 October 2020; Accepted: 14 December 2020; Published: 15 December 2020
����������
�������

Abstract: Recently, two evolutionary algorithms (EAs), the glowworm swarm optimization (GSO)
and the firefly algorithm (FA), have been proposed. The two algorithms were inspired by the
bioluminescence process that enables the light-mediated swarming behavior for mating or foraging.
From our literature survey, we are convinced with much evidence that the EAs can be more
effective if appropriate responsive strategies contained in the adaptive memory programming
(AMP) domain are considered in the execution. This paper contemplates this line and proposes the
Cyber Firefly Algorithm (CFA), which integrates key elements of the GSO and the FA and further
proliferates the advantages by featuring the AMP-responsive strategies including multiple guiding
solutions, pattern search, multi-start search, swarm rebuilding, and the objective landscape analysis.
The robustness of the CFA has been compared against the GSO, FA, and several state-of-the-art
metaheuristic methods. The experimental result based on intensive statistical analyses showed that
the CFA performs better than the other algorithms for global optimization of benchmark functions.

Keywords: adaptive memory programming; firefly algorithm; global optimization; glowworm swarm
optimization; metaheuristics

1. Introduction

Many challenging problems in modern engineering and business domains challenge the design
of satisfactory algorithms. Traditionally, researchers resort to either mathematical programming
approaches or heuristic algorithms. However, mathematical programming approaches are plagued
by the curse of problem size and the heuristic algorithms have no guarantees to near-optimal
solutions. Recently, metaheuristic approaches have come as an alternative between the two extreme
approaches. The metaheuristic approaches can be classified into two classes, evolution-based and
memory-based algorithms. The evolutionary algorithms (EAs) iteratively improve solution quality by
decent operations inspired by nature metaphors, creating several novel algorithms, such as genetic
algorithms, artificial immune systems, ant colony optimization, and particle swarm optimization.
The memory-based metaheuristic approaches guide the search course to go beyond the local optimality
by taking full advantage of adaptive memory manipulations. Typical renowned methods in this
class include tabu search, path relinking, scatter search, variable neighborhood search, and greedy
randomized adaptive search procedures (GRASP).

The metaheuristic approaches contained in the two classes have developed rather independently,
and only a few works investigate the possible synergy between them [1]. Talbi and Bachelet [2]
proposes the COSEARCH approach which combines the tabu search and a genetic algorithm for
solving the quadratic assignment problem. Shen et al. [3] proposes an approach called HPSOTS

Appl. Sci. 2020, 10, 8961; doi:10.3390/app10248961 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app10248961
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/24/8961?type=check_update&version=2

Appl. Sci. 2020, 10, 8961 2 of 25

which enables the particle swarm optimization to circumvent local optima by restraining the particle
movement based on the use of tabu memory. A hybrid of the ant colony optimization and the
GRASP is proposed by Marinakis et al. [4] for cluster analysis. However, the two metaheuristics
are separately used to tackle the feature selection and clustering problems, respectively. Fuksz and
Pop [5] proposes a hybrid genetic algorithm (GA) with variable neighborhood search (VNS) to
the number partitioning problem. Their hybrid GA-VNS runs the GA as the main algorithm and
the VNS procedure for improving individuals within the population. Yin et al. [6] introduces the
cyber swarm algorithm which gives more substance to the particle swarm optimization (PSO) by
incorporating the adaptive memory programming (AMP) strategies introduced in the scatter search
and path-relinking (SS/PR) template. The adjective “cyber” emphasizes the connection between
the evolutionary swarm metaheuristics and the AMP metaheuristics. The cyber swarm algorithm
outperforms several state-of-the-art metaheuristics on complex benchmark functions. The experimental
results of the above-noted works disclose a promising research area that the marrying of the approaches
from the two classes of metaheuristics can create significant benefit that is hardly obtained by the
approaches from each class alone.

More recently, two evolution-based algorithms [7,8], namely the glowworm swarm optimization
(GSO) and the firefly algorithm (FA), were proposed. The two algorithms were inspired by the
bioluminescence process that enables the light-mediated swarming behavior for mating or foraging.
The intensity of the light and the distance between the light source and the observer determine the
attractiveness degree that causes the moving maneuver. This form of metaphor can be used to develop
a swarm-based optimization algorithm where a swarm of glowworms/fireflies represent a set of
candidate solutions. The light intensity is evaluated by the objective value of the light source and
the distance between the glowworms/fireflies implicitly defines the eligible neighbors since the light
observed by an agent decays with the distance. The glowworms/fireflies are attracted by visible light
sources and fly towards them. Therefore, the solutions represented by the glowworms/fireflies improve
their objective value through the swarming behavior. Several improvements of FA have been proposed.
Yang proposed the LFA [9] by combining his original FA with Levy flight. Yu et al. employed the
variable step size strategy to create the VESSFA [10] variant. The dynamic adaptive inertia weight
was adopted in WFA [11] to use the short-term memory of previous moving velocity. Kaveh et al.
developed CLFA [12] which applies chaos theory and logical mapping to determine the optimal
FA parameters. The Tidal Force formula was used in FAtidal [13] to improve the balance between
exploitation and exploration search behaviors. The most recent improvement was GDAFA [14] which
uses global-oriented positional update and dynamically adjusts the step size and attractiveness to avoid
being trapped in local optima. The DsFA [15] employed dynamic step change strategy to balance the
global and local search capabilities, such that the search course is not likely trapped in local optimum.

From a long-term perspective of metaheuristic development, we anticipate that the GSO and
the FA can be made more effective by incorporating the notions from the memory-based approaches,
as validated in many previous attempts. Based on the prevailing framework of the cyber swarm
algorithm [6] that integrates key elements of the two types of metaheuristic methods, we propose the
Cyber Firefly Algorithm (CFA) to proliferate the advantages of the original form of the GSO and the
FA. The CFA conceptions include the employment of multiple guiding fireflies, the embedding of
the pattern search, firefly swarm rebuilding by the multi-start search, and the responsive strategies
based on objective landscape analysis. The robustness of the CFA has been compared against the GSO,
FA, and several state-of-the-art metaheuristic methods. The result as demonstrated in our statistical
analyses and comprehensive experiments showed the CFA manifests a more effective form of GSO
and FA. Most FA variants intend to improve the position update mechanism such as by using Levy
flight [9], variable step size strategy [10], adaptive inertia weight [11], and dynamically adjusting
strategy [14]. Our CFA differs with these variants by facilitating a more intelligent step size control
mechanism which performs landscape analysis in the objective space to adaptively tune the step size
according to the profiles of the incumbent fitness landscape.

Appl. Sci. 2020, 10, 8961 3 of 25

The novelty of this paper stems at creating a more effective form of GSO and FA approaches by
bridging the advantages of evolution-based and memory-based metaheuristics. In particular, this paper
investigates whether the CSA template is viable for improving GSO and FA as CSA has been shown
in [6] for improving PSO. Our experimental results show that the proposed CFA prevails GSO, FA,
and several state-of-the-art metaheuristics on benchmark datasets. This justifies the generalization
capability of the CSA template and one can follow the template to create an effective version of
interested metaheuristics.

The remainder of this paper is organized as follows. Section 2 presents a literature review and
Section 3 proposes the CFA and the employed features. Section 4 presents the results of intensive
experiments. Finally, conclusions and future research possibilities are given in Section 5.

2. Related Work Materials and Methods

2.1. Glowworm Swarm Optimization (GSO)

Krishnanand and Ghose [7] developed the GSO algorithm. It is assumed that each glowworm has
a luciferin level and a local visibility range. The luciferin level of a glowworm determines its light
intensity, and the local visibility range identifies the neighboring glowworms which are visible to
it. The glowworm probabilistically chooses a neighbor which has a higher luciferin level than itself
and is flying towards this neighbor due to light attraction. The local visibility range is dynamic for
maintaining an ideal number of neighbors. The GSO simulates the glowworm behaviors and consists
of three phases as depicted as follows.

The luciferin update phase evaluates the luciferin level of every glowworm according to the
decay of its luminescence and the merit of its new position after performing the movement within the
evolution cycle t. The luciferin level of glowworm i is updated by the following equation.

lt+1
i ← (1− ρ)lti + τ f t+1

i (1)

where ρ is the decay ratio of the glowworm’s luminescence and τ is an enhancement constant. The first
term is the persistence substance of luminescence due to decay with time, and the second term is
the additive luminescence as a function of f t+1

i which indicates the objective value measured at the
glowworm’s new position (here, without loss of generality, we assume the objective function is to
be maximized).

In the movement phase of each evolution cycle, every glowworm in the swarm must perform
a movement by flying towards a neighbor which has a higher luciferin level than the incumbent
glowworm and is located within the local visibility neighborhood defined by a radius rt

i . The probability
with which glowworm i is attracted to a brighter glowworm j at evolution cycle t is given by:

pi j =
ltj − lti∑

k∈Nt
i
ltk − lti

(2)

where Nt
i is the set of glowworms within the visibility neighborhood of glowworm i at evolution cycle

t. Once selecting a neighbor, say glowworm j, the current glowworm i performs a movement to update
its position as follows.

xt+1
i ← xt

i + s

 xt
j − xt

i

‖xt
j − xt

i‖

 (3)

where s is the movement distance and ‖•‖ indicates the length of the referred vector. Precisely speaking,
glowworm i moves in s units of distance towards glowworm j.

Appl. Sci. 2020, 10, 8961 4 of 25

The visibility range update phase dynamically tunes the visibility radius of each glowworm to
maintain an ideal number of neighbors, N∗. So, the current number of neighbors,

∣∣∣Nt
i

∣∣∣, is compared to
N∗ and the visibility radius rt

i is tuned by the following equation.

rt+1
i ← min

{
rmax, max

{
0, rt

i + η
(
N∗ −Nt

i

)}}
(4)

where rmax is the maximum visibility radius and η is a scaling parameter for tuning Nt
i . Therefore,

the value of rt
i is increased if Nt

i < N∗, and it is decreased if Nt
i > N∗. The feasible range of rt

i is bounded
between [0, rmax]. The phenomenon of rt

i = 0 indicates many glowworms are resorting to the position
of the current glowworm, while rt

i = rmax discloses the situation that the current glowworm is in a large
distance to most of the other glowworms.

2.2. Firefly Algorithm (FA)

Yang [8] introduced the FA. The FA explores the solution space with a population of fireflies.
Each firefly has luminescence of flashing light which attracts its mates in an inverse multiplication
of the squared distance and the light absorption. By using the metaphor, a firefly (representing a
candidate solution) can improve its light intensity (a merit function of the objective value) by flying
toward a more attractive firefly. In particular, the attractiveness of firefly j observed by firefly i is
defined as follows.

βr = β0e−γr2
(5)

where γ is the light absorption coefficient, r is the Euclidean distance between the two fireflies, and β0

is the light intensity of firefly j.
The movement of firefly i is attracted to a more attractive firefly j by the following equation,

xt+1
i ← xt

i + βr
(
xt

j − xt
i

)
+ αεi (6)

where the second term is due to the light attraction and the third term is a random perturbation with α
being the randomization parameter and εi is a vector of small random numbers drawn from a Gaussian
distribution or uniform distribution. After the movement, the light intensity of firefly i should be
re-evaluated and the relative attractiveness of any other flies to firefly i is also re-calculated. The FA
conducts a maximum number of evolution cycles and within each cycle every pair of fireflies should
be examined for possible movement due to attraction and randomization.

2.3. Adaptive Memory Programming (AMP)

The AMP comprises a broader spectrum than its more popularly accepted branch, the tabu
search [16]. In what follows, we focus our discussion on the use of the SS/PR template [17] which we
found very effective in creating benefits for marrying with evolutionary-based metaheuristics.

2.3.1. Scatter Search (SS)

The scatter search (SS) [18] operates on a common reference set consisting of diverse and elite
solutions observed throughout the evolution history. The SS method dynamically updates the reference
set and systematically selects subsets of the reference set to generate new solutions. These new
solutions are improved until local optima are obtained and the reference set is updated by comparing
its current members to these local optima. Some important features of the SS are as follows. (1) A
diversification-generation method is designed to identify the under-explored region in the solution
space such that a set of diverse trial solutions can be produced. (2) An improvement method is used
to enhance the quality of the solutions under keeping. This process usually involves a local search
operation which brings the trial solution to a local optimum. (3) A reference set update method
is adopted to make sure that the reference set is maintaining a set of high quality and mutually
diverse solutions observed overall in search history. (4) The multi-start search strategy iteratively

Appl. Sci. 2020, 10, 8961 5 of 25

restarts a new search session when the current search loses it efficacy. To lead the search course
towards under-explored solution space, the multi-start strategy works with a rebuilt reference set
produced by the diversification-generation method. (5) Interactions between multiple reference
solutions are systematically contemplated. The simplest implementation is to generate all 2-element
subsets consisting of exactly two reference solutions. Various search courses are conducted between
and beyond the selected reference solutions.

2.3.2. Path Relinking (PR)

There is a common hypothesis accepted by most of the metaheuristics that elite solutions often
lie on trajectories from good solutions to other good solutions. In a broader sense, the crossover
of chromosomes, the sociocognition learning of particles, and the pheromone trail searching are
all effective operators following the noted hypothesis. PR therefore creates a search path between
elite solutions. An initiating solution and a guiding solution are selected from the repository of
elite solutions. PR then transforms the initiating solution into the guiding solution by generating a
succession of moves that introduce attributes from the guiding solution into the initiating solution.
The relinked path can go beyond the guiding solution to extend the search trajectory. PR works in the
neighborhood space instead of the Euclidean space and variable neighborhoods are usually considered
in performing successive moves. Therefore, PR is well fitted for use as a diversification strategy.

3. Proposed Methods

Our proposed CFA synergizes the strength from three domains, namely the GSO, the FA, and the
AMP, to create a more effective global optimization metaheuristic algorithm. We articulate the new
features of the CFA as follows.

3.1. Multiple Guiding Points

Both GSO and FA algorithms conduct the firefly movement by referring to a guiding point, which is
a nearby elite firefly with a higher fitness than that of the moving firefly. This mechanism of using a
single guiding point raises the risk of misleading due to the selection of a false peak. Our proposed
CFA algorithm instead employs a two-guiding-point mechanism to enhance the exploration capability
of the algorithm. More precisely, the neighboring fireflies of the incumbent firefly i are identified by
reference to the current value of the visibility radius, rt

i , where t indicates the index of the evolution
iteration. Among the neighbors, the elite fireflies with a higher fitness than that of the incumbent firefly
are eligible for guiding-point selection. We employ the rank selection strategy to select two guiding
points from the eligible neighbors. According to our preliminary experiments, the rank selection
strategy is more robust against prickly fitness landscape than the roulette-wheel selection strategy
because the former works in the ranking value space instead of the fitness space.

3.2. Luciferin-Proportional Movement

In GSO and FA, the luciferin of firefly is used only for the determination of the single guiding
point. As we deploy the two-guiding-point mechanism, the relative significance of contribution from
each of the two guiding points can be further elaborated. We propose to convert the luciferin of each
guiding point to the weighting value for individual contribution. Given two guiding points xt

j and xt
k

observed at iteration t, their weighting values ω1 and ω2 are set as follows.

ω1 =
ltj

ltj + ltk
(7)

ω2 =
ltk

ltj + ltk
= 1−ω1 (8)

Appl. Sci. 2020, 10, 8961 6 of 25

We then propose the firefly movement formula as follows.

xt+1
i ← xt

i + ϕ1ω1βr j

(
xt

j − xt
i

)
+ ϕ2ω2βrk

(
xt

k − xt
i

)
(9)

where ϕ1 and ϕ2 are random values drawn from a uniform distribution U(lb, ub). Hence, firefly i is
drawn by firefly j and firefly k with driving force relative to respective luciferin level. Parameters lb
and ub control the feasible range of the step size for every firefly movement and their values are
dynamically tuned in accordance with the landscape analysis as will be noted.

3.3. Adaptive Local Search

Local search is a rudimentary component contained in most of the successful metaheuristics such
as memetic algorithms [19], scatter search [18], and GRASP [20], to name a few. Our CFA employs the
pattern search method [21,22] which iteratively performs a two-step trajectory search. The explorative
search step tentatively looks for an improving neighbor while the pattern search step aggressively
expands the improving move by doubling the execution of the move. The proposed CFA embodies
the pattern search method as a local search but performs it in an adaptive way. The local search is
performed on all fireflies only after consuming every t1 fitness function evaluations. To leverage the
balance between search efficiency and effectiveness, we adaptively vary the frequency parameter
(t1) for the performed local search. The adaptive local search strategy is based on the analysis of the
landscape observed in the objective space as will be noted.

3.4. Multi-Start with PR for Firefly Swarm Rebuilding

Multi-start is a mechanism for reinitiating the search with an under-explored region when the
trajectory search loses its efficacy. The multi-start search strategy thus works with two functions.
The function for critical event detection emits a signal upon the moment when the search stagnation
behavior is observed. The diversification-generation function identifies an under-explored region in
the solution space to generate a starting solution for the new trajectory search. Our CFA approach
facilitates the critical event detection by monitoring the number of enduring iterations since the last
improvement of the best-so-far firefly. If the number of no-improvement iterations for the best-so-far
firefly has exceeded a parameter t2, a signal for detection of a critical event is returned. The parameter
t2 is also made adaptive by the landscape analysis approach.

The diversification-generation function of the CFA approach is implemented by using the
path-relinking technique, which has been found very useful in identifying a promising solution within
an under-explored region and has been adopted as a diversification strategy such as in Yin et al. [6].
When a critical event signal is activated, a ratio δ of the swarm fireflies are rebuilt and each new firefly
is placed on the best solution along a relinked path connecting a random solution and the best-so-far
firefly. The path-relinking technique creates the path by dividing the subspace between the two end
points of the path into n equal-size hyper-grids where n is the number of decision variables for the
addressed optimization problem. A solution is sampled within each hyper-grid, so in total n solutions
will be obtained along the relinked path. The best of the n sampled solutions is designated as the
rebuilt firefly.

3.5. Responsive Strategies Based on Landscape Analysis

The previous features of CFA can be more effective by incorporating the notion of responsive
strategy which adaptively tunes the search strategy when observing the status transitions. The CFA
adapts the strategy parameters when the search encounters the transition between the smooth and
prickly landscapes manifested by the objective function. The measure of fitness distance correlation
(FDC) proposed by Jones and Forrest [23] has been proved useful for judging the suitability of a fitness
landscape for various search algorithms. The FDC measures the correlation between the solution cost

Appl. Sci. 2020, 10, 8961 7 of 25

and the distance to the closest global optimum. Let the set of observed cost-distance pairs be {(c1, d1),
. . . , (cm, dm)}, the correlation coefficient is defined as

FDC =

1
m

m∑
i=1

(
ci −

−
c
)(

di −
−

d
)

σcσd
(10)

where
−
c and

−

d are the mean cost and the mean distance, and σc and σd. are the standard deviations of
the costs and distances. Hence, a significant FDC value has the implication that on average, the better
the solution quality the closer this solution is to an optimal solution. It can be contemplated that
a single-modal objective function would impose a high FDC value in contrast to a multi-modal
objective function whose FDC value is closer to zero because of the irrelevance between the fitness and
the distance.

Most existing research adopted the FDC technique as an off-line analysis for realizing the
characteristics of the fitness landscape, while our CFA exploits the fitness landscape analysis as an
online responsive strategy. We periodically conduct the fitness landscape analysis for every 1000n
fitness function evaluations, where n is the number of problem variables. All the visited solutions
ever identified as local optima in the trajectory of a firefly within this time period are eligible for
the FDC value computation because these local optima are representative solutions produced in
the evolution. As the global optimum is unknown, the best solution obtained at the end of this
period is considered to be the best-known solution. The FDC value is computed by using these local
optima and the best solution identified in the current time period of previous 1000n fitness function
evaluations. Consequently, our CFA performs the adaptive landscape analysis which can predict the
objective landscape within the current region explored by the firefly swarm and activate appropriate
responsive strategies to make the search more effective. If the derived FDC value for the current
time period is greater than a threshold (FDC > h1), the local objective landscape is considered to be
asymptotical single-modal, and we perform two responsive strategies as follows: (1) increasing the
distance, on average, of the firefly movement by lb = lb/λ and ub = ub/λ (0 < λ < 1); (2) increasing the
elapsed iterations for checking the feasibility of executing the local search and multi-start search by t1

= t1/λ and t2 = t2/λ. The implication of the two responsive strategies is that when the local objective
landscape is single-modal, the search may be more effective if the firefly movement distance is greater
and the frequency for conducting the local search and the multi-start search is lower. On contrary,
If the absolute FDC value for the current time period is less than a threshold (|FDC| < h2), the local
objective landscape is considered to be asymptotical multi-modal, and we perform two responsive
strategies as follows: (1) decreasing the distance, on average, of the firefly movement by lb = lb × λ
and ub = ub × λ; (2) decreasing the elapsed iterations for checking the feasibility of executing the local
search and multi-start search by t1 = t1 × λ and t2 = t2 × λ.

3.6. Pseudo-Code of CFA

The pseudo-code of our CFA is elaborated in Figure 1. The new features of the CFA are emphasized
in boldface for comprehensive descriptions.

Appl. Sci. 2020, 10, 8961 8 of 25

Appl. Sci. 2020, 10, 8961 8 of 24

Figure 1. Pseudo‐code of the CFA algorithm.

4. Experimental Results and Discussions

We have conducted intensive experiments and statistical tests to compare the performance of

the proposed CFA algorithm and its counterparts. The experimental results disclose several

interesting outcomes in addition to establishing the effectiveness of the proposed method. The

platform for conducting the experiments is a PC with an Intel Core i5CPU and 8.0 GB RAM. All

programs are coded in C# language.

4.1. Benchmark Test Functions and Algorithm Parameter Settings

We have chosen two benchmark datasets. (1) The standard benchmark dataset contains 23 test

functions that are widely used in the nonlinear global optimization literature [6,18,24,25]. The

detailed function formulas can be found in the relevant literature and they have a wide variety of

different landscapes and present a significant challenge to optimization methods. The number of

variables, domain, and optimal value of these benchmark test functions are listed in Table 1.

Performance evaluation on this dataset is reported in terms of the mean best function value obtained

from 30 repetitive runs. For each run, the tested algorithm can perform 160,000 function evaluations

(FE) for ensuring that the tested algorithm has very likely converged. (2) The IEEE CEC 2005

benchmark dataset which is designed for unconstrained real‐parameter optimization. We selected

the most challenging functions and compared our CFA with the best methods reported in [26] under

the same evaluation criteria described in the original paper. The implementation of the benchmark

functions from both datasets is available in public library [27] in some programming languages such

as MATLAB and Java. As we used C# for all the experiments, we modified the public codes to C#

and embedded them into our main program.

Figure 1. Pseudo-code of the CFA algorithm.

4. Experimental Results and Discussions

We have conducted intensive experiments and statistical tests to compare the performance of the
proposed CFA algorithm and its counterparts. The experimental results disclose several interesting
outcomes in addition to establishing the effectiveness of the proposed method. The platform for
conducting the experiments is a PC with an Intel Core i5CPU and 8.0 GB RAM. All programs are coded
in C# language.

4.1. Benchmark Test Functions and Algorithm Parameter Settings

We have chosen two benchmark datasets. (1) The standard benchmark dataset contains
23 test functions that are widely used in the nonlinear global optimization literature [6,18,24,25].
The detailed function formulas can be found in the relevant literature and they have a wide variety
of different landscapes and present a significant challenge to optimization methods. The number
of variables, domain, and optimal value of these benchmark test functions are listed in Table 1.
Performance evaluation on this dataset is reported in terms of the mean best function value obtained
from 30 repetitive runs. For each run, the tested algorithm can perform 160,000 function evaluations (FE)
for ensuring that the tested algorithm has very likely converged. (2) The IEEE CEC 2005 benchmark
dataset which is designed for unconstrained real-parameter optimization. We selected the most
challenging functions and compared our CFA with the best methods reported in [26] under the same
evaluation criteria described in the original paper. The implementation of the benchmark functions
from both datasets is available in public library [27] in some programming languages such as MATLAB
and Java. As we used C# for all the experiments, we modified the public codes to C# and embedded
them into our main program.

Appl. Sci. 2020, 10, 8961 9 of 25

Table 1. The number of variables, domain, and optimal value of the benchmark functions.

No. Function Name Number of Variables (r) Domain Optimal Value

1 Easom (2) 2 [−10, 10] −1.0
2 Shubert (2) 2 [−10, 10] −186.7309
3 Rosenbrock (2) 2 [−30, 30] 0.0
4 Zakharov (2) 2 [−5, 10] 0.0
5 De Jong (3) 3 [−5.12, 5.12] 0.0
6 Shekel (4, 5) 4 [0, 10] −10.1532
7 Shekel (4, 7) 4 [0, 10] −10.4029
8 Shekel (4, 10) 4 [0, 10] −10.5364
9 Sphere (10) 10 [−100, 100] 0.0

10 Rosenbrock (10) 10 [−30, 30] 0.0
11 Rastrigin (10) 10 [−5.12, 5.12] 0.0
12 Griewank (10) 10 [−600, 600] 0.0
13 Zakharov (10) 10 [−5, 10] 0.0
14 Sphere (20) 20 [−100, 100] 0.0
15 Rosenbrock (20) 20 [−30, 30] 0.0
16 Rastrigin (20) 20 [−5.12, 5.12] 0.0
17 Griewank (20) 20 [−600, 600] 0.0
18 Zakharov (20) 20 [−5, 10] 0.0
19 Sphere (30) 30 [−100, 100] 0.0
20 Rosenbrock (30) 30 [−30, 30] 0.0
21 Rastrigin (30) 30 [−5.12, 5.12] 0.0
22 Griewank (30) 30 [−600, 600] 0.0
23 Zakharov (30) 30 [−5, 10] 0.0

To obtain the parameter settings of the CFA, GSO, and FA, various values for their parameters
were tested with the standard benchmark dataset and the values that resulted in the best mean function
value were used as the parameter settings as tabulated in Table 2. The parameter settings used by
other compared metaheuristics will be presented in Sections 4.3.2 and 4.3.3 where the comparative
experiments are presented.

Table 2. Parameter settings of the CFA, GSO, and FA.

Notation Parameter Description Set Value

Common parameters of CFA, GSO, and FA:
Num_Run Number of independent runs 30
Max_FE Maximum number of executed FE for each run 160,000

NS Number of fireflies 60
N* Ideal number of local neighbors 10
L Lower bound of decision variable See Domain in Table 1
U Upper bound of decision variable See Domain in Table 1

rmax Maximum visibility radius of fireflies (U − L) × 0.05
Additional parameters used by CFA:

lb Initial minimum step size (to be adaptively tuned) (U − L) × 10−6

ub Initial maximum step size (to be adaptively tuned) (U − L) × 10−2

t1
Number of evolution iterations for activating adaptive local search

(to be adaptively tuned) 20

t2
Number of non-improving iterations for activating multi-start search

(to be adaptively tuned) 50

δ Ratio of swarm fireflies to be rebuilt 0.3
h1 FDC single-modal threshold 0.5
h2 FDC multi-modal threshold 0.4
λ Scaling factor for performing responsive strategies 0.5

Appl. Sci. 2020, 10, 8961 10 of 25

4.2. Analysis of CFA Strategies

To understand the influence on performance of using various CFA strategies, we conduct
experiments on the benchmark functions with several CFA variants as in the following subsections.

4.2.1. Selection Strategy for Multiple Guiding Solutions

In contrast to GSO and FA, the CFA selects multiple guiding solutions for performing the firefly
movement. The firefly can circumvent the false peaks by relaxing the limitation that constrains the
firefly to move toward the single best solution within neighborhood. To investigate the influence on
performance of using various selection strategies for guiding solutions, we compare the variants of
the CFA that employs the roulette-wheel selection, the tournament selection, and the rank selection,
respectively. The comparative performance of the CFA variants is listed in Table 3. It is seen that for the
test functions with fewer than 10 variables and the relatively simple functions (Sphere and Zakharov),
all of the CFA variants work well and the mean best value obtained is very near the optimal value.
For the harder and larger functions (Rosenbrock, Rastrigin, and Griewank with 10 or more variables),
the CFA with the rank selection strategy finds a more effective solution for most of the functions than
the CFA with the other two selection strategies. The rank selection outperforms the other selection
strategies in tackling harder problems because it eliminates the fitness-scaling problem by working in
the rank-value space instead of in the function-value space such that the firefly will not be severely
misled by false but higher peaks.

Table 3. The mean best function value and the standard deviation obtained by using various
selection strategies.

Functions
Roulette-Wheel Selection Tournament Selection Rank Selection

Mean Std Mean Std Mean Std

Easom (2) −1.0 0.0 −1.0 0.0 −1.0 0.0
Shubert (2) −186.726 0.011381 −186.723 0.010061 −186.723 0.016331

Rosenbrock (2) 0.0 0.0 0.0 0.0 0.0 0.0
Zakharov (2) 0.0 0.0 0.0 0.0 0.0 0.0
De Jong (3) 0.0 0.0 0.0 0.0 0.0 0.0
Shekel (4, 5) −8.74128 2.436384 −8.64565 2.5462 −8.09613 3.003044
Shekel (4, 7) −9.91291 1.345608 −10.1835 1.11003 −10.2611 0.440954
Shekel (4, 10) −10.532 0.013263 −10.511 0.130888 −10.3554 0.966638
Sphere (10) 0.0 0.0 0.0 0.0 0.0 0.0

Rosenbrock (10) 0.000052 0.000031 0.000206 0.000982 0.002511 0.009392
Rastrigin (10) 0.851670 0.878212 0.847894 0.930433 0.646338 0.800856
Griewank (10) 0.023954 0.015559 0.018670 0.010681 0.016450 0.009914
Zakharov (10) 0.0 0.0 0.0 0.0 0.0 0.0

Sphere (20) 0.0 0.0 0.0 0.0 0.0 0.0
Rosenbrock (20) 0.800503 1.594902 0.953237 1.679062 0.267050 0.994099

Rastrigin (20) 3.052760 1.833682 2.607486 1.544556 2.466102 1.765681
Griewank (20) 0.013792 0.020267 0.011079 0.010911 0.007213 0.012479
Zakharov (20) 0.0 0.0 0.0 0.0 0.0 0.0

Sphere (30) 0.0 0.0 0.0 0.0 0.0 0.0
Rosenbrock (30) 5.924423 3.057484 2.962683 2.773249 0.801094 1.598004

Rastrigin (30) 4.204611 2.066075 4.973816 1.826780 4.680690 2.632701
Griewank (30) 0.009349 0.012921 0.008202 0.012808 0.003364 0.007581
Zakharov (30) 0.000005 0.000005 0.0 0.0 0.0 0.0

4.2.2. Adaptive Strategy for Local Search

Local search is a rudimentary component contained in most of the modern metaheuristic algorithms.
The local search procedure exploits the regional function profiles and makes the master metaheuristic
algorithm more effective than the original form which does not embed this procedure. However,
the local search procedure can be computationally expensive if it is performed within each iteration of

Appl. Sci. 2020, 10, 8961 11 of 25

the master metaheuristic algorithm. As previously noted, the CFA applies the adaptive local search
strategy which dynamically varies the frequency of the local search execution according to the result
of the landscape analysis. Table 4 tabulates the mean best function value and the standard deviation
obtained by CFA with or without adaptive local search. We observe that for all the benchmark test
functions the CFA with adaptive local search obtains better or equivalent mean function value than its
counterpart without adaptive local search.

Table 4. The mean best function value and the standard deviation obtained by CFA with or without
adaptive local search.

Functions
No Adaptive Local Search With Adaptive Local Search

Mean Std Mean Std

Easom (2) −0.99997 0.000020 −1.0 0.0
Shubert (2) −185.779 0.963969 −186.723 0.016331

Rosenbrock (2) 0.0 0.0 0.0 0.0
Zakharov (2) 0.0 0.0 0.0 0.0
De Jong (3) 0.0 0.0 0.0 0.0
Shekel (4, 5) −6.50369 2.613879 −8.09613 3.003044
Shekel (4, 7) −7.40191 1.802712 −10.2611 0.440954

Shekel (4, 10) −7.80353 1.033856 −10.3554 0.966638
Sphere (10) 0.0 0.0 0.0 0.0

Rosenbrock (10) 0.797320 1.594630 0.002511 0.009392
Rastrigin (10) 0.734548 0.827677 0.646338 0.800856
Griewank (10) 0.015448 0.011793 0.016450 0.009914
Zakharov (10) 0.0 0.0 0.0 0.0

Sphere (20) 0.0 0.0 0.0 0.0
Rosenbrock (20) 0.797828 1.594400 0.267050 0.994099

Rastrigin (20) 2.590780 1.391706 2.466102 1.765681
Griewank (20) 0.012054 0.013121 0.007213 0.012479
Zakharov (20) 0.0 0.0 0.0 0.0

Sphere (30) 0.0 0.0 0.0 0.0
Rosenbrock (30) 0.801375 1.599876 0.801094 1.598004

Rastrigin (30) 4.704743 1.842029 4.680690 2.632701
Griewank (30) 0.005663 0.007891 0.003364 0.007581
Zakharov (30) 0.0 0.0 0.0 0.0

4.2.3. Multi-Start Strategy for Swarm Rebuilding

Multi-start is a diversification strategy which terminates an ineffective trajectory search and
reinitiates a new one from an under-explored region. Our CFA applies the adaptive multi-start strategy
which monitors the performance of the incumbent firefly swarm. If the program stops improving
the performance for a threshold number of consecutive iterations, part of the swarm is rebuilt by
positioning some fireflies on diversified locations using the path-relinking technique. The performance
stagnation threshold is made adaptive according to the result of the landscape analysis such that the
frequency of the multi-start activation depends on the regional function profiles under exploration.
It can be seen from Table 5 that the multi-start strategy effectively improves the mean best function
value and the standard deviation obtained by CFA.

4.2.4. Responsive Strategies Based on Landscape Analysis

As noted in Section 3.5, the responsive strategies employed by the CFA are made adaptive based
on the analysis of function landscape. The landscape analysis makes distinctions of two classic function
forms: single-modal and multi-modal. The responsive strategies then vary the movement step size and
the frequency of the local search and the multi-start activations to make the CFA search more effective.
Table 6 lists the comparative performance of the CFA with or without performing the landscape analysis.
It is noted that the version of the CFA without adaptive landscape analysis still embeds the local

Appl. Sci. 2020, 10, 8961 12 of 25

search and the multi-start procedures as its rudimentary components, which, however, are executed
with fixed parameter values. From the tabulated result, we conclude that the landscape analysis can
proliferate the performance gains possibly obtained by the local search and the multi-start strategies.

Table 5. The mean best function value and the standard deviation obtained by CFA with or without
multi-start strategy.

Functions
No Multi-Start Rebuilding With Multi-Start Rebuilding

Mean Std Mean Std

Easom (2) −1.0 0.0 −1.0 0.0
Shubert (2) −186.03 0.708244 −186.723 0.016331

Rosenbrock (2) 0.0 0.0 0.0 0.0
Zakharov (2) 0.0 0.0 0.0 0.0
De Jong (3) 0.0 0.0 0.0 0.0
Shekel (4, 5) −5.56783 3.517801 −8.09613 3.003044
Shekel (4, 7) −9.12732 2.851160 −10.2611 0.440954

Shekel (4, 10) −7.65202 3.724529 −10.3554 0.966638
Sphere (10) 0.0 0.0 0.0 0.0

Rosenbrock (10) 0.000006 0.000005 0.002511 0.009392
Rastrigin (10) 1.790926 1.294722 0.646338 0.800856
Griewank (10) 0.018083 0.015917 0.01645 0.009914
Zakharov (10) 0.0 0.0 0.0 0.0

Sphere (20) 0.0 0.0 0.0 0.0
Rosenbrock (20) 0.931281 1.685579 0.267050 0.994099
Rastrigin (20) 3.349695 1.807129 2.466102 1.765681
Griewank(20) 0.008904 0.011122 0.007213 0.012479
Zakharov (20) 0.0 0.0 0.0 0.0

Sphere (30) 0.0 0.0 0.0 0.0
Rosenbrock (30) 1.205757 1.838271 0.801094 1.598004
Rastrigin (30) 4.974795 1.973266 4.680690 2.632701
Griewank (30) 0.005735 0.011983 0.003364 0.007581
Zakharov (30) 0.000001 0.000004 0.0 0.0

4.2.5. Worst-Case Analysis

As the proposed CFA is a stochastic optimization algorithm, every single execution of the program
may produce a different solution. It thus becomes very important to measure the solution variation of
the worst case obtained by the CFA. We conduct the worst-case analysis on the three most challenging
functions, namely Rosenbrock (30), Rastrigin (30), and Griewank (30) as follows. One thousand
independent runs of the CFA program are performed. We record the worst function value (fitness) that
could be obtained by allowing different number of repetitive runs in the experiment. It is seen from
Figure 2 that the Rosenbrock (30) fitness value of less than 5 can be obtained with 99.7% confidence
because three out of the one thousand runs report a fitness value greater than 5. It also indicates
the worst fitness value we could obtain is no more than 5 if we can run the CFA program at least
three times. Actually, there are two major components with the fitness distribution. One is close to
4 (a local optimum) with about 20% of the distribution, the other is near zero (the global optimum)
with about 79% confidence. The worst-case analysis with Rastrigin (30) is illustrated in Figure 3.
We observe a Gaussian-like distribution and the major component falls in the fitness value between
0 and 12. The Gaussian-like distribution provides a reliable guarantee that the mean performance
value can be obtained with high confidence. Figure 4 shows the worst-case analysis for Griewank
(30). The distribution has a long tail, and the major component concentrates at the high quality part.
This situation manifests good properties that there is only one major outcome which is near the global
optimum, and that a near-optimal solution can be obtained with a few runs in the worst case.

Appl. Sci. 2020, 10, 8961 13 of 25

Table 6. The mean best function value and the standard deviation obtained by CFA with or without
landscape analysis.

Functions
No Adaptive Landscape Analysis With Adaptive Landscape Analysis

Mean Std Mean Std

Easom (2) −0.99997 0.000020 −1.0 0.0
Shubert (2) −185.779 0.963969 −186.723 0.016331

Rosenbrock (2) 0.0 0.0 0.0 0.0
Zakharov (2) 0.0 0.0 0.0 0.0
De Jong (3) 0.0 0.0 0.0 0.0
Shekel (4, 5) −6.50369 2.613879 −8.09613 3.003044
Shekel (4, 7) −7.40191 1.802712 −10.2611 0.440954

Shekel (4, 10) −7.80353 1.033856 −10.3554 0.966638
Sphere (10) 0.0 0.0 0.0 0.0

Rosenbrock (10) 0.797320 1.594630 0.002511 0.009392
Rastrigin (10) 0.734548 0.827677 0.646338 0.800856
Griewank (10) 0.015448 0.011793 0.016450 0.009914
Zakharov (10) 0.0 0.0 0.0 0.0

Sphere (20) 0.0 0.0 0.0 0.0
Rosenbrock (20) 0.797828 1.594400 0.267050 0.994099
Rastrigin (20) 2.590780 1.391706 2.466102 1.765681
Griewank (20) 0.012054 0.013121 0.007213 0.012479
Zakharov (20) 0.0 0.0 0.0 0.0

Sphere (30) 0.0 0.0 0.0 0.0
Rosenbrock (30) 0.801375 1.599876 0.801094 1.598004
Rastrigin (30) 4.704743 1.842029 4.680690 2.632701
Griewank (30) 0.005663 0.007891 0.003364 0.007581
Zakharov (30) 0.0 0.0 0.0 0.0

Appl. Sci. 2020, 10, 8961 13 of 24

Griewank (10) 0.015448 0.011793 0.016450 0.009914

Zakharov (10) 0.0 0.0 0.0 0.0

Sphere (20) 0.0 0.0 0.0 0.0

Rosenbrock (20) 0.797828 1.594400 0.267050 0.994099

Rastrigin (20) 2.590780 1.391706 2.466102 1.765681

Griewank (20) 0.012054 0.013121 0.007213 0.012479

Zakharov (20) 0.0 0.0 0.0 0.0

Sphere (30) 0.0 0.0 0.0 0.0

Rosenbrock (30) 0.801375 1.599876 0.801094 1.598004

Rastrigin (30) 4.704743 1.842029 4.680690 2.632701

Griewank (30) 0.005663 0.007891 0.003364 0.007581

Zakharov (30) 0.0 0.0 0.0 0.0

4.2.5. Worst‐Case Analysis

As the proposed CFA is a stochastic optimization algorithm, every single execution of the

program may produce a different solution. It thus becomes very important to measure the solution

variation of the worst case obtained by the CFA. We conduct the worst‐case analysis on the three

most challenging functions, namely Rosenbrock (30), Rastrigin (30), and Griewank (30) as follows.

One thousand independent runs of the CFA program are performed. We record the worst function

value (fitness) that could be obtained by allowing different number of repetitive runs in the

experiment. It is seen from Figure 2 that the Rosenbrock (30) fitness value of less than 5 can be

obtained with 99.7% confidence because three out of the one thousand runs report a fitness value

greater than 5. It also indicates the worst fitness value we could obtain is no more than 5 if we can

run the CFA program at least three times. Actually, there are two major components with the fitness

distribution. One is close to 4 (a local optimum) with about 20% of the distribution, the other is near

zero (the global optimum) with about 79% confidence. The worst‐case analysis with Rastrigin (30) is

illustrated in Figure 3. We observe a Gaussian‐like distribution and the major component falls in the

fitness value between 0 and 12. The Gaussian‐like distribution provides a reliable guarantee that the

mean performance value can be obtained with high confidence. Figure 4 shows the worst‐case

analysis for Griewank (30). The distribution has a long tail, and the major component concentrates at

the high quality part. This situation manifests good properties that there is only one major outcome

which is near the global optimum, and that a near‐optimal solution can be obtained with a few runs

in the worst case.

(a) (b)

Figure 2. Worst‐case analysis with the Rosenbrock (30) function. (a) The worst fitness obtained by the

CFA program as the number of repetitive runs increases. (b) The number of program runs with

which each performance level is reached.

Figure 2. Worst-case analysis with the Rosenbrock (30) function. (a) The worst fitness obtained by the
CFA program as the number of repetitive runs increases. (b) The number of program runs with which
each performance level is reached.

Appl. Sci. 2020, 10, 8961 14 of 25
Appl. Sci. 2020, 10, 8961 14 of 24

(a) (b)

Figure 3. Worst‐case analysis with the Rastrigin (30) function. (a) The worst fitness obtained by the

CFA program as the number of repetitive runs increases. (b) The number of program runs with

which each performance level is reached.

(a) (b)

Figure 4. Worst‐case analysis with the Griewank (30) function. (a) The worst fitness obtained by the

CFA program as the number of repetitive runs increases. (b) The number of program runs with

which each performance level is reached.

4.3. Performance Evaluation

In this section, the performance of the CFA is evaluated in three‐fold. First, the CFA is

compared against its counterparts, the GSO and the FA. Secondly, the CFA is compared to other

kinds of metaheuristics. Thirdly, the performance of CFA is further justified on the CEC 2005

dataset. For the first two experiments, all compared algorithms were executed 30 times for each test

function. For each run, the program can perform 160,000 FEs. However, for the third experiment, the

evaluation criteria in the original paper are respected where the competing method is executed in 25

independent runs and in each run the method is evaluated at different numbers of consumed FEs.

To compare the performance between two competing algorithms, we employ the performance index

defined by Yin et al. [6] as follows. Given two competing algorithms, p and q, the performance merit

of p against q on a test function is defined by the formula,

Merit(p, q) = (fp − f* +)/(fq − f* +) (11)

where is a small constant equal to 5 × 10−7, fp and fq are the mean best function values obtained by

the competing algorithms p and q, and f* is the global minimum of the test function. As all the test

Figure 3. Worst-case analysis with the Rastrigin (30) function. (a) The worst fitness obtained by the
CFA program as the number of repetitive runs increases. (b) The number of program runs with which
each performance level is reached.

Appl. Sci. 2020, 10, 8961 14 of 24

(a) (b)

Figure 3. Worst‐case analysis with the Rastrigin (30) function. (a) The worst fitness obtained by the

CFA program as the number of repetitive runs increases. (b) The number of program runs with

which each performance level is reached.

(a) (b)

Figure 4. Worst‐case analysis with the Griewank (30) function. (a) The worst fitness obtained by the

CFA program as the number of repetitive runs increases. (b) The number of program runs with

which each performance level is reached.

4.3. Performance Evaluation

In this section, the performance of the CFA is evaluated in three‐fold. First, the CFA is

compared against its counterparts, the GSO and the FA. Secondly, the CFA is compared to other

kinds of metaheuristics. Thirdly, the performance of CFA is further justified on the CEC 2005

dataset. For the first two experiments, all compared algorithms were executed 30 times for each test

function. For each run, the program can perform 160,000 FEs. However, for the third experiment, the

evaluation criteria in the original paper are respected where the competing method is executed in 25

independent runs and in each run the method is evaluated at different numbers of consumed FEs.

To compare the performance between two competing algorithms, we employ the performance index

defined by Yin et al. [6] as follows. Given two competing algorithms, p and q, the performance merit

of p against q on a test function is defined by the formula,

Merit(p, q) = (fp − f* +)/(fq − f* +) (11)

where is a small constant equal to 5 × 10−7, fp and fq are the mean best function values obtained by

the competing algorithms p and q, and f* is the global minimum of the test function. As all the test

Figure 4. Worst-case analysis with the Griewank (30) function. (a) The worst fitness obtained by the
CFA program as the number of repetitive runs increases. (b) The number of program runs with which
each performance level is reached.

4.3. Performance Evaluation

In this section, the performance of the CFA is evaluated in three-fold. First, the CFA is compared
against its counterparts, the GSO and the FA. Secondly, the CFA is compared to other kinds of
metaheuristics. Thirdly, the performance of CFA is further justified on the CEC 2005 dataset. For the
first two experiments, all compared algorithms were executed 30 times for each test function. For each
run, the program can perform 160,000 FEs. However, for the third experiment, the evaluation criteria in
the original paper are respected where the competing method is executed in 25 independent runs and in
each run the method is evaluated at different numbers of consumed FEs. To compare the performance
between two competing algorithms, we employ the performance index defined by Yin et al. [6] as
follows. Given two competing algorithms, p and q, the performance merit of p against q on a test
function is defined by the formula,

Merit(p, q) = (fp − f* + ε)/(fq − f* + ε) (11)

Appl. Sci. 2020, 10, 8961 15 of 25

where ε is a small constant equal to 5 × 10−7, fp and fq are the mean best function values obtained by
the competing algorithms p and q, and f* is the global minimum of the test function. As all the test
functions involve minimization, we realize p outperforms q if Merit(p, q) < 1.0, p is inferior to q if
Merit(p, q) > 1.0, and p and q perform equally well if Merit(p, q) = 1.0.

4.3.1. Comparison with CFA Counterparts

Our CFA enhances the GSO and the FA by incorporating the responsive strategies from the
adaptive memory programming domain. Thus, it is important to validate our idea by comparing the
performance of the CFA against its counterparts, the GSO and the FA. The results shown in the second
to the fifth columns of Table 7 are the mean best function values obtained by the competing algorithms,
and those in the last three columns correspond to the relative merit values. We observe that for the
test functions with fewer than ten variables, the CFA has a unit merit or a merit value less than one
with one order of magnitude, indicating that all the competing algorithms perform nearly equally well.
For the test functions with ten or more variables, the merit value of the CFA in relation to the GSO and
the FA becomes significantly less, implying a superior performance in favor of the CFA. The product of
the merit values gives an overview of the comparative performance on all test function. It is seen at
the bottom of Table 7 that the CFA has a merit product of 7.32 × 10−43 and 9.51 × 10−32 in relation to
the GSO and the FA, respectively. We further compare the CFA to the better one of the best function
values obtained by the GSO and the FA, giving a merit product of 8.99 × 10−29 as shown in the last
column of Table 7. The result suggests that the CFA significantly outperforms its counterparts over
the benchmark dataset, and that the CFA also beats a hybrid which takes the better one of the best
function values obtained by the two counterparts.

Table 7. The performance comparison between the CFA and its counterparts.

Functions (a) GSO (b) FA (c) Min (a, b) (d) CFA Merit (d, a) Merit (d, b) Merit (d, c)

Easom (2) −0.999999 −0.999999 −0.999999 −1.0 1.0 1.0 1.0
Shubert (2) −184.059055 −91.464488 −184.059055 −186.723 9.86 × 10−1 4.90 × 10−1 9.86 × 10−1

Rosenbrock (2) 0.000007 0.0 0.0 0.0 6.50 × 10−2 1.0 1.0
Zakharov (2) 0.0 0.0 0.0 0.0 1.0 1.0 1.0
De Jong (3) 0.0 0.0 0.0 0.0 1.0 1.0 1.0
Shekel (4, 5) −6.883340 −3.339854 −6.883340 −8.09613 8.50 × 10−1 4.13 × 10−1 8.50 × 10−1

Shekel (4, 7) −6.624701 −2.593236 −6.624701 −10.2611 6.46 × 10−1 2.53 × 10−1 6.46 × 10−1

Shekel (4, 10) −7.770920 −2.211454 −7.770920 −10.3554 7.50 × 10−1 2.14 × 10−1 7.50 × 10−1

Sphere (10) 0.021677 0.000045 0.000045 0.0 2.31 × 10−5 1.11 × 10−2 1.11 × 10−2

Rosenbrock (10) 1.658934 1.070858 1.070858 0.002511 1.51 × 10−3 2.35 × 10−3 2.35 × 10−3

Rastrigin (10) 2.499270 11.099298 2.499270 0.646338 2.59 × 10−1 5.82 × 10−2 2.59 × 10−1

Griewank (10) 0.154192 17.666979 0.154192 0.01645 1.07 × 10−1 9.31 × 10−4 1.07 × 10−1

Zakharov (10) 0.000330 0.000115 0.000115 0.0 1.51 × 10−3 4.31 × 10−3 4.31 × 10−3

Sphere (20) 0.085764 0.000264 0.000264 0.0 5.83 × 10−6 1.89 × 10−3 1.89 × 10−3

Rosenbrock (20) 8.473378 21.006502 8.473378 0.26705 3.15 × 10−2 1.27 × 10−2 3.15 × 10−2

Rastrigin (20) 5.550878 32.150683 5.550878 2.466102 4.44 × 10−1 7.67 × 10−2 4.44 × 10−1

Griewank (20) 0.553463 0.600160 0.553463 0.007213 1.30 × 10−2 1.20 × 10−2 1.30 × 10−2

Zakharov (20) 0.002574 0.001387 0.001387 0.0 1.94 × 10−4 3.60 × 10−4 3.60 × 10−4

Sphere (30) 0.151057 0.000761 0.000761 0.0 3.31 × 10−6 6.57 × 10−4 6.57 × 10−4

Rosenbrock (30) 23.373028 31.808803 23.373028 0.801094 3.43 × 10−2 2.52 × 10−2 3.43 × 10−2

Rastrigin (30) 9.135285 59.807848 9.135285 4.68069 5.12 × 10−1 7.83 × 10−2 5.12 × 10−1

Griewank (30) 1.053057 0.010732 0.010732 0.003364 3.19 × 10−3 3.13 × 10−1 3.13 × 10−1

Zakharov (30) 2.774662 0.008677 0.008677 0.000001 4.98 × 10−7 1.59 × 10−4 1.59 × 10−4

Merit Product 7.32 × 10−43 9.51 × 10−32 8.99 × 10−29

We further verify the online performance advantage of our CFA against its counterparts by a
statistical test suggested in Taillard [28]. As the best objective value produced by a metaheuristic
approach is non-deterministic, we model the result obtained from multiple runs of method A
(and method B) as a random variable Xa (Xb) and we want to testify the confidence regarding that Xa is
less than Xb. A classic statistical test based on the central limit theorem for comparing two proportions
is to approximate the mean Xa − Xb as a normal distribution if the collected number of samples

Appl. Sci. 2020, 10, 8961 16 of 25

is sufficiently large. Therefore, 30 independent runs of each competing algorithm were conducted.
For each run, the online best function value obtained at a particular FE, say e, is a sample for Xa(e),
the random variable for the result obtained by method A at FE e. We tally the samples at every instance
of FEs during the whole duration of executing the algorithm. By examining the mean curve of Xa(e)
and Xb(e) as e increases during the evolution, we can testify if method A well outperforms method B.
For clear illustration, the boundary and mean curves over the 30 runs are plotted. Figure 5a shows the
online performance analysis with 95% confidence interval for the Rosenbrock (30) function. It is seen
that the 95% confidence interval of the best function value obtained by the three competing algorithms
(GSO, FA, and CFA) converges with various speeds. Our CFA converges at a much faster speed and
reach towards a better function value than its two counterparts. The FA is the second-best performer
followed by the GSO. To investigate the detailed performance during the second half duration of
the execution, we enlarge the plot for this period as shown in Figure 5b. It can be seen that the CFA
significantly outperforms the other two algorithms with 95% confidence level during the second half
execution duration. We also found that the GSO performs better than the FA after 80,000 FEs, although
the GSO may not beat the FA at the early stage of the execution as previously noted. The online
performance comparison with 95% confidence level for the Rastrigin (30) function is shown in Figure 6.
We observe that during the whole execution period the CFA significantly outperforms the GSO and
the FA. The FA performs better than the GSO when the allowed number of consumed FEs is less than
20,000, but the FA is far surpassed by the GSO if more FEs are allowed. Figure 7 shows the online
performance variation with 95% confidence level for the Griewank (30) function. Again, the CFA is
the best performer among the three algorithms throughout the whole execution duration. However,
we see a phenomenon differing from those for the two previous test functions with the GSO and the FA.
The GSO and the FA performs about equally well before consuming 50,000 FEs, although the former
is a more stable performer because it has a shorter confidence interval. However, after this critical
execution period, the FA becomes very effective both in the convergence speed and the function value.
As shown in Figure 7b, the FA significantly surpasses the GSO and reaches a comparative performance
with the CFA.

4.3.2. Comparison against Other Metaheuristics

We now compare the CFA against other metaheuristics inspired by different nature metaphors,
the PSO, the GA, and the cyber swarm algorithm (CSA). The compared PSO is the constriction
factor version proposed by Clerc and Kennedy [29] which has been shown to be one of the best PSO
implementations. The implemented GA employs real-value chromosome coding, tournament selection
(with k = 2, i.e., two competitors in each instance of selection), arithmetic crossover, and Gaussian
mutation. The GA is generational without population gap, i.e., the whole parent population is replaced
by the offspring population. The implementation and parameter setting of CSA follow the original
paper [6]. All the compared algorithms have the same population size of 60 individuals, and are
executed until consuming 160,000 FEs. Table 8 tabulates the mean best function value obtained by the
compared algorithms over 30 runs and the merit value among the competitors. For the comparison of
the CFA against the PSO and the GA, we observe that the CFA well surpasses the other two algorithms
on most of the benchmark functions. The merit product in relation to the PSO and the GA is 8.80 × 10−21

and 2.11 × 10−36, respectively. When we compare the CFA to the CSA, the merit product is 1.94 × 1018.
The result seems to suggest that the CSA performs better on the dataset. However, if we take a closer
look, the CSA is very effective in solving small functions with less than ten variables, thus CSA gives
significantly greater merits for these functions. For the test functions with ten or more variables,
the merit value turns to be in favor to the CFA, disclosing that the CFA is more effective than CSA
in tackling larger-sized functions. It is worth noting that both CFA and the CSA take advantage of
the features contained in the AMP domain, and the two algorithms extremely outperform the other
compared algorithms in our experiments. This phenomenon discloses the potential of future research
in the direction of marrying the AMP with other types of metaheuristics.

Appl. Sci. 2020, 10, 8961 17 of 25

Appl. Sci. 2020, 10, 8961 16 of 24

samples is sufficiently large. Therefore, 30 independent runs of each competing algorithm were

conducted. For each run, the online best function value obtained at a particular FE, say e, is a sample

for Xa(e), the random variable for the result obtained by method A at FE e. We tally the samples at

every instance of FEs during the whole duration of executing the algorithm. By examining the mean

curve of Xa(e) and Xb(e) as e increases during the evolution, we can testify if method A well

outperforms method B. For clear illustration, the boundary and mean curves over the 30 runs are

plotted. Figure 5a shows the online performance analysis with 95% confidence interval for the

Rosenbrock (30) function. It is seen that the 95% confidence interval of the best function value

obtained by the three competing algorithms (GSO, FA, and CFA) converges with various speeds.

Our CFA converges at a much faster speed and reach towards a better function value than its two

counterparts. The FA is the second‐best performer followed by the GSO. To investigate the detailed

performance during the second half duration of the execution, we enlarge the plot for this period as

shown in Figure 5b. It can be seen that the CFA significantly outperforms the other two algorithms

with 95% confidence level during the second half execution duration. We also found that the GSO

performs better than the FA after 80,000 FEs, although the GSO may not beat the FA at the early

stage of the execution as previously noted. The online performance comparison with 95% confidence

level for the Rastrigin (30) function is shown in Figure 6. We observe that during the whole

execution period the CFA significantly outperforms the GSO and the FA. The FA performs better

than the GSO when the allowed number of consumed FEs is less than 20,000, but the FA is far

surpassed by the GSO if more FEs are allowed. Figure 7 shows the online performance variation

with 95% confidence level for the Griewank (30) function. Again, the CFA is the best performer

among the three algorithms throughout the whole execution duration. However, we see a

phenomenon differing from those for the two previous test functions with the GSO and the FA. The

GSO and the FA performs about equally well before consuming 50,000 FEs, although the former is a

more stable performer because it has a shorter confidence interval. However, after this critical

execution period, the FA becomes very effective both in the convergence speed and the function

value. As shown in Figure 7b, the FA significantly surpasses the GSO and reaches a comparative

performance with the CFA.

(a)

Appl. Sci. 2020, 10, 8961 17 of 24

(b)

Figure 5. Online performance analysis with 95% confidence interval for the Rosenbrock (30) function.

(a) The convergence of the best function value during the whole duration of the execution. (b) The

convergence of the best function value during the second half duration of the execution.

(a)

Figure 5. Online performance analysis with 95% confidence interval for the Rosenbrock (30) function.
(a) The convergence of the best function value during the whole duration of the execution. (b) The
convergence of the best function value during the second half duration of the execution.

Appl. Sci. 2020, 10, 8961 18 of 25

Appl. Sci. 2020, 10, 8961 17 of 24

(b)

Figure 5. Online performance analysis with 95% confidence interval for the Rosenbrock (30) function.

(a) The convergence of the best function value during the whole duration of the execution. (b) The

convergence of the best function value during the second half duration of the execution.

(a)

Appl. Sci. 2020, 10, 8961 18 of 24

(b)

Figure 6. Online performance analysis with 95% confidence interval for the Rastrigin (30) function.

(a) The convergence of the best function value during the whole duration of the execution. (b) The

convergence of the best function value during the second half duration of the execution.

(a)

Figure 6. Online performance analysis with 95% confidence interval for the Rastrigin (30) function.
(a) The convergence of the best function value during the whole duration of the execution. (b) The
convergence of the best function value during the second half duration of the execution.

Appl. Sci. 2020, 10, 8961 19 of 25

Appl. Sci. 2020, 10, 8961 18 of 24

(b)

Figure 6. Online performance analysis with 95% confidence interval for the Rastrigin (30) function.

(a) The convergence of the best function value during the whole duration of the execution. (b) The

convergence of the best function value during the second half duration of the execution.

(a)

Appl. Sci. 2020, 10, 8961 19 of 24

(b)

Figure 7. Online performance analysis with 95% confidence interval for the Griewank (30) function.

(a) The convergence of the best function value during the whole duration of the execution. (b) The

convergence of the best function value during the second half duration of the execution.

4.3.2. Comparison against Other Metaheuristics

We now compare the CFA against other metaheuristics inspired by different nature metaphors,

the PSO, the GA, and the cyber swarm algorithm (CSA). The compared PSO is the constriction factor

version proposed by Clerc and Kennedy [29] which has been shown to be one of the best PSO

implementations. The implemented GA employs real‐value chromosome coding, tournament

selection (with k = 2, i.e., two competitors in each instance of selection), arithmetic crossover, and

Gaussian mutation. The GA is generational without population gap, i.e., the whole parent

population is replaced by the offspring population. The implementation and parameter setting of

CSA follow the original paper [6]. All the compared algorithms have the same population size of 60

individuals, and are executed until consuming 160,000 FEs. Table 8 tabulates the mean best function

value obtained by the compared algorithms over 30 runs and the merit value among the

competitors. For the comparison of the CFA against the PSO and the GA, we observe that the CFA

well surpasses the other two algorithms on most of the benchmark functions. The merit product in

relation to the PSO and the GA is 8.80 × 10−21 and 2.11 × 10−36, respectively. When we compare the

CFA to the CSA, the merit product is 1.94 × 1018. The result seems to suggest that the CSA performs

better on the dataset. However, if we take a closer look, the CSA is very effective in solving small

functions with less than ten variables, thus CSA gives significantly greater merits for these functions.

For the test functions with ten or more variables, the merit value turns to be in favor to the CFA,

disclosing that the CFA is more effective than CSA in tackling larger‐sized functions. It is worth

noting that both CFA and the CSA take advantage of the features contained in the AMP domain, and

the two algorithms extremely outperform the other compared algorithms in our experiments. This

phenomenon discloses the potential of future research in the direction of marrying the AMP with

other types of metaheuristics.

Figure 7. Online performance analysis with 95% confidence interval for the Griewank (30) function.
(a) The convergence of the best function value during the whole duration of the execution. (b) The
convergence of the best function value during the second half duration of the execution.

Appl. Sci. 2020, 10, 8961 20 of 25

Table 8. The performance comparison between the CFA and other metaheuristics.

Functions (a) PSO (b) GA (c) CSA (d) CFA Merit (d, a) Merit (d, b) Merit (d, c)

Easom (2) −1.0 −1.0 −1.0 −1.0 1.0 1.0 1.0
Shubert (2) −186.7309 −186.7309 −186.7309 −186.7232 1.54 × 104 1.54 × 104 1.54 × 104

Rosenbrock (2) 0.0 0.1015 0.0 0.0 1.0 4.93 × 10−6 1.0
Zakharov (2) 0.0 0.0 0.0 0.0 1.0 1.0 1.0
De Jong (3) 0.0 0.0 0.0 0.0 1.0 1.0 1.0
Shekel (4, 5) −6.6329 −10.0535 −10.1532 −8.0961 5.84 × 10−1 2.06 × 101 4.11 × 106

Shekel (4, 7) −8.0176 −10.0637 −10.4029 −10.2611 5.94 × 10−2 4.18 × 10−1 2.84 × 105

Shekel (4, 10) −7.4195 −10.0750 −10.5364 −10.3554 5.81 × 10−2 3.92 × 10−1 3.62 × 105

Sphere (10) 0.0 0.0009 0.0 0.0 1.0 5.55 × 10−4 1.0
Rosenbrock (10) 0.4727 8.1009 0.1595 0.0025 5.29 × 10−3 3.09 × 10−4 1.57 × 10−2

Rastrigin (10) 6.4672 0.0004 0.7464 0.6463 9.99 × 10−2 1.61 × 103 8.66 × 10−1

Griewank (10) 0.0644 0.0493 0.0474 0.0164 2.55 × 10−1 3.33 × 10−1 3.46 × 10−1

Zakharov (10) 0.0 0.1809 0.0 0.0 1.0 2.76 × 10−6 1.0
Sphere (20) 0.0 0.0069 0.0 0.0 1.0 7.25 × 10−5 1.0

Rosenbrock (20) 0.3992 9.0326 0.4788 0.2671 6.69 × 10−1 2.96 × 10−2 5.58 × 10−1

Rastrigin (20) 18.7052 0.0036 6.8868 2.4661 1.32 × 10−1 6.85 × 102 3.58 × 10−1

Griewank (20) 0.0227 0.0533 0.0128 0.0072 3.17 × 10−1 1.35 × 10−1 5.63 × 10−1

Zakharov (20) 2.683 37.1846 0.0 0.0 1.86 × 10−7 1.34 × 10−8 1.0
Sphere (30) 0.0 0.0226 0.0 0.0 1.0 2.21 × 10−5 1.0

Rosenbrock (30) 9.2089 83.0118 0.3627 0.8011 8.70 × 10−2 9.65 × 10−3 2.21
Rastrigin (30) 33.9281 0.0115 11.9425 4.6807 1.38 × 10−1 4.07 × 102 3.92 × 10−1

Griewank (30) 0.0093 0.0893 0.0052 0.0034 3.66 × 10−1 3.81 × 10−2 6.54 × 10−1

Zakharov (30) 5.4347 136.7129 0.0 0.0 9.20 × 10−8 3.66 × 10−9 1.0

Merit Product 8.80 × 10−21 2.11 × 10−36 1.94 × 1018

To compare the CFA with the state-of-the-art variants of FA, we quote the results (mean objective
value over 30 runs) from the original paper LFA [9], VESSFA [10], WFA [11], CLFA [12], FAtidal [13],
and GDAFA [14]. The best mean objective value for each function obtained by all compared methods
is printed in bold. As can be seen in Table 9, our CFA wins the most times as obtaining the best mean
objective value among all. GDAFA seems to possess better performance as the dimensionality increases.
Both CFA and GDAFA can gain an objective value very close to the optimum, while the other competing
methods may produce an objective value far away from the optimum in some challenging functions.

Table 9. The performance comparison between the CFA and the state-of-the-art variants of FA.

Functions LFA FAtidal VSSFA GDAFA WFA CLFA CFA

Sphere (2) 0.043 0.0 − − − − 0.0
Rosenbrock (2) 1.34 0.0076 − − − − 0.0
Zakharov (2) 0.4950 0.0 − − − − 0.0
Sphere (10) 17.5 0.0 0.0 0.0 0.0690 0.0 0.0

Rosenbrock (10) 3.15 × 104 9.93 − − − − 0.0025
Rastrigin (10) 85.5 7.20 8.6769 0.0 10.6039 11.4284 0.6463
Griewank (10) 0.0069 − 0.0 0.0 0.0075 0.0 0.0164
Zakharov (10) 158.0 0.0 − − − − 0.0

Sphere (30) 14.0818 − 17.0501 1.61 × 10−5 0.2373 0.1942 0.0
Rastrigin (30) 38.3584 − 133.9519 0.0619 42.7987 91.6579 4.6807
Griewank (30) 0.4365 − 0.5380 3.65 × 10−6 0.0123 0.0099 0.0034

4.3.3. Comparison on the CEC 2005 Dataset

To further justify the performance of CFA, we compare CFA with the investigated methods
reported in [26] on 12 CEC 2005 benchmark functions [30]. The IEEE CEC Repository [27] provides
fruitful benchmark datasets for optimization problems with various purposes such as unconstrained,
constrained, and multi-objective optimization. The CEC 2005 dataset is designed for unconstrained
real-parameter optimization which is addressed in this paper. We selected 12 CEC 2005 functions which
are very challenging and have never been solved to optimal by any known methods [26]. We executed

Appl. Sci. 2020, 10, 8961 21 of 25

all compared algorithms with the same evaluation criteria and parameter settings as described in the
original paper [26]. Each algorithm is executed for 25 independent runs on each test function with
n = 10 and 30, respectively. All compared methods are executed by being allowed to consume 1000,
10,000, and 100,000 FEs.

We adopt the GAP performance measure proposed in the original paper [26] and it is defined
as GAP = |f − f*| where f is the function value obtained by an evaluated method and f* is the global
optimum value of the test function. Table 10 shows the mean minimum (Min.) and average (Avg.)
of GAP and Merit of all compared methods over the 12 functions for n = 10. We observe that our
CFA is less exploitative in small size CEC problems than the leading methods such as G-CMA-ES
and L-CMA-ES, both of which are based on the covariance matrix adaptation evolution strategy
(CMA-ES) [31] which updates the covariance of the multivariate distribution to better handle the
dependency between variables. Though the CFA is less competitive in the mean Avg. GAP, it can
deliver a quality Min. out of 25 independent runs. It suggests that the CFA can be executed multiple
times and output the best value from those runs when tackling small size yet complex problems.
This phenomenon is also revealed in the geometric mean of the merits (GMM). The GMM of the Min.
function value is 1.099, 0.995, and 0.878 at 1000, 10,000, and 100,000 FEs, while the GMM of the Avg.
function value gradually deteriorates from 0.963, 1.167 to 1.211 at the same FEs.

Table 10. Min./Avg. GAP and Merit over the CEC dataset with n = 10.

FEs

GAP Merit

1000 10,000 100,000 1000 10,000 100,000

Min./Avg. Min./Avg. Min./Avg. Min./Avg. Min./Avg. Min./Avg.

CFA 572.3/751.2 317.6/554.4 212.4/441.1 1.0/1.0 1.0/1.0 1.0/1.0
CSA 382.0/665.9 291.3/506.6 234.5/432.6 1.498/1.128 1.090/1.094 0.906/1.020
STS 616.1/759.4 348.9/576.6 198.3/413.4 0.929/0.989 0.910/0.961 1.071/1.067

G-CMA-ES 269.7/542.0 260.0/419.4 256.0/265.3 2.122/1.386 1.222/1.322 0.830/1.663
EDA 669.9/1059.1 287.1/335.1 269.4/300.6 0.854/0.709 1.106/1.654 0.788/1.467

BLX-MA 456.7/711.1 315.5/445.1 306.2/430.1 1.253/1.056 1.007/1.246 0.694/1.026
SPC-PNX 621.7/750.3 279.6/391.0 206.0/309.9 0.921/1.001 1.136/1.418 1.031/1.423
BLX-GL50 676.0/716.3 272.8/341.0 257.2/319.0 0.847/1.049 1.164/1.626 0.826/1.383
L-CMA-ES 289.0/825.7 225.9/655.8 202.7/411.1 1.980/0.910 1.406/0.845 1.048/1.073

DE 715.4/914.1 396.7/492.4 228.8/272.0 0.800/0.822 0.801/1.126 0.928/1.622
K-PCX 671.0/968.5 488.0/564.4 257.4/475.6 0.853/0.776 0.651/0.982 0.825/0.927

Co-EVO 672.6/799.0 437.5/623.5 268.3/465.4 0.851/0.940 0.726/0.889 0.792/0.948

Merit Product 2.833/0.663 0.949/5.493 0.238/8.195
Geometric Mean 1.099/0.963 0.995/1.167 0.878/1.211

As for high-dimensional and complex CEC problems with n = 30, the mean Min. and Avg.
of GAP and Merit of all compared methods are tabulated in Table 11. It is seen from the GMM
that our CFA is compared favorably to the other methods in both Min. and Avg. function value
at all FEs check points. The prevailing exploration search conducted by CFA is due to its elements
of AMP-responsive strategies, which are more effective when the problem is more complex and is
presented in higher-dimensional space. The G-CMA-ES is again the best method since it excels in terms
of GAP in most cases as compared to the other competing methods. It is worth further studying the
possibility of including the CMA technique into the CFA to resolve the dependency between variables.

Appl. Sci. 2020, 10, 8961 22 of 25

Table 11. Min./Avg. GAP and Merit over the CEC dataset with n = 30.

FEs

GAP Merit

1000 10,000 100,000 1000 10,000 100,000

Min./Avg. Min./Avg. Min./Avg. Min./Avg. Min./Avg. Min./Avg.

CFA 792.5/1033.1 450.8/778.6 418.7/602.5 1.0/1.0 1.0/1.0 1.0/1.0
CSA 629.2/785.0 454.4/647.8 420.6/578.2 1.260/1.316 0.992/1.202 0.995/1.042
STS 829.3/957.0 614.9/747.3 431.3/540.3 0.956/1.080 0.733/1.042 0.971/1.115

G-CMA-ES 570.3/658.4 414.4/526.8 405.7/493.0 1.390/1.569 1.088/1.478 1.032/1.222
EDA 39,742/63,491 11,951/26,418 653.6/934.7 0.020/0.016 0.038/0.029 0.641/0.645

BLX-MA 792.9/1198.7 443.9/502.4 410.7/457.2 0.999/0.862 1.016/1.550 1.019/1.318
SPC-PNX 29,793/74,050 637.6/850.1 414.8/430.0 0.027/0.014 0.707/0.916 1.009/1.401
BLX-GL50 8545.4/20,008 474.8/545.9 433.0/507.5 0.093/0.052 0.949/1.426 0.967/1.187
L-CMA-ES 790.8/1009.8 447.6/722.6 404.6/617.0 1.002/1.023 1.007/1.077 1.035/0.976

DE 3473.3/14,461 726.0/781.8 558.7/592.0 0.228/0.071 0.621/0.996 0.749/1.018
K-PCX 27,749/108,623 27,719/108,602 866.1/2257.2 0.029/0.010 0.016/0.007 0.483/0.267

Co-EVO 908.5/1025.8 7496/822.0 625.3/734.5 0.872/1.007 0.060/0.947 0.670/0.820

Merit Product 4.7 × 10−7/2.0 × 10−8 1.2 × 10−5/8.0 × 10−4 1.5 × 10−1/4.3 × 10−1

Geometric Mean 0.266/0.195 0.358/0.523 0.846/0.927

Appl. Sci. 2020, 10, 8961 23 of 25

5. Concluding Remarks and Future Research

We have proposed the CFA which is a more effective form of the GSO and the FA in global
optimization. The CFA incorporates several AMP strategies including multiple guiding solutions,
pattern search as local improvement method, solution set rebuilding in a multi-start search template,
and the responsive strategies. The experimental result on benchmark functions for global optimization
has shown that the CFA performs significantly better in terms of both solution quality and robustness
than the GSO, FA, and several state-of-the-art metaheuristic methods as demonstrated in our statistical
analyses and comprehensive experiments. It is worth noting that it is certain a sophisticated method
such as CFA incorporating advanced components will pose higher computational complexity in the
computation iteration than an algorithm which does not. However, as metaheuristic approaches are
computational ones which can stop at any computation iteration and output the best-so-far result.
We conduct a fair performance comparison between two metaheuristic approaches at the same number
of fitness FE instead of using the evolution iterations. All our experiments follow this fashion.

Our findings strengthen the motivations for marrying the approaches selected from each of
the metaheuristic dichotomies, respectively. The CFA template gives general ideas for creating this
sort of effective hybrid metaheuristics. Inspired by the promising result of the CFA, it is worthy of
investigating the possibility of the application of the CFA template to other metaheuristic approaches
with various problem domains for future research.

Author Contributions: Conceptualization, P.-Y.Y.; methodology, P.-Y.Y. and P.-Y.C.; software, P.-Y.C.; validation,
Y.-C.W. and R.-F.D.; writing—original draft preparation, P.-Y.Y.; writing—review and editing, P.-Y.Y., Y.-C.W.
and R.-F.D.; visualization, P.-Y.C.; funding acquisition, P.-Y.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by MOST Taiwan, grant numbers 107-2410-H-260-015-MY3. The APC was
funded by 107-2410-H-260-015-MY3.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Nomenclature

The list of the acronyms referenced in this paper is tabulated as follows.
EA evolutionary algorithm
GSO glowworm swarm optimization
FA firefly algorithm
AMP adaptive memory programming
CSA cyber swarm algorithm
CFA Cyber Firefly Algorithm
GRASP greedy randomized adaptive search procedures
GA genetic algorithm
PSO particle swarm optimization
VNS variable neighborhood search
SS scatter search
SS/PR path relinking
FDC fitness distance correlation
FE function evaluations
CMA-ES covariance matrix adaptation evolution strategy
GMM geometric mean of the merits

Appl. Sci. 2020, 10, 8961 24 of 25

References

1. Yin, P.Y. Towards more effective metaheuristic computing, In Modeling, Analysis, and Applications in Metaheuristic
Computing: Advancements and Trends; IGI-Global Publishing: Hershey, PA, USA, 2012.

2. Talbi, E.G.; Bachelet, V. COSEARCH: A parallel cooperative metaheuristic. J. Math. Model. Algorithms 2006,
5, 5–22. [CrossRef]

3. Shen, Q.; Shi, W.M.; Kong, W. Hybrid particle swarm optimization and tabu search approach for selecting
genes for tumor classification using gene expression data. Comput. Biol. Chem. 2008, 32, 52–59. [CrossRef]
[PubMed]

4. Marinakis, Y.; Marinaki, M.; Doumpos, M.; Matsatsinis, N.F.; Zopounidis, C. A hybrid ACO-GRASP algorithm
for clustering analysis. Ann. Oper. Res. 2011, 188, 343–358. [CrossRef]

5. Fuksz, L.; Pop, P.C. A hybrid genetic algorithm with variable neighborhood search approach to the number
partitioning problem. Lect. Notes Comput. Sci. 2013, 8073, 649–658.

6. Yin, P.Y.; Glover, F.; Laguna, M.; Zhu, J.S. Cyber swarm algorithms: Improving particle swarm optimization
using adaptive memory strategies. Eur. J. Oper. Res. 2010, 201, 377–389. [CrossRef]

7. Krishnanand, K.N.; Ghose, D. Detection of multiple source locations using a glowworm metaphor with
applications to collective robotics. In Proceedings of the IEEE Swarm Intelligence Symposium, Pasadena,
CA, USA, 8–10 June 2005; pp. 84–91.

8. Yang, X.S. Firefly algorithm. Nat. Inspired Metaheuristic Algorithms 2008, 20, 79–90.
9. Yang, X.S. Firefly algorithm, levy flights and global optimization. In Research and Development in Intelligent

Systems XXVI; Springer: London, UK, 2010; pp. 209–218.
10. Yu, S.; Zhu, S.; Ma, Y.; Mao, D. A variable step size firefly algorithm for numerical optimization. Appl. Math.

Comput. 2015, 263, 214–220. [CrossRef]
11. Zhu, Q.G.; Xiao, Y.K.; Chen, W.D.; Ni, C.X.; Chen, Y. Research on the improved mobile robot localization

approach based on firefly algorithm. Chin. J. Sci. Instrum. 2016, 37, 323–329.
12. Kaveh, A.; Javadi, S.M. Chaos-based firefly algorithms for optimization of cyclically large-size braced steel

domes with multiple frequency constraints. Comput. Struct. 2019, 214, 28–39. [CrossRef]
13. Yelghi, A.; Köse, C. A modified firefly algorithm for global minimum optimization. Appl. Soft Comput. 2018,

62, 29–44. [CrossRef]
14. Liu, J.; Mao, Y.; Liu, X.; Li, Y. A dynamic adaptive firefly algorithm with globally orientation. Math. Comput. Simul.

2020, 174, 76–101. [CrossRef]
15. Wang, J.; Song, F.; Yin, A.; Chen, H. Firefly algorithm based on dynamic step change strategy. In Machine

Learning for Cyber Security; Chen, X., Yan, H., Yan, Q., Zhang, X., Eds.; Lecture Notes in Computer Science
12487; Springer: Cham, Switzerland, 2020. [CrossRef]

16. Glover, F. Tabu search and adaptive memory programming—Advances, applications and challenges.
In Interfaces in Computer Science and Operations Research; Kluwer Academic Publishers: London UK, 1996;
pp. 1–75.

17. Glover, F. A template for scatter search and path relinking. Lect. Notes Comput. Sci. 1998, 1363, 13–54.
18. Laguna, M.; Marti, R. Scatter Search: Methodology and Implementation in C; Kluwer Academic Publishers:

London, UK, 2003.
19. Chen, X.S.; Ong, Y.S.; Lim, M.H.; Tan, K.C. A Multi-Facet Survey on Memetic Computation. IEEE Trans. Evol.

Comput. 2011, 15, 591–607. [CrossRef]
20. Feo, T.A.; Resende, M.G.C. Greedy randomized adaptive search procedures. J. Glob. Optim. 1995, 6, 109–133.

[CrossRef]
21. Hooke, R.; Jeeves, T.A. Direct search solution of numerical and statistical problems. J. Assoc. Comput. Mach.

1961, 8, 212–229. [CrossRef]
22. Dolan, E.D.; Lewis, R.M.; Torczon, V.J. On the local convergence of pattern search. Siam J. Optim. 2003,

14, 567–583. [CrossRef]
23. Jones, T.; Forrest, S. Fitness distance correlation as a measure of problem difficulty for genetic algorithms.

In Proceedings of the International Conference on Genetic Algorithms, Morgan Laufman, Santa Fe, NM,
USA, 15–19 July 1995; pp. 184–192.

24. Hedar, A.R.; Fukushima, M. Tabu search directed by direct search methods for nonlinear global optimization.
Eur. J. Oper. Res. 2006, 170, 329–349. [CrossRef]

http://dx.doi.org/10.1007/s10852-005-9029-7
http://dx.doi.org/10.1016/j.compbiolchem.2007.10.001
http://www.ncbi.nlm.nih.gov/pubmed/18093877
http://dx.doi.org/10.1007/s10479-009-0519-2
http://dx.doi.org/10.1016/j.ejor.2009.03.035
http://dx.doi.org/10.1016/j.amc.2015.04.065
http://dx.doi.org/10.1016/j.compstruc.2019.01.006
http://dx.doi.org/10.1016/j.asoc.2017.10.032
http://dx.doi.org/10.1016/j.matcom.2020.02.020
http://dx.doi.org/10.1007/978-3-030-62460-6_31
http://dx.doi.org/10.1109/TEVC.2011.2132725
http://dx.doi.org/10.1007/BF01096763
http://dx.doi.org/10.1145/321062.321069
http://dx.doi.org/10.1137/S1052623400374495
http://dx.doi.org/10.1016/j.ejor.2004.05.033

Appl. Sci. 2020, 10, 8961 25 of 25

25. Hirsch, M.J.; Meneses, C.N.; Pardalos, P.M.; Resende, M.G.C. Global optimization by continuous GRASP.
Optim. Lett. 2007, 1, 201–212. [CrossRef]

26. Duarte, A.; Marti, R.; Glover, F.; Gortazar, F. Hybrid scatter-tabu search for unconstrained global optimization.
Ann. Oper. Res. 2011, 183, 95–123. [CrossRef]

27. Al-Roomi, A.R. IEEE Congresses on Evolutionary Computation Repository; Dalhousie University, Electrical and
Computer Engineering: Halifax, NS, Canada, 2015; Available online: https://www.al-roomi.org/benchmarks/
cec-database (accessed on 15 November 2020).

28. Taillard, E.D.; Waelti, P.; Zuber, J. Few statistical tests for proportions comparison. Eur. J. Oper. Res. 2008,
185, 1336–1350. [CrossRef]

29. Clerc, M.; Kennedy, J. The particle swarm explosion, stability, and convergence in a multidimensional
complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [CrossRef]

30. Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y.P.; Auger, A.; Tiwari, S. Problem Definitions
and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization; Technical Report;
Nanyang Technology University of Singapore: Singapore, 2005.

31. Hansen, N. The CMA evolution strategy: A comparing review. In Towards a New Evolutionary Computation.
Advances on Estimation of Distribution Algorithms; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1769–1776.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11590-006-0021-6
http://dx.doi.org/10.1007/s10479-009-0596-2
https://www.al-roomi.org/benchmarks/cec-database
https://www.al-roomi.org/benchmarks/cec-database
http://dx.doi.org/10.1016/j.ejor.2006.03.070
http://dx.doi.org/10.1109/4235.985692
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work Materials and Methods
	Glowworm Swarm Optimization (GSO)
	Firefly Algorithm (FA)
	Adaptive Memory Programming (AMP)
	Scatter Search (SS)
	Path Relinking (PR)

	Proposed Methods
	Multiple Guiding Points
	Luciferin-Proportional Movement
	Adaptive Local Search
	Multi-Start with PR for Firefly Swarm Rebuilding
	Responsive Strategies Based on Landscape Analysis
	Pseudo-Code of CFA

	Experimental Results and Discussions
	Benchmark Test Functions and Algorithm Parameter Settings
	Analysis of CFA Strategies
	Selection Strategy for Multiple Guiding Solutions
	Adaptive Strategy for Local Search
	Multi-Start Strategy for Swarm Rebuilding
	Responsive Strategies Based on Landscape Analysis
	Worst-Case Analysis

	Performance Evaluation
	Comparison with CFA Counterparts
	Comparison against Other Metaheuristics
	Comparison on the CEC 2005 Dataset

	Concluding Remarks and Future Research
	References

