
applied
sciences

Article

Performance Analysis of Thread Block Schedulers in
GPGPU and Its Implications

KyungWoon Cho 1 and Hyokyung Bahn 2,*
1 Embedded Software Research Center, Ewha University, Seoul 03760, Korea; cezanne@ewha.ac.kr
2 Department of Computer Engineering, Ewha University, Seoul 03760, Korea
* Correspondence: bahn@ewha.ac.kr; Tel.: +82-2-3277-4247

Received: 30 November 2020; Accepted: 17 December 2020; Published: 20 December 2020 ����������
�������

Abstract: GPGPU (General-Purpose Graphics Processing Unit) consists of hardware resources that
can execute tens of thousands of threads simultaneously. However, in reality, the parallelism is
limited as resource allocation is performed by the base unit called thread block, which is not managed
judiciously in the current GPGPU systems. To schedule threads in GPGPU, a specialized hardware
scheduler allocates thread blocks to the computing unit called SM (Stream Multiprocessors) in a
Round-Robin manner. Although scheduling in hardware is simple and fast, we observe that the
Round-Robin scheduling is not efficient in GPGPU, as it does not consider the workload characteristics
of threads and the resource balance among SMs. In this article, we present a new thread block
scheduling model that has the ability of analyzing and quantifying the performances of thread
block scheduling. We implement our model as a GPGPU scheduling simulator and show that the
conventional thread block scheduling provided in GPGPU hardware does not perform well as the
workload becomes heavy. Specifically, we observe that the performance degradation of Round-Robin
can be eliminated by adopting DFA (Depth First Allocation), which is simple but scalable. Moreover,
as our simulator consists of modular forms based on the framework and we publicly open it for other
researchers to use, various scheduling policies can be incorporated into our simulator for evaluating
the performance of GPGPU schedulers.

Keywords: thread block; GPGPU; thread block scheduling; Round-Robin

1. Introduction

With the rapid advances in many-core hardware technologies, GPGPU (General-Purpose GPU)
has expanded its area from graphical processing to various parallel processing jobs. Specifically, as the
era of the 4th Industrial Revolution emerges, GPGPU has become an essential computing device in
various domains such as deep learning, block-chain, and genome analysis [1,2]. GPGPU has tens
of thousands of computing units, which can maximize their performances by executing threads in
each unit on parallel [3]. In general, total threads to be executed are grouped into a certain number
of threads called thread blocks, which are the allocation unit for hardware resources. For example,
in CUDA [4,5], which is a representative GPGPU programming platform, each thread is included in
a thread block, which is identified by the three-dimensional indices, and the thread blocks can be
represented as a three-dimensional grid to define a GPGPU task as shown in Figure 1. Meanwhile,
since GPGPU hardware is composed of tens of stream multiprocessors (SM), a thread block scheduler
that allocates thread blocks to SM is necessary. In the current system architecture, the thread block
scheduler is implemented as hardware in the GPGPU device.

Figure 2 shows the basic role of the thread block scheduler, which is to track the resource demands
of thread blocks allocated to each SM and perform scheduling so that the allocated thread blocks do not
exceed the given resources in SM. The type and amount of resources in SM required to perform a single

Appl. Sci. 2020, 10, 9121; doi:10.3390/app10249121 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-7188-3889
http://www.mdpi.com/2076-3417/10/24/9121?type=check_update&version=1
http://dx.doi.org/10.3390/app10249121
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 9121 2 of 9

thread block can be statically determined while building a GPGPU task. Thus, it is not complicated
to perform scheduling so as not to exceed the resource capacity of SM. However, as the number of
threads allocated in SM increases, the execution time increases dramatically, and thus it is essential to
allocate thread blocks to SM in a balanced manner [6,7].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 2 of 10

blocks do not exceed the given resources in SM. The type and amount of resources in SM required to
perform a single thread block can be statically determined while building a GPGPU task. Thus, it is
not complicated to perform scheduling so as not to exceed the resource capacity of SM. However, as
the number of threads allocated in SM increases, the execution time increases dramatically, and thus
it is essential to allocate thread blocks to SM in a balanced manner [6,7].

Figure 1. Grouping a certain number of threads to TB (Thread Blocks) in a GPGPU task.

To schedule thread blocks in GPGPU, the current hardware scheduler allocates thread blocks to
SM by making use of the Round-Robin scheduling algorithm. Round-Robin is a resource allocation
algorithm widely used in CPU scheduling [8,9] and network packet transmission [10]. As Round-
Robin scheduling is simple, easy to implement, and starvation-free, it is efficient to implement in
hardware [11]. However, we observe that Round-Robin is not efficient in GPGPU as it does not
consider the workload characteristics of threads and the resource balance among SMs. In this article,
we present a new thread block scheduling model that has the ability of analyzing and quantifying
the performances of thread block scheduling. We implement our model as a GPGPU scheduling
simulator and show that the conventional thread block scheduler provided in GPGPU hardware does
not perform well as the workload becomes heavy. Specifically, we observe that the performance
degradation of Round-Robin can be eliminated by adopting DFA (Depth First Allocation), which is
simple but scalable. As our simulator consists of a modular form based on the framework and it is
publicly available [12], various scheduling policies can be incorporated into our simulator for
evaluating the performance of GPGPU schedulers.

The remainder of this article is organized as follows. Section 2 describes the GPGPU structure
and the thread block model. Section 3 explains our GPGPU simulator for thread block scheduling. In
Section 4, we perform experiments and present the performance comparison results on scheduling
policies with the current system and two new policies. Finally, Section 5 concludes this article.

2. GPGPU and Thread Block Model

As SM adopts the SIMT (Single Instruction Multiple Thread) model, it executes the same
instruction for multiple threads simultaneously [13]. The maximum number of threads that can be
executed per SM is generally 2048. The thread block scheduler should manage the allowable number
of threads per SM not to exceed this limit while allocating thread blocks to SM [14]. Meanwhile, a
series of threads that should be executed simultaneously within the same hardware unit are called
Warp, which can execute up to 32 threads simultaneously. Each thread block consists of at least one
Warp, and whenever the number of threads constituting a Warp exceeds 32, the number of Warps
increases by 1. The number of Warps that can be executed at the same time depends on the number
of each computing unit in SM [15]. From this point of view, SM does not execute all threads in the
thread blocks simultaneously, but Warps for the given thread block are allocated to the computing
units and then the threads in that Warp are executed simultaneously.

Figure 1. Grouping a certain number of threads to TB (Thread Blocks) in a GPGPU task.
Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 10

Figure 2. An example of Thread Block Scheduling (TBS) that allocates Thread Blocks (TB) to Stream
Multiprocessors (SM).

When scheduling thread blocks, not only the number of threads per SM but also the number of
Warps should be considered. That is, when allocating thread blocks to SM, the thread block scheduler
should monitor the utilization of each type of resources in SM and manage them so that SM does not
exceed allowable resource usage. Specifically, when performing thread block scheduling, the
following types of resources should be monitored.

− Registers and shared memory
− Threads and thread block Information
− Hardware Warp information

Thread blocks belonging to the same GPGPU task have the same resource demands, but the
resource requirements are varied as the thread blocks are from different tasks. Due to this reason, the
thread block scheduler should monitor and manage the usage of each resource type in each SM. For
example, even though the resource utilization of SM is not high, if the resource type to be used is
already in use, Warps that have not yet been assigned the resource should wait. This is called Stalled
Warp, which is the main reason of GPGPU’s performance degradations. In addition to stalls by
computing units, stalls due to memory references also cause serious performance degradation.

When the shared memory is used between threads belonging to the same thread block, the delay
is up to 100 cycles as the number of threads increases. In the case of global memory sharing across
threads in different SMs, the delay becomes hundreds of cycles or more [16–18]. The two types of
memory have a tradeoff between latency and capacity so those should be deliberately utilized
considering data input size and copy overhead [19,20].

3. A GPGPU Simulator Based on the Thread Block Scheduling Model

In order to simulate the thread block scheduling function in GPGPU, an accurate modeling of
the hardware resources and tasks in GPGPU is required [21]. For quantifying the impact of the thread
block scheduling policy on GPGPU task performances, we model SM and GPGPU tasks based on
thread blocks. Specifically, in the proposed model, the available resources for each thread block in
SM are managed based on the micro thread block (mTB), which is up to 32 within a Warp.

Figure 3 shows the measured execution time on the GPGPU platform we experimented when
the total number of threads to be executed is fixed to 1024 but the number of thread blocks and the
number of threads within a thread block are varied. As shown in the figure, the total execution time
is not related to the size of a thread block, implying that modeling of thread blocks and SM resources
by the unit of mTB can reflect the actual performances well. In our simulation model, tasks can arrive
during the simulation period, and the thread block scheduler performs scheduling in the order of
their arrival. A GPGPU task for thread block scheduling can be defined by the following attributes.

Figure 2. An example of Thread Block Scheduling (TBS) that allocates Thread Blocks (TB) to Stream
Multiprocessors (SM).

To schedule thread blocks in GPGPU, the current hardware scheduler allocates thread blocks to
SM by making use of the Round-Robin scheduling algorithm. Round-Robin is a resource allocation
algorithm widely used in CPU scheduling [8,9] and network packet transmission [10]. As Round-Robin
scheduling is simple, easy to implement, and starvation-free, it is efficient to implement in hardware [11].
However, we observe that Round-Robin is not efficient in GPGPU as it does not consider the workload
characteristics of threads and the resource balance among SMs. In this article, we present a new thread
block scheduling model that has the ability of analyzing and quantifying the performances of thread
block scheduling. We implement our model as a GPGPU scheduling simulator and show that the
conventional thread block scheduler provided in GPGPU hardware does not perform well as the
workload becomes heavy. Specifically, we observe that the performance degradation of Round-Robin
can be eliminated by adopting DFA (Depth First Allocation), which is simple but scalable. As our
simulator consists of a modular form based on the framework and it is publicly available [12],
various scheduling policies can be incorporated into our simulator for evaluating the performance of
GPGPU schedulers.

The remainder of this article is organized as follows. Section 2 describes the GPGPU structure
and the thread block model. Section 3 explains our GPGPU simulator for thread block scheduling.
In Section 4, we perform experiments and present the performance comparison results on scheduling
policies with the current system and two new policies. Finally, Section 5 concludes this article.

Appl. Sci. 2020, 10, 9121 3 of 9

2. GPGPU and Thread Block Model

As SM adopts the SIMT (Single Instruction Multiple Thread) model, it executes the same instruction
for multiple threads simultaneously [13]. The maximum number of threads that can be executed per
SM is generally 2048. The thread block scheduler should manage the allowable number of threads per
SM not to exceed this limit while allocating thread blocks to SM [14]. Meanwhile, a series of threads
that should be executed simultaneously within the same hardware unit are called Warp, which can
execute up to 32 threads simultaneously. Each thread block consists of at least one Warp, and whenever
the number of threads constituting a Warp exceeds 32, the number of Warps increases by 1. The number
of Warps that can be executed at the same time depends on the number of each computing unit in
SM [15]. From this point of view, SM does not execute all threads in the thread blocks simultaneously,
but Warps for the given thread block are allocated to the computing units and then the threads in that
Warp are executed simultaneously.

When scheduling thread blocks, not only the number of threads per SM but also the number of
Warps should be considered. That is, when allocating thread blocks to SM, the thread block scheduler
should monitor the utilization of each type of resources in SM and manage them so that SM does not
exceed allowable resource usage. Specifically, when performing thread block scheduling, the following
types of resources should be monitored.

− Registers and shared memory
− Threads and thread block Information
− Hardware Warp information

Thread blocks belonging to the same GPGPU task have the same resource demands, but the
resource requirements are varied as the thread blocks are from different tasks. Due to this reason,
the thread block scheduler should monitor and manage the usage of each resource type in each SM.
For example, even though the resource utilization of SM is not high, if the resource type to be used
is already in use, Warps that have not yet been assigned the resource should wait. This is called
Stalled Warp, which is the main reason of GPGPU’s performance degradations. In addition to stalls by
computing units, stalls due to memory references also cause serious performance degradation.

When the shared memory is used between threads belonging to the same thread block, the delay is
up to 100 cycles as the number of threads increases. In the case of global memory sharing across threads
in different SMs, the delay becomes hundreds of cycles or more [16–18]. The two types of memory
have a tradeoff between latency and capacity so those should be deliberately utilized considering data
input size and copy overhead [19,20].

3. A GPGPU Simulator Based on the Thread Block Scheduling Model

In order to simulate the thread block scheduling function in GPGPU, an accurate modeling of the
hardware resources and tasks in GPGPU is required [21]. For quantifying the impact of the thread
block scheduling policy on GPGPU task performances, we model SM and GPGPU tasks based on
thread blocks. Specifically, in the proposed model, the available resources for each thread block in SM
are managed based on the micro thread block (mTB), which is up to 32 within a Warp.

Figure 3 shows the measured execution time on the GPGPU platform we experimented when
the total number of threads to be executed is fixed to 1024 but the number of thread blocks and the
number of threads within a thread block are varied. As shown in the figure, the total execution time is
not related to the size of a thread block, implying that modeling of thread blocks and SM resources by
the unit of mTB can reflect the actual performances well. In our simulation model, tasks can arrive
during the simulation period, and the thread block scheduler performs scheduling in the order of their
arrival. A GPGPU task for thread block scheduling can be defined by the following attributes.

Appl. Sci. 2020, 10, 9121 4 of 9

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 10

Figure 3. Execution time as the thread block size is varied with the same number of total threads; 1
TB (1024th) = 1 thread block consisting of 1024 threads; 2 TB (512th) = 2 thread blocks with each thread
block consisting of 512 threads; 4 TB (128th) = 4 thread blocks with each thread block consisting of 256
threads; 8 TB (128th) = 8 thread blocks with each thread block consisting of 128 threads; 16 TB (64th)
= 16 thread blocks with each thread block consisting of 64 threads; 32 TB (32th) = 32 thread blocks
with each thread block consisting of 32 threads.

− Arrival time of the task
− Number of mTBs corresponding to the total number of threads
− Computing resource demands per mTB
− Memory resource demands per mTB
− Basic execution time of mTB

Note that the basic execution time of mTB is the time required to complete the mTB if it is the
only thread block allocated to the SM. The execution time actually increases due to the resource
contention with other mTBs allocated to the same SM [22,23]. A GPGPU task consists of a number of
mTBs, and the resources required for executing mTB consist of computing resources and memory
resources. In our model, the usage of the computing and memory resources is evaluated based on
mTB. That is, our model keeps track of the available computing resources in each SM, and when mTB
is allocated to SM, the remaining resources are recalculated based on the resource usage of the mTB.
If the remaining resource in SM is not sufficient for the mTB, scheduling to that SM is not possible.
Our model also keeps track of the global memory resources in GPGPU, and the memory resource
usage per mTB in all SMs are calculated to maintain the remaining memory resources. When mTB is
allocated to a certain SM, the remaining memory resource is recalculated. If the remaining memory
resource is not sufficient, scheduling of mTB is not allowed.

The scheduler model we propose provides the function of calibrating the basic execution time
in order to reasonably configure the task’s execution time according to the load of GPGPU. By
identifying the load of computing and memory resources according to the computing amount and
the global memory references in each SM, respectively, our model estimates the actual execution time
of mTB.

The current GPGPU makes use of the Round-Robin scheduling policy that sequentially allocates
th read blocks to SM. Although this is simple to implement, it may cause the bias of loads among
SMs [17]. In this article, we use two scheduling policies called BFA (Breadth First Allocation) and
DFA (Depth First Allocation) as shown in Figure 4. BFA monitors the resource utilization in each SM
and allocates thread blocks preferentially to the SM that has the lowest load. By doing so, the resource
utilization among SMs can be balanced, which eventually leads to the reduction of the execution time.
Unlike BFA, DFA allocates thread blocks to SMs with the highest resource utilization. This is a
scheduling policy that can increase the utilization of GPGPU if the load becomes high. Figure 5 shows
an example situation that can be accommodated by DFA, which is not possible if we apply BFA. We

Figure 3. Execution time as the thread block size is varied with the same number of total threads; 1 TB
(1024th) = 1 thread block consisting of 1024 threads; 2 TB (512th) = 2 thread blocks with each thread
block consisting of 512 threads; 4 TB (128th) = 4 thread blocks with each thread block consisting of 256
threads; 8 TB (128th) = 8 thread blocks with each thread block consisting of 128 threads; 16 TB (64th) =

16 thread blocks with each thread block consisting of 64 threads; 32 TB (32th) = 32 thread blocks with
each thread block consisting of 32 threads.

− Arrival time of the task
− Number of mTBs corresponding to the total number of threads
− Computing resource demands per mTB
− Memory resource demands per mTB
− Basic execution time of mTB

Note that the basic execution time of mTB is the time required to complete the mTB if it is the only
thread block allocated to the SM. The execution time actually increases due to the resource contention
with other mTBs allocated to the same SM [22,23]. A GPGPU task consists of a number of mTBs,
and the resources required for executing mTB consist of computing resources and memory resources.
In our model, the usage of the computing and memory resources is evaluated based on mTB. That is,
our model keeps track of the available computing resources in each SM, and when mTB is allocated to
SM, the remaining resources are recalculated based on the resource usage of the mTB. If the remaining
resource in SM is not sufficient for the mTB, scheduling to that SM is not possible. Our model also
keeps track of the global memory resources in GPGPU, and the memory resource usage per mTB in all
SMs are calculated to maintain the remaining memory resources. When mTB is allocated to a certain
SM, the remaining memory resource is recalculated. If the remaining memory resource is not sufficient,
scheduling of mTB is not allowed.

The scheduler model we propose provides the function of calibrating the basic execution time in
order to reasonably configure the task’s execution time according to the load of GPGPU. By identifying
the load of computing and memory resources according to the computing amount and the global
memory references in each SM, respectively, our model estimates the actual execution time of mTB.

The current GPGPU makes use of the Round-Robin scheduling policy that sequentially allocates
th read blocks to SM. Although this is simple to implement, it may cause the bias of loads among
SMs [17]. In this article, we use two scheduling policies called BFA (Breadth First Allocation) and DFA
(Depth First Allocation) as shown in Figure 4. BFA monitors the resource utilization in each SM and
allocates thread blocks preferentially to the SM that has the lowest load. By doing so, the resource
utilization among SMs can be balanced, which eventually leads to the reduction of the execution
time. Unlike BFA, DFA allocates thread blocks to SMs with the highest resource utilization. This is
a scheduling policy that can increase the utilization of GPGPU if the load becomes high. Figure 5

Appl. Sci. 2020, 10, 9121 5 of 9

shows an example situation that can be accommodated by DFA, which is not possible if we apply BFA.
We implement our GPGPU simulator based on the proposed thread block scheduler model. We have
opened our simulator for other researchers to replay it [12].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 10

implement our GPGPU simulator based on the proposed thread block scheduler model. We have
opened our simulator for other researchers to replay it [12].

(a) BFA (b) DFA

Figure 4. Comparison of the thread block allocation between (a) Breadth First Allocation (BFA) and (b) Depth

First Allocation (DFA).

Figure 5. An example situation that can be accommodated by DFA, which is not possible in BFA.

In addition to BFA and DFA, various scheduling policies can be incorporated into our simulator
as we made it as a modular form based on the framework. We designed all configuration parameters,
such as the number of SMs, computing and memory resources, and workload characteristics to be
adjustable, and the simulator also has the function of creating workloads automatically.

4. Performance Evaluation

In order to simulate thread block scheduling, we generate workloads by configuring the
resource demand and the execution time of each task based on the desired utilization. The desired
utilization here means the ratio of required computing resources for the given workload under the
full SM resources in GPGPU. The experimental platform of our simulator consists of NVidia TITAN
V GPU based on Volta architecture, which has 80 SMs and 12 GB GPU Memory. The benchmarks
used in our experiments were generated by increasing the number of kernels to fulfill the desired
utilization of GPGPU. The number of thread blocks for each kernel ranges from 12 to 128. The
execution time and the memory requirement of each thread block follow the uniform distribution
ranging 5 to 20 msec and 1 KB to 1 MB, respectively. Under these GPGPU workloads, we conduct
simulation experiments with the three scheduling policies, Round-Robin (RR), Breadth First
Allocation (BFA), and Depth First Allocation (DFA). For performance metric, we use the Average
Normalized Turnaround Time (ANTT) like previous studies [24,25]. ANTT measures the execution
time of a task including the resource overhead incurred by the interference of other tasks and
normalizes it to the basic execution time of the target task. For example, if the ANTT is 2, it takes
twice as much time as compared to the case where the work is performed alone. Thus, a small ANTT
value implies the better performance of the scheduling policy.

Figure 4. Comparison of the thread block allocation between (a) Breadth First Allocation (BFA) and (b)
Depth First Allocation (DFA).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 10

implement our GPGPU simulator based on the proposed thread block scheduler model. We have
opened our simulator for other researchers to replay it [12].

(a) BFA (b) DFA

Figure 4. Comparison of the thread block allocation between (a) Breadth First Allocation (BFA) and (b) Depth

First Allocation (DFA).

Figure 5. An example situation that can be accommodated by DFA, which is not possible in BFA.

In addition to BFA and DFA, various scheduling policies can be incorporated into our simulator
as we made it as a modular form based on the framework. We designed all configuration parameters,
such as the number of SMs, computing and memory resources, and workload characteristics to be
adjustable, and the simulator also has the function of creating workloads automatically.

4. Performance Evaluation

In order to simulate thread block scheduling, we generate workloads by configuring the
resource demand and the execution time of each task based on the desired utilization. The desired
utilization here means the ratio of required computing resources for the given workload under the
full SM resources in GPGPU. The experimental platform of our simulator consists of NVidia TITAN
V GPU based on Volta architecture, which has 80 SMs and 12 GB GPU Memory. The benchmarks
used in our experiments were generated by increasing the number of kernels to fulfill the desired
utilization of GPGPU. The number of thread blocks for each kernel ranges from 12 to 128. The
execution time and the memory requirement of each thread block follow the uniform distribution
ranging 5 to 20 msec and 1 KB to 1 MB, respectively. Under these GPGPU workloads, we conduct
simulation experiments with the three scheduling policies, Round-Robin (RR), Breadth First
Allocation (BFA), and Depth First Allocation (DFA). For performance metric, we use the Average
Normalized Turnaround Time (ANTT) like previous studies [24,25]. ANTT measures the execution
time of a task including the resource overhead incurred by the interference of other tasks and
normalizes it to the basic execution time of the target task. For example, if the ANTT is 2, it takes
twice as much time as compared to the case where the work is performed alone. Thus, a small ANTT
value implies the better performance of the scheduling policy.

Figure 5. An example situation that can be accommodated by DFA, which is not possible in BFA.

In addition to BFA and DFA, various scheduling policies can be incorporated into our simulator
as we made it as a modular form based on the framework. We designed all configuration parameters,
such as the number of SMs, computing and memory resources, and workload characteristics to be
adjustable, and the simulator also has the function of creating workloads automatically.

4. Performance Evaluation

In order to simulate thread block scheduling, we generate workloads by configuring the resource
demand and the execution time of each task based on the desired utilization. The desired utilization
here means the ratio of required computing resources for the given workload under the full SM
resources in GPGPU. The experimental platform of our simulator consists of NVidia TITAN V GPU
based on Volta architecture, which has 80 SMs and 12 GB GPU Memory. The benchmarks used in our
experiments were generated by increasing the number of kernels to fulfill the desired utilization of
GPGPU. The number of thread blocks for each kernel ranges from 12 to 128. The execution time and
the memory requirement of each thread block follow the uniform distribution ranging 5 to 20 msec
and 1 KB to 1 MB, respectively. Under these GPGPU workloads, we conduct simulation experiments
with the three scheduling policies, Round-Robin (RR), Breadth First Allocation (BFA), and Depth First
Allocation (DFA). For performance metric, we use the Average Normalized Turnaround Time (ANTT)
like previous studies [24,25]. ANTT measures the execution time of a task including the resource
overhead incurred by the interference of other tasks and normalizes it to the basic execution time of
the target task. For example, if the ANTT is 2, it takes twice as much time as compared to the case

Appl. Sci. 2020, 10, 9121 6 of 9

where the work is performed alone. Thus, a small ANTT value implies the better performance of the
scheduling policy.

Figure 6 shows the ANTT of the three scheduling policies as the desired utilization is 10%
and 80%, respectively. As shown in the figure, the performance gap is not wide when the desired
utilization is 10%. However, as the desired utilization becomes 80%, the performance of Round-Robin
is degraded significantly. Specifically, the ANTT of Round-Robin is 2.3 when the desired utilization is
80%. Note that the performance degradation of Round-Robin is over 70% compared to BFA or DFA.
This implies that the current scheduling policy supported in GPGPU hardware is not efficient when
the workload becomes heavy, and efficient scheduling is necessary.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 10

Figure 6 shows the ANTT of the three scheduling policies as the desired utilization is 10% and
80%, respectively. As shown in the figure, the performance gap is not wide when the desired
utilization is 10%. However, as the desired utilization becomes 80%, the performance of Round-Robin
is degraded significantly. Specifically, the ANTT of Round-Robin is 2.3 when the desired utilization
is 80%. Note that the performance degradation of Round-Robin is over 70% compared to BFA or DFA.
This implies that the current scheduling policy supported in GPGPU hardware is not efficient when
the workload becomes heavy, and efficient scheduling is necessary.

Figure 6. Performance comparison of the scheduling policies as the desired utilization is varied.

Figure 7 shows the actual utilization of SM as the scheduling policies and the desired utilization
are varied. As shown in the figure, the actual utilization of the three policies is significantly lower
than the desired utilization. This is due to the internal fragmentation of the workloads. When the
workload is not heavy, the utilizations of the three policies exhibit similar results. However, as the
workload becomes heavy, the actual utilization of Round-Robin is about 8% less than that of the other
policies. Compared to the result in utilization, the gap in ANTT was very large; hence, it can be seen
that increasing the utilization through efficient thread block scheduling is important to enhance the
actual performance.

Figure 7. SM utilizations of the scheduling policies as the desired utilization is varied.

Figure 8 shows the performance of BFA and DFA relative to Round-Robin as the desired
utilization is largely varied. Although we increase the desired utilization to 125%, which exceeds the
total computing resources, it can be seen that the actual utilizations of BFA and DFA are only 76.1%
and 76.4%, respectively, which are within acceptable ranges. Thus, it is meaningful to see the
performance trend when the desired utilization is as large as 125%. However, as shown in Figure 8,

Figure 6. Performance comparison of the scheduling policies as the desired utilization is varied.

Figure 7 shows the actual utilization of SM as the scheduling policies and the desired utilization
are varied. As shown in the figure, the actual utilization of the three policies is significantly lower
than the desired utilization. This is due to the internal fragmentation of the workloads. When the
workload is not heavy, the utilizations of the three policies exhibit similar results. However, as the
workload becomes heavy, the actual utilization of Round-Robin is about 8% less than that of the other
policies. Compared to the result in utilization, the gap in ANTT was very large; hence, it can be seen
that increasing the utilization through efficient thread block scheduling is important to enhance the
actual performance.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 10

Figure 6 shows the ANTT of the three scheduling policies as the desired utilization is 10% and
80%, respectively. As shown in the figure, the performance gap is not wide when the desired
utilization is 10%. However, as the desired utilization becomes 80%, the performance of Round-Robin
is degraded significantly. Specifically, the ANTT of Round-Robin is 2.3 when the desired utilization
is 80%. Note that the performance degradation of Round-Robin is over 70% compared to BFA or DFA.
This implies that the current scheduling policy supported in GPGPU hardware is not efficient when
the workload becomes heavy, and efficient scheduling is necessary.

Figure 6. Performance comparison of the scheduling policies as the desired utilization is varied.

Figure 7 shows the actual utilization of SM as the scheduling policies and the desired utilization
are varied. As shown in the figure, the actual utilization of the three policies is significantly lower
than the desired utilization. This is due to the internal fragmentation of the workloads. When the
workload is not heavy, the utilizations of the three policies exhibit similar results. However, as the
workload becomes heavy, the actual utilization of Round-Robin is about 8% less than that of the other
policies. Compared to the result in utilization, the gap in ANTT was very large; hence, it can be seen
that increasing the utilization through efficient thread block scheduling is important to enhance the
actual performance.

Figure 7. SM utilizations of the scheduling policies as the desired utilization is varied.

Figure 8 shows the performance of BFA and DFA relative to Round-Robin as the desired
utilization is largely varied. Although we increase the desired utilization to 125%, which exceeds the
total computing resources, it can be seen that the actual utilizations of BFA and DFA are only 76.1%
and 76.4%, respectively, which are within acceptable ranges. Thus, it is meaningful to see the
performance trend when the desired utilization is as large as 125%. However, as shown in Figure 8,

Figure 7. SM utilizations of the scheduling policies as the desired utilization is varied.

Figure 8 shows the performance of BFA and DFA relative to Round-Robin as the desired utilization
is largely varied. Although we increase the desired utilization to 125%, which exceeds the total

Appl. Sci. 2020, 10, 9121 7 of 9

computing resources, it can be seen that the actual utilizations of BFA and DFA are only 76.1% and
76.4%, respectively, which are within acceptable ranges. Thus, it is meaningful to see the performance
trend when the desired utilization is as large as 125%. However, as shown in Figure 8, ANTT increases
steeply as the desired utilization becomes over 100%. Also, when comparing BFA and DFA, it can be
seen that DFA performs even better than BFA when the load becomes extremely high.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 10

ANTT increases steeply as the desired utilization becomes over 100%. Also, when comparing BFA
and DFA, it can be seen that DFA performs even better than BFA when the load becomes extremely
high.

Figure 8. Performance comparison under workloads of uniform resource demand.

Figure 9 shows the performance of BFA and DFA similar to Figure 8, but the workload
environment has extremely biased resource demand. That is, if there are two GPGPU tasks, one has
the computing resource demand of 1 per SM, whereas the other has the maximum computing
resource demand. In this case, as the desired utilization becomes high, it is difficult to allocate
resources to the task with higher resource demand. Specifically, as the desired utilization becomes
higher than 100%, the ANTT of BFA steeply increases, but that is not the case for DFA. Even though
the desired utilization becomes 120%, the ANTT of DFA is still less than 4. Thus, we can summarize
that DFA exhibits scalable performance, although the load of the task becomes high and the workload
is skewed as it makes use of the maximum utilization of SM efficiently.

Figure 9. Performance comparison under workloads of extremely biased resource demand.

5. Conclusions

In this article, we presented a scheduler model for the thread block scheduling in GPGPU and
developed an open-source GPGPU simulator based on the proposed model. We observed that the
current Round-Robin hardware scheduler used in GPGPU is not efficient when the workload of
GPGPU increases. In particular, the current hardware scheduler is simple and fast, and it shows
reasonable performances when the load of GPGPU is not heavy [26]. However, when a large number
of GPGPU tasks are requested simultaneously and the throughput and the execution time for
multiple tasks are important, an efficient thread block scheduling is required to maximize the
utilization of SM [27]. The proposed thread block scheduling model manages the available resources

Figure 8. Performance comparison under workloads of uniform resource demand.

Figure 9 shows the performance of BFA and DFA similar to Figure 8, but the workload environment
has extremely biased resource demand. That is, if there are two GPGPU tasks, one has the computing
resource demand of 1 per SM, whereas the other has the maximum computing resource demand.
In this case, as the desired utilization becomes high, it is difficult to allocate resources to the task with
higher resource demand. Specifically, as the desired utilization becomes higher than 100%, the ANTT
of BFA steeply increases, but that is not the case for DFA. Even though the desired utilization becomes
120%, the ANTT of DFA is still less than 4. Thus, we can summarize that DFA exhibits scalable
performance, although the load of the task becomes high and the workload is skewed as it makes use
of the maximum utilization of SM efficiently.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 10

ANTT increases steeply as the desired utilization becomes over 100%. Also, when comparing BFA
and DFA, it can be seen that DFA performs even better than BFA when the load becomes extremely
high.

Figure 8. Performance comparison under workloads of uniform resource demand.

Figure 9 shows the performance of BFA and DFA similar to Figure 8, but the workload
environment has extremely biased resource demand. That is, if there are two GPGPU tasks, one has
the computing resource demand of 1 per SM, whereas the other has the maximum computing
resource demand. In this case, as the desired utilization becomes high, it is difficult to allocate
resources to the task with higher resource demand. Specifically, as the desired utilization becomes
higher than 100%, the ANTT of BFA steeply increases, but that is not the case for DFA. Even though
the desired utilization becomes 120%, the ANTT of DFA is still less than 4. Thus, we can summarize
that DFA exhibits scalable performance, although the load of the task becomes high and the workload
is skewed as it makes use of the maximum utilization of SM efficiently.

Figure 9. Performance comparison under workloads of extremely biased resource demand.

5. Conclusions

In this article, we presented a scheduler model for the thread block scheduling in GPGPU and
developed an open-source GPGPU simulator based on the proposed model. We observed that the
current Round-Robin hardware scheduler used in GPGPU is not efficient when the workload of
GPGPU increases. In particular, the current hardware scheduler is simple and fast, and it shows
reasonable performances when the load of GPGPU is not heavy [26]. However, when a large number
of GPGPU tasks are requested simultaneously and the throughput and the execution time for
multiple tasks are important, an efficient thread block scheduling is required to maximize the
utilization of SM [27]. The proposed thread block scheduling model manages the available resources

Figure 9. Performance comparison under workloads of extremely biased resource demand.

5. Conclusions

In this article, we presented a scheduler model for the thread block scheduling in GPGPU and
developed an open-source GPGPU simulator based on the proposed model. We observed that the
current Round-Robin hardware scheduler used in GPGPU is not efficient when the workload of GPGPU
increases. In particular, the current hardware scheduler is simple and fast, and it shows reasonable
performances when the load of GPGPU is not heavy [26]. However, when a large number of GPGPU

Appl. Sci. 2020, 10, 9121 8 of 9

tasks are requested simultaneously and the throughput and the execution time for multiple tasks
are important, an efficient thread block scheduling is required to maximize the utilization of SM [27].
The proposed thread block scheduling model manages the available resources for each thread block by
the unit of micro thread block (mTB), and evaluates the execution overhead based on the usage of the
computing and memory resources. Unlike gpgpusim [28,29], which accurately emulates hardware
in component basis, the proposed model simulates the characteristics of GPGPU with respect to the
thread block scheduling. Experimental results using our simulator showed that BFA and DFA perform
over 70% better than Round-Robin by making use of the resource usage in SM efficiently as the load of
GPGPU increases.

In reality, the commercial GPGPU device does not open their interface for thread block scheduling,
and thus it is not possible to implement our model in real GPGPU devices. Thus, developing simulators
is an alternative way for evaluating the thread block schedulers. As our future study, we plan to
implement an efficient thread block scheduler based on machine learning for considering the workload
characteristics. For example, the scheduling performance can be improved even more by considering
the heaviness of workloads and the homogeneity/heterogeneity of resource demands.

Author Contributions: K.C. implemented the architecture and algorithm and performed the experiments. H.B.
designed the work and provided expertise. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the ICT R&D program of MSIP/IITP (2018-0-00549, Extremely scalable
order preserving OS for manycore and non-volatile memory).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nickolls, J.; Dally, W.J. The GPU Computing Era. IEEE Micro 2010, 30, 56–69. [CrossRef]
2. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.

Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

3. Maitre, O.; Lachiche, N.; Clauss, P.; Baumes, L.; Corma, A.; Collet, P. Efficient parallel implementation
of evolutionary algorithms on GPGPU cards. In European Conference on Parallel Processing; Springer:
Berlin/Heidelberg, Germany, 2009. [CrossRef]

4. Garland, M. Parallel computing with CUDA. In Proceedings of the IEEE International Symposium on Parallel
& Distributed Processing (IPDPS), IEEE Computer Society, Atlanta, GA, USA, 19–23 April 2010. [CrossRef]

5. CUDA Toolkit Documentation. Available online: https://docs.nvidia.com/cuda/ (accessed on 19
December 2020).

6. Lee, S.; Arunkumar, A.; Wu, C. CAWA: Coordinated warp scheduling and cache prioritization for critical
warp acceleration of GPGPU workloads. In Proceedings of the 2015 ACM/IEEE 42nd Annual International
Symposium on Computer Architecture (ISCA), Portland, OR, USA, 13–17 June 2015; Volume 43, pp. 515–527.

7. Ryoo, S.; Rodrigues, C.; Baghsorkhi, S.; Stone, S.; Kirk, D.; Hwu, W. Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Salt Lake City, UT, USA, 20–23 February 2008.

8. Galvin, P.; Gagne, G.; Silberschatz, A. Operating System Concepts; John Wiley & Sons: Hoboken, NJ, USA, 2003.
9. Mostafa, S.; Rida, S.Z.; Hamad, H.S. Finding time quantum of round robin CPU scheduling algorithm in

general computing systems using integer programming. Int. J. Res. Rev. Appl. Sci. 2010, 5, 64–71.
10. Shreedhar, M.; Varghese, G. Efficient fair queuing using deficit round-robin. In Proceedings of the ACM

SIGCOMM Computer Communication Review, New York, NY, USA, 3 July 1996; Volume 4, pp. 375–385.
[CrossRef]

11. Nieh, J.; Vaill, C.; Zhong, H. Virtual-Time Round-Robin: An O(1) Proportional Share Scheduler. In Proceedings
of the 2001 USENIX AnnualTechnical Conference, Boston, MA, USA, 25–30 June 2001. [CrossRef]

12. TBS Simulator. Available online: https://github.com/oslab-ewha/simtbs (accessed on 19 December 2020).

http://dx.doi.org/10.1109/MM.2010.41
http://dx.doi.org/10.1007/978-3-642-03869-3_89
http://dx.doi.org/10.1109/IPDPS.2010.5470378
https://docs.nvidia.com/cuda/
http://dx.doi.org/10.1145/217382.217453
http://dx.doi.org/10.5555/647055.715911
https://github.com/oslab-ewha/simtbs

Appl. Sci. 2020, 10, 9121 9 of 9

13. Lee, J.; Lakshminarayana, N.B.; Kim, H.; Vuduc, R. Many-thread aware prefetching mechanisms for
GPGPU applications. In Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, Atlanta, GA, USA, 4–8 December 2010.

14. Yunjoo, P.; Donghee, S.; Kyungwoon, C.; Hyokyung, B. Analyzing Fine-Grained Resource Utilization for
Efficient GPU Workload Allocation. J. Inst. Internet Broadcasting Commun. 2019, 19, 111–116. [CrossRef]

15. Su, C.-L.; Chen, P.Y.; Lan, C.-C.; Huang, L.-S.; Wu, K.H. Overview and comparison of OpenCL and CUDA
technology for GPGPU. In Proceedings of the 2012 IEEE Asia Pacific Conference on Circuits and Systems,
Kaohsiung, Taiwan, 2–5 December 2012.

16. Jia, Z.; Maggioni, M.; Smith, J.; Scarpazza, D.P. Dissecting the NVidia Turing T4 GPU via Microbenchmarking.
arXiv Preprint 2019, arXiv:1903.07486.

17. Wang, Q.; Xiaowen, C. GPGPU performance estimation with core and memory frequency scaling. IEEE Trans.
Parallel Distrib. Syst. 2020, 31, 2865–2881. [CrossRef]

18. Andersch, M. Analyzing GPGPU pipeline latency. In Proceedings of the International Summer School
on Advanced Computer Architecture and Compilation for High-Performance and Embedded Systems
(ACACES), Fiuggi, Italy, 13–19 July 2014.

19. Orzechowski, P.; Boryczko, K. Effective biclustering on GPU-capabilities and constraints. Prz Elektrotechniczn
2015, 1, 133–136. [CrossRef]

20. López-Fernández, A.; Rodriguez-Baena, D.; Gomez-Vela, F.; Divina, F.; Garcia-Torres, M. A multi-GPU
biclustering algorithm for binary datasets. J. Parallel Distrib. Comput. 2021, 147, 209–219. [CrossRef]

21. Collange, S.; Daumas, M.; Defour, D.; Parello, D. Barra: A parallel functional simulator for GPGPU.
In Proceedings of the 2010 IEEE International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, Miami Beach, FL, USA, 17–19 August 2010.

22. Wang, Z.; Yang, J.; Melhem, R.; Childers, B.; Zhang, Y.; Guo, M. Simultaneous multikernel GPU: Multi-tasking
throughput processors via fine-grained sharing. In Proceedings of the 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA), Barcelona, Spain, 12–16 March 2016.

23. Xu, Q.; Jeon, H.; Kim, K.; Ro, W.W.; Annavaram, M. Warped-slicer: Efficient intra-SM slicing through
dynamic resource partitioning for GPU multiprogramming. In Proceedings of the 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 June 2016.

24. Park, J.J.K.; Park, Y.; Mahlke, S. Dynamic resource management for efficient utilization of multitasking GPUs.
In Proceedings of the 22nd International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Xi’an, China, 8–10 April 2017. [CrossRef]

25. Pai, S.; Thazhuthaveetil, M.J.; Govindarajan, R. Improving GPGPU concurrency with elastic kernels.
In Proceedings of the ACM SIGARCH Computer Architecture News, Bangalore, India, 16 March 2013;
Volume 41, pp. 407–418.

26. Badawi, A.A.; Veeravalli, B.; Lin, J.; Xiao, N.; Kazuaki, M.; Mi, A.K.M. Multi-GPU Design and Performance
Evaluation of Homomorphic Encryption on GPU Clusters. IEEE Trans. Parallel Distrib. Syst. 2020, 32,
379–391. [CrossRef]

27. Yeh, T.T.; Sabne, A.; Sakdhnagool, P.; Eigenmann, R.; Rogers, T.G. Pagoda: Fine-grained GPU resource
virtualization for narrow tasks. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Austin, TX, USA, 4–8 February 2017; Volume 52, pp. 221–234. [CrossRef]

28. Aaron, A.; Fung, W.W.L.; Turner, A.E.; Aamodt, T.M. Visualizing complex dynamics in many-core accelerator
architectures. In Proceedings of the 2010 IEEE International Symposium on Performance Analysis of Systems
& Software (ISPASS), White Plains, NY, USA, 28–30 March 2010. [CrossRef]

29. Hughes, C.; Green, R.; Voskuilen, G.R.; Zhang, M.; Rogers, T. GPGPU-Sim Overview. In Technical Report,
No. SAND2019-13453C; Sandia National Lab: Albuquerque, NM, USA, 2019.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.7236/JIIBC.2019.19.1.111
http://dx.doi.org/10.1109/TPDS.2020.3004623
http://dx.doi.org/10.15199/48.2015.08.31
http://dx.doi.org/10.1016/j.jpdc.2020.09.009
http://dx.doi.org/10.1145/3037697.3037707
http://dx.doi.org/10.1109/TPDS.2020.3021238
http://dx.doi.org/10.1145/3155284.3018754
http://dx.doi.org/10.1109/ISPASS.2010.5452029
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	GPGPU and Thread Block Model
	A GPGPU Simulator Based on the Thread Block Scheduling Model
	Performance Evaluation
	Conclusions
	References

