Terahertz Guided Mode Resonance Sensing Platform Based on Freestanding Dielectric Materials: High Q-Factor and Tunable Spectrum
Abstract
:1. Introduction
2. Simulation Method
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Jia, K.; Zhang, D.; Ma, J. Sensitivity of guided mode resonance filter-based biosensor in visible and near infrared ranges. Sens. Actuators B Chem. 2011, 156, 194–197. [Google Scholar] [CrossRef]
- Wei, X.; Weiss, S.M. Guided mode biosensor based on grating coupled porous silicon waveguide. Opt. Express 2011, 19, 11330–11339. [Google Scholar] [CrossRef] [PubMed]
- Wawro, D.; Tibuleac, S.; Magnusson, R.; Liu, H. Optical fiber end face biosensor based on resonances in dielectric waveguide gratings. Proc. SPIE 2000, 3911, 86–94. [Google Scholar]
- Uddin, M.J.; Magnusson, R. Efficient guided-mode-resonant tunable color filters. IEEE Photonics Tech. Lett. 2012, 24, 1552–1554. [Google Scholar] [CrossRef]
- Peters, D.W.; Boye, R.R.; Wendt, J.R.; Kellogg, R.A.; Kemme, S.A.; Carter, T.R.; Samora, S. Demonstration of polarization-independent resonant subwavelength grating filter arrays. Opt. Lett. 2010, 35, 3201–3203. [Google Scholar] [CrossRef]
- Buet, X.; Daran, E.; Belharet, D.; Lozes-Dupuy, F.; Monmayrant, A.; Gauthier-Lafaye, O. High angular tolerance and reflectivity with narrow bandwidth cavity-resonator-integrated guided-mode resonance filter. Opt. Express 2012, 20, 9322–9327. [Google Scholar] [CrossRef]
- Niederer, G.; Herzig, H.P.; Shamir, J.; Thiele, H.; Schnieper, M.; Zschokke, C. Tunable, oblique incidence resonant grating filter for telecommunications. Appl. Opt. 2004, 43, 1683–1694. [Google Scholar] [CrossRef]
- Bark, H.S.; Jeon, T.I. Tunable terahertz guided-mode resonance filter with a variable grating period. Opt. Express 2018, 26, 29353–29362. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, A.; Zografopoulos, D.C.; Caputo, R.; Beccherelli, R. Guided-mode resonant narrowband terahertz filtering by periodic metallic stripe and patch arrays on cyclo-olefin substrates. Sci. Rep. 2018, 8, 17272. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.J.; Kim, S.H.; Park, K.; Lim, M.C.; Choi, S.W.; Ok, G. Free-standing guided-mode resonance humidity sensor in terahertz. Sens. Actuators A Phys. 2018, 26, 27–31. [Google Scholar] [CrossRef]
- Kim, S.J.; Born, B.; Havenith, M.; Gruebele, M. Real-time detection of protein–water dynamics upon protein folding by terahertz absorption spectroscopy. Angew. Chem. Int. Ed. 2018, 47, 6486–6489. [Google Scholar] [CrossRef] [PubMed]
- Sibik, J.; Löbmann, K.; Rades, T.; Zeitler, J.A. Predicting crystallization of amorphous drugs with terahertz spectroscopy. Mol. Pharm. 2015, 12, 3062–3068. [Google Scholar] [CrossRef] [PubMed]
- Debus, C.; Bolivar, P.H. Frequency selective surfaces for high sensitivity terahertz sensing. Appl. Phys. Lett. 2007, 91, 184102. [Google Scholar] [CrossRef]
- Ebbinghaus, S.; Kim, S.J.; Heyden, M.; Yu, X.; Gruebele, M.; Leitner, D.M.; Havenith, M. Protein sequence-and pH-dependent hydration probed by terahertz spectroscopy. J. Am. Chem. Soc. 2008, 130, 2374–2375. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.J.; Oh, S.J.; Kim, S.I.; Kim, H.W.; Son, J.H. Conformational characteristics of β-glucan in laminarin probed by terahertz spectroscopy. Appl. Phys. Lett. 2009, 94, 111911. [Google Scholar] [CrossRef]
- Son, J.H. Terahertz bio-sensing techniques. In Handbook of Terahertz Technology for Imaging, Sensing and Communications; Elsevier: Amsterdam, The Netherlands, 2016; pp. 217–230. [Google Scholar]
- Sang, T.; Wang, Z.; Zhu, J.; Wang, L.; Wu, Y.; Chen, L. Linewidth properties of double-layer surface relief resonant Brewster filters with equal refractive index. Opt. Express 2007, 15, 9659–9665. [Google Scholar] [CrossRef]
- Magnusson, R.; Wang, S.S. New principle for optical filters. Appl. Phys. Lett. 1992, 61, 1022–1024. [Google Scholar] [CrossRef]
- Ding, Y.; Magnusson, R. Band gaps and leaky-wave effects in resonant photonic-crystal waveguides. Opt. Express 2007, 15, 680–694. [Google Scholar] [CrossRef]
- Wang, S.S.; Magnusson, R. Theory and applications of guided-mode resonance filters. Appl. Opt. 1993, 32, 2606–2613. [Google Scholar] [CrossRef]
- Liu, W.X.; Lai, Z.Q.; Guo, H.; Liu, Y. Guided-mode resonance filters with shallow grating. Opt. Lett. 2010, 35, 865–867. [Google Scholar] [CrossRef]
- Vieweg, N.; Rettich, F.; Deninger, A.; Roehle, H.; Dietz, R.; Göbel, T.; Schell, M. Terahertz-time domain spectrometer with 90 dB peak dynamic range. J. Infrared Millimeter Terahertz Waves 2014, 35, 823–832. [Google Scholar] [CrossRef]
- Lin, S.F.; Wang, C.M.; Tsai, Y.L.; Ding, T.J.; Yang, T.H.; Chen, W.Y.; Yeh, S.F.; Chang, J.Y. A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors. Sens. Actuators B Chem. 2013, 176, 1197–1203. [Google Scholar] [CrossRef]
- Lin, S.F.; Wang, C.M.; Ding, T.J.; Tsai, Y.L.; Yang, T.H.; Chen, W.Y.; Chang, J.Y. Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution. Opt. Express 2012, 20, 14584–14595. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.J.; Ok, G. Terahertz Guided Mode Resonance Sensing Platform Based on Freestanding Dielectric Materials: High Q-Factor and Tunable Spectrum. Appl. Sci. 2020, 10, 1013. https://doi.org/10.3390/app10031013
Shin HJ, Ok G. Terahertz Guided Mode Resonance Sensing Platform Based on Freestanding Dielectric Materials: High Q-Factor and Tunable Spectrum. Applied Sciences. 2020; 10(3):1013. https://doi.org/10.3390/app10031013
Chicago/Turabian StyleShin, Hee Jun, and Gyeongsik Ok. 2020. "Terahertz Guided Mode Resonance Sensing Platform Based on Freestanding Dielectric Materials: High Q-Factor and Tunable Spectrum" Applied Sciences 10, no. 3: 1013. https://doi.org/10.3390/app10031013
APA StyleShin, H. J., & Ok, G. (2020). Terahertz Guided Mode Resonance Sensing Platform Based on Freestanding Dielectric Materials: High Q-Factor and Tunable Spectrum. Applied Sciences, 10(3), 1013. https://doi.org/10.3390/app10031013