Effects of the Selected Point of Voltage Reference on the Apparent Power Measurement in Three-Phase Star Systems
Abstract
:1. Introduction
2. Power Phenomenon Associated with the Voltage Reference Point in a Three-Phase Star-Configured System
2.1. Use of Source and Load Neutral Points as Voltage Reference Points
2.2. Using a Grounding Point as the Voltage Reference Point
3. Apparent Power Difference Due to the Selected Voltage Reference Point: Neutral-Displacement Power
3.1. Neutral-Displacement Power Expression
3.1.1. Expressions of the Neutral-Displacement Powers Using Ideal Voltage Reference Points
3.1.2. Expressions of the Neutral-Displacement Powers Using a Real Voltage Reference Point
4. Practical Experiments
4.1. Laboratory Applications with Three-Phase Voltage Source
4.1.1. Sinusoidal and Balanced Voltage Source
4.1.2. Sinusoidal and Unbalanced Voltage Source
4.1.3. Distorted Voltage Source
4.2. Real-World Electrical Network
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Emanuel, A.E.; Orr, J.A. The effect of neutral path impedance on voltage and current distortion. PART I: Symmetrically and balanced three-phase systems. In Proceedings of the 11th International Conference on Harmonics and Quality of Power, Lake Placid, NY, USA, 12–15 September 2004; pp. 186–190. [Google Scholar] [CrossRef]
- Emanuel, A.E.; Orr, J.A. The effect of neutral path impedance on voltage and current distortion. Part II: Imbalanced three-phase systems. In Proceedings of the 11th International Conference on Harmonics and Quality of Power, Lake Placid, NY, USA, 12–15 September 2004; pp. 180–185. [Google Scholar] [CrossRef]
- IEC 60050-195:1998; UNE 21302-195/1M:2004. Electrotechnical Vocabulary. Part 195: Earthing and Protection against Electric Shock; International Electrotechnical Committee: Geneva, Switzerland, 1998. [Google Scholar]
- Boyajian, A.; McCarty, O.P. Physical Nature of Neutral Instability. Trans. Am. Inst. Electr. Eng. 1931, 50, 317–327. [Google Scholar] [CrossRef]
- Gates, B.G. Neutral inversion in power systems. IET-J. Inst. Electr. Eng. 1936, 78, 317–325. [Google Scholar] [CrossRef]
- Gilkeson, C.L.; Jeanne, P.A. Overvoltages on Transmission Lines. AIEE Trans. 1934, 53, 1301–1309. [Google Scholar] [CrossRef]
- Clarke, E.; Crary, S.B.; Peterson, H.A. Overvoltages During Systems Faults. AIEE Trans. 1939, 58, 377–385. [Google Scholar] [CrossRef]
- Concordia, C.; Peterson, H.A. Arcing Faults in Power Systems. AIEE Trans. 1941, 60, 340–346. [Google Scholar] [CrossRef]
- Mortlock, J.R.; Dobson, C.M. Neutral earthing of three-phase systems, with particular reference to large power stations. IET-J. Inst. Electr. Eng. 1947, 94, 549–568. [Google Scholar] [CrossRef]
- Rocha, A.C.O.; Souza, W.M.; Mendes, J.C. Practical experiences in the analysis of abnormal voltages due to neutral instability. In Proceedings of the 2004 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (IEEE Cat. No. 04EX956), Sao Paulo, Brazil, 8–11 November 2004; pp. 952–958. [Google Scholar] [CrossRef]
- Raunig, C.; Schmautzer, E.; Fickert, L.; Achleitner, G.; Obkircher, C.; AG-Austria, Ö.I. Displacement voltages in resonant grounded grids caused by capacitive coupling. In Proceedings of the 20th International Conference and Exhibition on Electricity Distribution (CIRED 2009), Prague, Czech Republic, 8–11 June 2009. [Google Scholar] [CrossRef] [Green Version]
- Döring, L.; Braun, B.; Böhme, K.; Werben, S.; Kereit, M.; Hanson, J. Analytical calculation of the neutral point displacement voltage for high impedance earth faults in resonant earthed neutral systems. In Proceedings of the CIRED 2019 Conference, Madrid, Spain, 3–6 June 2019; ISBN 978-2-9602415-0-1. [Google Scholar]
- Zulaski, J.A. Apparatus for Detecting Neutral Displacement of a Polyphase System. U.S. Patent US3859564A, 7 January 1975. [Google Scholar]
- Premerlani, W.J.; Liu, Y.; Lavoie, G.P.; Pintar, M.G.; Zhou, R.; Papallo, T.F., Jr.; Valdes, M.E. System and Method of Locating Ground Fault in Electrical Power Distribution System. U.S. Patent EP1669767A1, 20 February 2007. [Google Scholar]
- Konotop, I.; Novitskiy, A.; Westermann, D. Constraints on the Use of Local Compensation for the Correction of Neutral Voltage Displacement Caused by the Influence of Nearby Power Lines. In Proceedings of the 2014 Electric Power Quality and Supply Reliability Conference (PQ), Rakvere, Estonia, 11–13 June 2014. [Google Scholar] [CrossRef]
- Kai, L.; Guojie, X.; Xiaojing, G.; Kun, Y.; Duohong, C.; Ran, L.; Fan, C.; Xiangjun, Z. Method for suppressing neutral point displacement overvoltage and suppression circuit in distribution network. In Proceedings of the 2018 China International Conference on Electricity Distribution (CICED), Tianjin, China, 17–19 September 2018; pp. 1726–1729. [Google Scholar] [CrossRef]
- Harner, R.H.; Owen, R.E. Neutral Displacement of Ungrounded Capacitor Banks During Switching. IEEE Trans. Power Appar. Syst. 1971, PAS-90, 1631–1638. [Google Scholar] [CrossRef]
- Funk, G.; Kizilcay, M. Limiting of neutral displacement voltages in power systems with arc suppression coils in case of unbalanced system capacitances to earth. Etz Arch. 1988, 10, 117–122. [Google Scholar]
- Li, J.; Wan, X.; Sun, C. Discussion on abnormal rise of displacement voltage of neutral point in compensation electric network and its control measures. In Proceedings of the 2006 International Conference on Power System Technology, Chongqing, China, 22–26 October 2006. [Google Scholar] [CrossRef]
- Buchholz, F. Die Drehstrom Scheinleistung bei Ungleichmas-siger Belastung Der Drei Zweige. Licht Und Kraft 1922, 2, 9–11. [Google Scholar]
- León-Martínez, V.; Montañana-Romeu, J. Method and Device for Determining the State of the Neutral Conductor in an Electrical Installation. Spanish-Granted Patent ES 2588260 B2, 9 May 2017. [Google Scholar]
- IEEE Std. C62.92.5. IEEE Guide for the Application of Neutral Grounding in Electrical Utility Systems, Part V–Transmission Systems and Subtransmission Systems; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- IEEE Standard 1459 2010. IEEE Trial Use Standard for the Measurement of Electric Power Quantities under Sinusoidal, Non-sinusoidal, Balanced or Unbalanced Conditions; IEEE Power and Energy Society: New York, NY, USA, 2010. [Google Scholar]
- Emanuel, A.E. Power Definitions and the Physical Mechanism of Power Flow; IEEE Press: Piscataway, NJ, USA; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2010; ISBN 978-0-470-66074-4. [Google Scholar] [CrossRef]
- Czarnecki, L.S. Currents’ physical components (CPC) in circuits with nonsinusoidal voltages and currents. Part 2: Three-phase linear circuits. Electr. Power Qual. Util. J. 2006, 12, 3–13. [Google Scholar]
- Czarnecki, L.S. Orthogonal decomposition of the currents in a 3 phase non linear asymmetrical circuit with non sinusoidal voltage source. IEEE Trans. Instrum. Meas. 1988, 37, 30–34. [Google Scholar] [CrossRef]
- Akagi, H.; Watanabe, E.H.; Aredes, M. Instantaneous Power Theory and Applications to Power Conditioning; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Kim, H.; Blaabjerg, F.; Bak-Jensen, B. Spectral analysis of instantaneous powers in single-phase and three-phase systems with use of p-q-r theory. IEEE Trans. Power Electron. 2002, 17, 711–720. [Google Scholar] [CrossRef]
- Willems, J.L.; Ghijselen, J.A.; Emanuel, A.E. The apparent power concept and the IEEE Standard 1459-2000. IEEE Trans. Power Deliv. 2005, 20, 876–884. [Google Scholar] [CrossRef]
- Cazorla-Navarro, A.; Garcia Giner, J.; León-Martínez, V.; Montañana-Romeu, J. Procedure for the Measurement of Powers, Energies and Efficiency in electrical installations, and the device thereof (in Spanish). Spanish Granted Patent ES 2166670 B1, 16 February 2003. [Google Scholar]
- Fortescue, C.L. Method of symmetrical coordinates applied to solution of poly-phase networks. In Proceedings of the 34th Convention of American Institute of Electrical Engineers, Atlantic City, NJ, USA, 28 June 1918. [Google Scholar] [CrossRef]
- Chroma ATE Inc. Chroma Programmable AC Power Source 61700. User’s Manual. Available online: https://www.chromausa.com/product/3-phase-programmable-ac-source-61700/ (accessed on 28 January 2020).
- Advantech Co. Ltd. Processor Board PCM-9581. User´s Manual. Available online: http://advdownload.advantech.com/productfile/Downloadfile4/1-124ET90/PCM-9581_user_manual_Ed2.pdf (accessed on 28 January 2020).
- National Instruments Corporation. Data Acquisition Board PCI-6220. Available online: https://www.ni.com/documentation/en/multifunction-io-device/latest/pci-6220/overview/ (accessed on 28 January 2020).
- LEM Transducers. Voltage Transducer LV 25-P. Available online: https://www.lem.com/en/lv-25p (accessed on 28 January 2020).
- FLUKE. AC Current Clamp i5sPQ3. Available online: https://www.fluke.com/es-es/producto/accesorios/pinzas-de-corriente/fluke-i5spq3 (accessed on 28 January 2020).
- De Lorenzo, S.p.A. Resistances DL1017R. Available online: https://www.delorenzoglobal.com/image/power-engineering-modules.pdf (accessed on 28 January 2020).
Analyzer | Voltage Accuracy % | Current Clamp Accuracy % |
---|---|---|
Fluke 437-II | ±0.1 | 1 |
SIMPELEC | ±0.9 | 1 |
Voltages (V) | Currents (A) | |||||
---|---|---|---|---|---|---|
Source | Load | |||||
RMS (V) | Angle (°) | RMS (V) | Angle (°) | RMS (A) | Angle (°) | |
A-phase | 230.27 | 0 | 189.83 | 5.5 | 0.782 | 5.5 |
B-phase | 230.19 | −120 | 239.47 | −130.5 | 0.566 | −130.5 |
C-phase | 230.32 | −240 | 267.92 | 125.5 | 0.316 | 125.5 |
V0/IN | 0.04* | 82.41 * | 44.84 * | 156.36 * | 0.242/0.246 * | −23.69 * |
Reference Point | Analyzer | Apparent (VA) | Neutral (VA) | Apparent * (VA) |
---|---|---|---|---|
N | Fluke 437 | 404.8 | 0.0666 | 404.68 |
SIMPELEC | 405.126 | 0.0666 | 405.22 | |
n | Fluke 437 | 412.3 | 78.8976 | 412.41 |
SIMPELEC | 412.827 | 78.8976 | 412.73 |
Source Voltage | Load Voltage | PCC Voltage | Line Current | |||||
---|---|---|---|---|---|---|---|---|
RMS (V) | Angle (°) | RMS (V) | Angle (°) | RMS (V) | Angle (°) | RMS (A) | Angle (°) | |
A-phase | 240.2 | 0 | 182.18 | 6.19 | 201.38 | −0.05 | 0.748 | 6.19 |
B-phase | 225.17 | −106 | 230.62 | −121.53 | 238.97 | −114.97 | 0.545 | −121.53 |
C-phase | 225.3 | −254 | 265.09 | 117.07 | 238.76 | 115 | 0.312 | 117.07 |
V0/IN | 38.67 | 0.02 | 28.12 | 135.46 | 0.2 | −136.52 | 0.334 | −18.56 |
Reference Point | Analyzer | Apparent (VA) | (VA) | Apparent * (VA) |
---|---|---|---|---|
Source (ref. pt. N) | Fluke 437 | 389.5 | 65.406 | 389.2 |
SIMPELEC | 389.65 | 65.406 | 389.648 | |
Load (ref. pt. n) | Fluke 437 | 386.4 | 47.562 | 386.49 |
SIMPELEC | 386.57 | 47.562 | 387.05 | |
PCC (ref. pt. G) | Fluke 437 | 383.6 | 0.343 | - |
SIMPELEC | 384.12 | 0.343 | - |
Source Voltage | Load Voltage | Real Grounding Point Voltage | Line Current | |||||
---|---|---|---|---|---|---|---|---|
50 Hz | 150 Hz | 50 Hz | 150 Hz | 50 Hz | 150 Hz | 50 Hz | 150 Hz | |
A-phase | 230.0 | 23.0 | 189.69 | 9.536 | 231.2 | 0.275 | 0.78 | 0.04 |
B-phase | 230.0 | 23.0 | 239.32 | 9.49 | 231.2 | 0.211 | 0.565 | 0.023 |
C-phase | 230.2 | 23.0 | 267.85 | 9.5 | 231.3 | 0.211 | 0.315 | 0.011 |
V0/IN | 0.07 | 23.0 | 45.08 | 9.508 | 0.07 | 0.23 | 0.246 | 0.071 |
Reference Point | Analyzer | Apparent (VA) | (VA) | Apparent * (VA) |
---|---|---|---|---|
Source (ref. pt. N) | Fluke 437 | 405.7 | 40.42 | 405.8 |
SIMPELEC | 406.28 | 40.42 | 406.27 | |
Load (ref. pt. n) | Fluke 437 | 411.7 | 80.95 | 411.83 |
SIMPELEC | 412.43 | 80.95 | 412.29 | |
PCC (ref. pt. G) | Fluke 437 | 403.8 | 0.42 | - |
SIMPELEC | 404.27 | 0.42 | - |
Reference Point | Apparent (VA) | (VA) |
---|---|---|
Source (ref. pt. N) | 58,382.40 | 107.19 |
Load (ref. pt. n) | 58,385.30 | 575.81 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
León-Martínez, V.; Montañana-Romeu, J.; Peñalvo-López, E.; Álvarez-Bel, C.M. Effects of the Selected Point of Voltage Reference on the Apparent Power Measurement in Three-Phase Star Systems. Appl. Sci. 2020, 10, 1036. https://doi.org/10.3390/app10031036
León-Martínez V, Montañana-Romeu J, Peñalvo-López E, Álvarez-Bel CM. Effects of the Selected Point of Voltage Reference on the Apparent Power Measurement in Three-Phase Star Systems. Applied Sciences. 2020; 10(3):1036. https://doi.org/10.3390/app10031036
Chicago/Turabian StyleLeón-Martínez, Vicente, Joaquín Montañana-Romeu, Elisa Peñalvo-López, and Carlos M. Álvarez-Bel. 2020. "Effects of the Selected Point of Voltage Reference on the Apparent Power Measurement in Three-Phase Star Systems" Applied Sciences 10, no. 3: 1036. https://doi.org/10.3390/app10031036
APA StyleLeón-Martínez, V., Montañana-Romeu, J., Peñalvo-López, E., & Álvarez-Bel, C. M. (2020). Effects of the Selected Point of Voltage Reference on the Apparent Power Measurement in Three-Phase Star Systems. Applied Sciences, 10(3), 1036. https://doi.org/10.3390/app10031036