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Featured Application: Fast Sensing Technologies for Disaster Monitoring.

Abstract: Laser induced fluorescence (LIF) technique has been demonstrated as a powerful technology
for analyzing the contamination of petroleum due to its excellent attributes of rapid analysis speed
and slight sample preparation. This study focuses on the monitoring application of LIF in petroleum
hydrocarbon-contaminated soils by establishing the three-dimensional diffusion models. In this
paper, to improve the analysis accuracy, the effects of soil matrix difference for fluorescence intensities
were considered. In order to validate the practicability of LIF, the longitudinal penetration laws and
the lateral diffusion laws of diesel oil in different humidity soils were analyzed. These laws indicate
that the longitudinal penetration depth decreases and the lateral diffusion range increases with the
increase of soil moisture. Then, the three-dimensional diffusion models were established, the relative
standard deviation (RSD) of the predictions for diesel oil in different soil moisture are 5.09%, 9.62%,
7.92%, and the contaminated volumes of soils by diesel oil are 233.90 cm3, 332.70 cm3, and 660.05 cm3,
respectively. These results express that the soil moisture extends the extent of diesel-contaminated
soils. The present work shows the feasibility of LIF technique for the field monitoring of petroleum.

Keywords: laser induced fluorescence; soil; diesel oil; three-dimensional diffusion model

1. Introduction

Due to the high-speed economic development and energy shortage, petroleum gradually occupies
an important role in modern society. The total output of petroleum is about 4.45 billion tons across
the world nowadays, and it has come to be used for more and more fields [1,2]. In the process
of exploitation, transportation, and production of petroleum, a large amount of petroleum will be
spilled into the surrounding soils. Petroleum in soils has a significant impact on health through the
bioaccumulation in the food chain [3]. This problem of environmental pollution brings huge challenges
to the sustainable development of our economy. Therefore the study of rapid and in-site detection
technique of petroleum pollutions in soils has become crucial to environmental monitoring.

Molecules are useful platforms to detect phenomena at quantum-projection-limited precision [4].
In the molecular techniques, laser induced fluorescence (LIF) spectroscopy technique is a rapid and
sensitive method for the analysis of organic materials based on their characteristics of fluorescence
spectra emitted by fluorophores [5]. The macromolecular organic compounds in petroleum
hydrocarbons, benzene series in polycyclic aromatic hydrocarbons and organophosphorus in pesticides
can emit fluorescence under ultraviolet pulse laser irradiation [6]. The fluorescence spectra can be
used to analyze the structure and characteristics of materials. This technique has been widely applied

Appl. Sci. 2020, 10, 1103; doi:10.3390/app10031103 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9049-1250
http://www.mdpi.com/2076-3417/10/3/1103?type=check_update&version=1
http://dx.doi.org/10.3390/app10031103
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 1103 2 of 10

in a variety of fields in recent years, such as biological detection, environmental detection, energy
exploration, petrochemical production, etc. [7–9].

Recently, many researchers have focused on the application of LIF in organic constituents and
quantitative analysis [10–12]. Cazorla et al. [13] used an airborne LIF instrument for measuring the
gas-phase formaldehyde, and the accuracy of quantitative analysis for reporting mixing ratios was
raised to ±10%. Baburaj et al. [14] used LIF technique to detect coral bleaching by researching the
variations of laser induced fluorescence spectral signatures in coral and proved that the average
fluorescence intensity ratio values were different at different temperature. Honza et al. [15] utilized LIF
technique as a tool for imaging the flame of sulfur dioxide and visualized the development of the early
flame kernel by the combination of SO2- and OH-PLIF (Planar Laser Induced Fluorescence) setup.
Bardi et al. [16] focused on the use of LIF technique to quantitative analyze the preferential evaporation
of fuel at engine relevant conditions.

However, due to the complicated matrixes of soils, it is hard to use the same calibration curve
to predict the concentrations of diesel oil in soils. The soils near the gas stations or on both sides
of the roads are most vulnerable to be polluted by petroleum in their transportation or on traffic
accidents. The physical characteristics of the above-mentioned soils are quite unified and the contents
of soil moisture are relatively low, the diffusion of petroleum in soils can be assumed as symmetrical,
therefore the content distribution of petroleum can be calculated by the fluorescence detection of the
surface and one vertical section. To date, the LIF technique has already been used as a measuring tool
for content distributions of materials [17,18]. Hayashi et al. [19] used LIF to analyze the distribution
law of polynuclear aromatic hydrocarbons in radial direction from the central axis at the processes of
soot formation. Wang et al. [20] applied LIF to investigate the combustion efficiency and combustion
phasing of fuel in different zones of an engine.

The objective of this paper is to obtain the diffusion regularity of diesel oil in soils, we report
the horizontal and vertical diffusion laws of diesel oil in different humidity soils by the application
of LIF technique. The effects of soil moisture are discussed. Then, the three-dimensional diffusion
models are established and discussed, highlighting the prediction accuracies from using the proposed
three-dimensional diffusion models.

2. Experimental Methods

The schematic diagram of the LIF setup is presented in Figure 1. A Q-switched Nd: YAG laser
(Quantel, Q-Smart 850) emitting at 266 nm with an output power of 30 mJ/pulse was used as the
excitation source and the repetition rate of the laser is 1 Hz. The pulse laser beam irradiated onto
the soil surface perpendicularly and a plano-convex quartz lens with a 50 mm focal length was used
for focusing the fluorescence spectra. The fluorescence spectrum was collected by a 1 m long fiber
optic which central fiber is 800 m diameter, each spectrum detected by a grating spectrometer (Ocean,
Maya-2000pro) and recorded by a computer. The spectrometer covered an overall range 200 nm-1100
nm with a spectral resolution of 1.1 nm. The soil samples were placed on a rotary platform which was
synchronized rotation with the pulse laser to avoid the inhomogeneity of spectral detection.

Soil samples were collected from the both sides of a national highway with a depth of 20–30 cm
and all sampling points are yellowish red soil. All of the collected samples were dried, grinded, and
sieved through 100-mesh to remove roots, then they were measured by gas chromatography to choose
the one without petroleum hydrocarbons as the experimental matrix. In order to obtain the diffusion
regularity of diesel oil in soils, the experiments were divided into two sets of experiments, and to
imitate the actual soil conditions, we impacted the soils by a hydraulic press. Firstly, for the quantitative
analysis experiments, ten dried soil samples were prepared by mixing different concentrations of diesel
oil and the concentrations are 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, and 5%. Secondly, for the
three-dimensional diffusion analysis, several samples with different gravimetric soil moisture ranging
from 0% to 25% were prepared, then 5.3 g diesel oil was quickly dropped on three soil samples with
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gravimetric moisture of 0%, 5%, and 10% by a pipette, and the density of the soils is about 2 g per
cubic centimeter.Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 11 
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Figure 1. Schematic diagram of the laser induced fluorescence (LIF) experimental setup.

For improving the stability of the LIF spectra, each measured spectrum was the accumulation of
40 laser shots at different locations of the same soil sample every sample was detected 5 times under
the same conditions to confirm the experimental reproducibility.

3. Results and Discussion

3.1. Quantitative Analysis

In the first set of experiments, the fluorescence spectra for a set of soil samples prepared as
described in the previous section were detected. The typical fluorescence spectra of diesel oil before
and after preprocessing by baseline correction are shown in Figure 2. One can observe from Figure 2
that the fluorescence peak of diesel oil is significantly influenced by the soil organic matter, polycyclic
aromatic hydrocarbons, and so on. In order to eliminate the influence of fluorescence spectra by soil
background, the data that follows in this paper are all the fluorescence spectra of diesel oil for removing
soil background.
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Figure 2. The typical LIF spectra of diesel oil before and after preprocessing.

Figure 3 shows the fluorescence spectra of diesel oil and the change rule of fluorescence intensity
in different soil moisture with the concentration of 0.5%. Five measured spectra for each sample were
averaged into an analytical spectrum. As shown in Figure 3, the fluorescence intensity change of diesel
oil is smaller when the percentage of soil moisture content is between 0% to 10%, and the fluorescence
intensity of diesel oil changes greatly with the increasing of soil moisture, the deviation of multiple
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measurements also increases. This may be due to the changes of the fluorescence emission efficiency in
different soil moisture, therefore the analysis of fluorescence spectra should consider the soil moisture
content. The soils beside the roads or near gas stations are the hot spots of diesel oil spilled and the
soils are usually dry, so in the following analytical process, all the soil samples were in low relative
soil moisture.
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Figure 3. The fluorescence spectra of diesel oil in different soil moisture. (a) The fluorescence spectra;
(b) the change regularity of the fluorescence peak intensity.

The calibration curve between the fluorescence peak intensities of diesel oil and the known
concentrations of the diesel oil are shown in Figure 4. It notes that the square correlation coefficient
value is 0.99, which verifies that the fluorescence peak intensity of diesel oil can be used to predict the
concentration of diesel oil in soils.
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Figure 4. The calibration curve between LIF intensity and diesel oil concentrations.

3.2. Three-Dimensional Diffusion Models

On the sides of national highways or near the gas stations, they are the main sites of pure petroleum
pollution, and they are usually quite spacious and environmentally similar within the same place, then
assuming that the diesel oil can permeate freely. Then, in the next set of experiment, 5.3 g diesel oil
was quickly dropped on three soil samples with gravimetric moisture of 0%, 5%, and 10% by a pipette,
and the density of the soils is about 2 g per cubic centimeter. Then we kept the sealed beaker in the
shade for 15 days, and observed its diffusion every day. After 7 days later, the variation of the diesel
diffusion could not be detected by LIF. After 15 days of standing, the LIF spectra of three-dimensional
distributions of diesel oil in three different soil samples were detected. The intervals of the longitudinal
penetration depth detection were 1 cm, and the fluorescence peak intensities of diesel oil versus the
longitudinal penetration depths down the center point are shown in Figure 5.
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Figure 5. The fluorescence intensity of diesel oil in different longitudinal penetration depths.

Figure 5 indicates that the diesel oil deposits in 0–6 cm below the surface of the soil. When the soil
moisture is 0%, the fluorescence intensity of diesel oil increases with increasing soil depth, but after 2
cm depth later, the fluorescence intensity of diesel oil gradually decreases with depth. When the soil
moisture is 5% or 10%, the fluorescence intensity of diesel oil gradually decreases with increasing soil
depth. Then the fluorescence intensities were taken into the calibration curve, and the concentrations
of diesel oil at different depths were calculated. As shown in Figure 6, when the soil moisture is 0%,
the concentrations of diesel oil in soils versus the longitudinal penetration depths are conformed to
quadratic law, but after 2 cm depth later, the concentration of diesel oil gradually decreases with depth.
When the soil moisture is 5% or 10%, the concentration of diesel oil gradually decreases with the
penetration depth increasing and a nearly linear relationship exists between the concentrations of
diesel oil and the longitudinal penetration depths. The square correlation coefficients of the calibration
curves are all above 0.95, which implies that the diesel oil accumulation in soils decreases linearly with
the penetration depth increasing, and the longitudinal penetration depth decreases with the increasing
of soil of humidity.
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Figure 6. The concentrations of diesel oil in different longitudinal penetration depths.

The intervals of the lateral diffusion detection were 1 cm, and the fluorescence peak intensities of
diesel oil versus the lateral diffusion breadths outward from the central point in different humidity
soils are shown in Figure 7.

As shown in Figure 7, we can detect the fluorescence of diesel oil 5 cm away from the central point
of the pollution source. Then the fluorescence intensities were taken into the calibration curve, and
the concentrations of diesel oil at different breadths were calculated. Figure 8 indicates that there are
good linear relationships between the concentrations of diesel oil and the lateral diffusion breadths
away from the central point of the pollution source in different humidity soils. The square correlation
coefficients of the calibration curves are all above 0.98, which implies that the amounts of the lateral
diffusion of diesel oil in soils decreases linearly with the transverse diffusion distance increasing.
As shown in Figure 8, we can observe that the lateral diffusion breadth increases with the increasing of
soil humidity.
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Figure 7. The fluorescence intensity of diesel oil in different lateral diffusion breadths.
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Figure 8. The concentrations of diesel oil in different lateral diffusion breadths.

On the basis of diesel oil diffusion shown in Figures 6 and 8, we can calculate that the longitudinal
penetration depths of diesel oil in different soil samples with the moisture of 0%, 5%, 10% are 5.05 cm,
5.10 cm, 4.11 cm, which are shown in Table 1, and the lateral diffusion breadths of diesel oil are 5.36 cm,
6.44 cm, 10.11 cm, when 5.3 g diesel oil was quickly dropped on the surface of soil by a pipette.

Table 1. Diffusion range of diesel oil in different soil moisture.

Soil Moisture Lateral Diffusion Breadth(cm) Longitudinal Penetration Depth(cm)

0% 5.43 5.05
5% 6.44 5.01

10% 10.11 4.11

Figure 9 shows the diffusion mechanisms of diesel oil at the surface of the soil and longitudinal cut
sides through the central point of the diesel oil dropped. As shown in Figure 9, the diesel oil diffuses
around the central point like a circle, and the soil color becomes shallow gradually with the departing
from the dropping center of diesel oil. On the longitudinal section, the diesel oil diffuses in accordance
with parabolic-like line form, and the soil color becomes shallow towards periphery. This results show
that the diesel oil evenly distributes in all lateral directions, combined with the longitudinal section,
the permeation-diffusion model of diesel oil in soils can be viewed as a rotating body formed by
rotating a parabola around an axis which was crossing the central point and vertical to the soil surface.

Then the three-dimensional diffusion models of diesel oil in different moisture soils are established
and shown in Figure 10. For estimating the total amounts of diesel oil which were dropped in soils,
the three-dimensional diffusion models and the calibration curve were used. Assuming that the
diffusion laws in longitudinal direction are consistent, to validate the accuracies of the calibration
curve and the three-dimensional diffusion models of diesel oil in soils, a way of calculating triple
integral by the use of symmetry is utilized. The calculated weights of diesel oil in different soil samples
with the humidity of 0%, 5%, 10% are 5.57 g, 5.81 g, and 5.72 g. These results gained through the
three-dimensional diffusion models show that the relative standard deviations of the predictions for
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the total weights of diesel oil in soils are 5.09%, 9.62%, and 7.92%, therefore the accuracies of the
calibration curve and the three-dimensional diffusion models are verified by the error analysis.
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Figure 10. The three-dimensional diffusion models of diesel oil in different humidity soils.

As shown in Table 2, we calculated the polluted volumes of diesel oil in soils with different soil
moistures, and the polluted volumes of soils by diesel oil are 233.90 cm3, 332.70 cm3, and 660.05 cm3.
These results express that the soil moisture can extend the diesel oil pollution to the soil. Therefore,
LIF technique can be considered as a fast and useful tool for analyzing the three-dimensional content
distribution of diesel oil and evaluating the soil environmental quality.

Table 2. The contaminated soil volumes by diesel oil in different soil moistures.

Soil Moisture The Contaminated Soil Volume The Calculated Amount of Diesel Oil (g) RSD (%)

0% 233.90 cm3 5.57 5.09
5% 332.70 cm3 5.81 9.62
10% 660.05 cm3 5.72 7.92

4. Conclusions

In summary, this study focuses on the monitoring application of LIF in petroleum
hydrocarbon-contaminated soils by establishing the three-dimensional diffusion models. The spectra
obtained from diesel oil are complex and unique, which peak intensity can represent the concentration
of diesel oil, and the square correlation coefficient value of the calibration curve is 0.99. There is little
difficulty in obtaining high-quality spectrum quickly, typically less than 1 min, which is a benefit to
monitoring the soil quality.

The longitudinal penetration spectra and the lateral diffusion spectra of diesel oil in soils were
detected and the laws of permeation and distribution were analyzed. These laws indicate that
the soil moisture can extend the diesel oil pollution to the soil. The three-dimensional diffusion
models in different soil samples were established and the polluted volumes of soils by diesel oil were
calculated. The analytical method employed in this paper can be extended to other petroleum-polluted
soils. Therefore, it is feasible to develop the LIF technique for the rapid analysis of petroleum
hydrocarbon-contaminated concentrations and distributions in high precision, and it is an effective
path to improve the efficiencies and reduce the costs of soil pollution treatment.
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