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Abstract: Excitation-emission fluorescence spectra is very effective to predict the concentration
of organics in samples. However, redundant information and noises in the excitation-emission
matrix (EEM) decrease the accuracy of the prediction concentration. Here we proposed a method
to select more useful excitation and emission spectra from the EEM to increase the accuracy of
prediction concentration and reduce the processing time. First, the excitation wavelengths were
selected based on the clustering method to limit the redundant information in the EEM. Then the
emission wavelengths were selected based on the Monte-Carlo method. To validate this method,
we established the concentration prediction model with the spectra corresponding to the selected
wavelengths by partial least square regression and predicted the multi component concentrations in
the test samples. Our studies indicate that incorporation of this method increases the accuracy of the
prediction concentration of organics and reduces the processing time.

Keywords: excitation emission fluorescence spectra; wavelength selection; clustering; Monte Carlo;
concentration predication

1. Introduction

Spectrofluorimetry has been widely implemented to predict the concentration of organics in
samples for its advantages of sensitivity, selectivity, non-invasiveness, and fastness [1,2]. To date,
the emission fluorescence spectrum, which is excited by single excitation wavelength, is commonly
used to predict the concentration of organics. Alternatively, an excitation-emission matrix (EEM) of
the sample acquired by choosing individual excitation wavelengths is better to analyze the organics
quantitatively, which consists of multiple emission spectra and includes more information of the
samples. However, some of these emission fluorescence spectra are linearly correlated, by which lead
to extra redundant information [3,4], and Rayleigh scattering of the light also contributes to the EEM,
which is known as noises. All this subordinate information is infaust for predicting the concentration
of the organics [5]. To increase the accuracy of concentration prediction, the excitation and emission
wavelengths in the EEM should be selected.

To date most reported researches are focused on the selection of the emission wavelengths from the
emission spectrum. The methods, for example, partial least squares regression (PLSR), moving window
PLS, iterative predictor weighting-PLS, and uninformative variable elimination-PLS [6–11], establish
multi concentration prediction models with every emission wavelength in turn and the wavelengths
corresponding to the lowest prediction concentration error are finally reserved. Comparing to these
methods, the genetic algorithm (GA) and Monte Carlo method have more wavelengths selection
throughput [12–15], because emission wavelengths are selected by taking into account their contribution
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to the concentration prediction. The initial contribution to the concentration of each wavelength
is presumably the same for GA, which is not consistent with the actuality; and the predetermined
criteria is given for Monte Carlo to reserve the emission wavelengths which contribute most to
the concentration. Considering the linear correlation between emission spectra excited by different
wavelengths, all emission spectra are categorized into different classes based on their similarity,
by aligning the similarity coefficients between different emission spectra in each class. Only the
emission spectrum with the maximal similarity coefficient between it and the other emission spectra is
reserved to eliminate the influence of the redundant information between different emission spectra.

Overall, we developed a method to increase the accuracy of the prediction concentration based on
the EEM, by which the excitation wavelengths and the emission wavelengths are selected respectively.
This approach involves three discrete steps: (a) The clustering method is performed to categorize
the emission spectra into different classes, only the emission spectrum with the maximal similarity
coefficient between it and the other emission spectra in each class is reserved; then (b) all the reserved
emission spectra are unfolded to one dimension emission spectrum by sorting their corresponding
excitation wavelengths in ascending order, and the Monte Carlo method combined with PLSR is
applied to refine the emission wavelengths; and finally (c) the prediction concentration model is
established by the spectra corresponding to the selected wavelengths.

2. Methods

2.1. Selection of the Excitation Wavelengths by the Clustering Method

The typical EEM is described in Table 1. Ex1, . . . , Exj, . . . , ExJ are the J excitation wavelengths, Em1,
. . . , Emi, . . . , EmI are the I emission wavelengths, and Xij is the fluorescence intensity corresponding
to the ith emission wavelength excited by the jth wavelength. Let (Xa1, Xa2, . . . , XaI)T and (Xb1, Xb2,
. . . , XbI)T be the emission intensity spectra relating to the ath and the bth excitation wavelengths,
respectively. The similarity coefficient Cab between these two emission spectra is calculated by
Equation (1), as follows:

Cab =

I∑
i=1

(Xai −Xa)(Xbi −Xb)√
I∑

i=1
(Xai −Xa)

2 I∑
i=1

(Xbi −Xb)
2

(1)

where Xa, Xb are the mean fluorescence intensity of the ath and the bth emission spectra, respectively.

Table 1. The excitation-emission matrix (EEM).

Ex1 . . . Exj . . . ExJ

Em1 X11 . . . Xj1 . . . XJ1
...

...
...

...
...

...
Emi X1i . . . Xji . . . XJi

...
...

...
...

...
...

EmI X1I . . . XjI . . . XJI

Initially there are J excitation wavelength classes (Figure 1), corresponding to J excitation
wavelengths, then the similarity coefficients between any two emission spectra corresponding to their
excitation wavelengths are calculated, after the pair of emission spectra with the largest similarity
coefficient are designated as one class, J-1 excitation wavelength classes are left. The number of classes
is reduced by one after each calculation round of the similarity coefficient. This process is performed
until the difference of similarity coefficients between any two pair of classes are under the pre-defined
tolerant criterion.
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Figure 1. Schematics of the excitation wavelengths clustering. Initially there are J excitation
wavelength classes.

When two or more excitation wavelengths are assigned to the same class, the calculation of the
similarity coefficient between different classes is different from that between each single emission
spectrum. Let M and N be two different classes with m and n emission spectra in each class, the similarity
coefficient calculation steps are: First, the similarity coefficients between one emission spectrum in
class M and the n emission spectra in class N are calculated; then another emission spectrum in class
M is assigned to repeat the above step. Once all m× n similarity coefficients are calculated, the two
excitation wavelengths corresponding to the maximum similarity coefficient between the class M and
N are accepted to represent each class.

The EEM of pure organic compound sample is used to select its excitation wavelengths. The spectra
corresponding to these wavelengths will be served to select the emission wavelengths.

2.2. Selection of the Emission Wavelengths by the Monte Carlo Method

The P training samples with known concentrations of each component are used to establish
the prediction concentration model. Presumably k excitation wavelengths are retained for each
component by the method given in Section 2.1, the k emission spectra corresponding to specific
excitation wavelengths are unfolded into a one-dimensional emission spectrum in the ascending order
of the excitation wavelengths, that is,

X = (X11, . . . , Xi1, . . . , XI1, X12, . . . , Xi2, . . . , XI2, . . . , X1k, . . . , Xik, . . . , XIk)
T (2)

Each sample has I emission wavelengths, leading to a total of I × k emission wavelengths. There are
P unfolding emission spectra for P training samples.

The Monte Carlo method combined with PLSR is applied to select the emission wavelengths
from P unfolding emission spectra as Formula (2). For each iteration, l emission wavelengths are
randomly picked out from each X, a l × P sub-emission matrix Xl is formed with P unfolding spectra.
The prediction concentration model is constructed with Xl based on PLSR [10,11]. The root mean
square error of correction (RMSEC) is calculated by Equation (3):

RMSEC =

√√√√√ C∑
c=1

(ỹc − yc)
2

C
(3)

where yc is the known concentration of component c, ỹc is the predicted concentration of c, and C
is the number of components. The reliability of the prediction for each iteration is calculated by
dj = 1/RMSEC.

After 20,000 iterations of above step, if the ith emission wavelength is selected Q times, the reliability
score Si of the ith emission wavelength is summed by
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Si =
1
Q

Q∑
j=1

d j (4)

The reliability scores of the I × k emission wavelengths are calculated and the top 10% emission
wavelengths are reserved. These selected emission wavelengths will be used to predict concentrations
in the test samples.

3. Experimental Method and Results

3.1. Apparatus and Sample Preparation

Three organic compounds used for this study were naphthalene, 1-naphthol, and 2-naphthol.
The samples of the three pure compounds were mixed into another 11 samples of different concentrations.
We used the training set (nine samples) to establish the prediction concentration model, and the test set
(two samples) to validate the accuracy of the concentration prediction. Table 2 listed the components
concentrations of all samples. Besides, eleven blank samples were also prepared without the above
three organics compounds.

The EEMs of the three pure compounds, the nine training samples, the two test samples, and eleven
blank samples were collected over excitation wavelengths between 220 and 300 nm with a 2 nm interval
and over emission wavelengths between 325 and 600 nm with a 5 nm interval by a Hitachi F-7000
spectrofluorometer at room temperature of 25 ◦C. The EEM of each sample was subtracted by the
mean EEM of the eleven blank samples to eliminate the influence of the background noises. As an
example, Figure 2 shows the original EEM of naphthalene, the mean EEM of the blank samples, and the
blank-subtracted naphthalene.

Table 2. Concentrations of components in samples (mg/L).

Sample Naphthalene 1-Naphthol 2-Naphthol

Test samples # 1 0.2500 0.2500 0.2000
2 0.2700 0.4000 0.3000

Training samples #

1 0.1000 0.1000 0.1000
2 0.1000 0.2000 0.4000
3 0.1000 0.5000 0.5000
4 0.3000 0.1000 0.4000
5 0.3000 0.2000 0.5000
6 0.3000 0.5000 0.1000
7 0.5000 0.1000 0.5000
8 0.5000 0.2000 0.1000
9 0.5000 0.5000 0.4000
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3.2. Results of the Selected Wavelengths

The clustering method was used to select the excitation wavelengths for each pure compound
with the pure compound EEM. The tolerant criterion was set to 1.3 × 10−3. Table 3 gives the 10
selected excitation wavelengths of each component from 41 excitation wavelengths. The selected
excitation wavelengths of each component are different, which can presume it relates to their specific
molecular structures.

Table 3. The selected excitation wavelengths for the pure compound (nm).

Name of the Pure Compound Selected Excitation Wavelengths

naphthalene 220 224 230 234 236 252 254 262 270 272
1-naphthol 222 230 248 250 252 256 258 260 290 292
2-naphthol 248 250 252 254 260 262 266 268 278 288

We used the emission spectra corresponding to the 10 selected excitation wavelengths of the
nine training samples to find the emission wavelengths based on the method given in Section 2.2.
The dots in Figure 3a,c,e are the selected emission wavelengths, which are 63 for naphthalene, 64
for 1-naphthol, and 71 for 2-naphthol. These emission wavelengths fell within the emission spectra
peak band of each compound excited by specific wavelength, as plotted in Figure 4. For comparison,
we used the same emission spectra corresponding to the selected excitation wavelengths to select the
emission wavelengths by the GA method, as shown in Figure 3b,d,f. As it can be seen in Figure 3b,d,f,
these wavelengths extended across the entire band of the emission wavelengths. The Monte Carlo
method in this study is more effective than the GA method presumably that the emission wavelengths
within the peak band contribute most to the concentration prediction.
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Figure 4. Emission fluorescence spectra of naphthalene, 1-naphthol, and 2-naphthol excited by the
wavelength of 220, 256, and 246 nm, respectively.

3.3. Results of Concentration Prediction

The predicted concentration models were established with all spectra of the training samples
and the spectra corresponding to the selected wavelengths based on our proposed method of the
training samples by the PLSR to predict the concentrations of the test samples. Table 4 gives the root
mean squared error of prediction concentration (RMSEP) with these two different spectra to assess the
accuracy of the predicted concentrations. As can be seen, the RMSEP for Naphthalene, 1-naphthol,
and 2-naphthol with the selected wavelengths are 1.35%, 1.05%, and 1.62%, respectively. However,
the RMSEP for Naphthalene, 1-naphthol, and 2-naphthol with the full wavelengths are 2.89%, 1.77%,
and 1.78%, respectively. The RMSEP for three compounds with the selected wavelengths are all
lower than those with all wavelengths. The running time for the concentration prediction with all
wavelengths and the selected wavelengths is also given in Table 4. The running time for Naphthalene,
1-naphthol, and 2-naphthol with the selected wavelengths is 127.67, 130.98, and 127.26 s, respectively.
However, the running time for Naphthalene, 1-naphthol, and 2-naphthol with the full wavelengths is
356.37, 405.86, and 382.53 s, respectively. It is also obvious that the running time with the selected
wavelengths is shorter than that with all wavelengths.

Table 4. Predicted concentrations of the three components in the test samples.

Wavelength Components Naphthalene 1-Naphthol 2-Naphthol

Full wavelength
predication

Sample 1
(mg/L)

actual concentration 0.2500 0.2500 0.2000

predication
concentration(mg/L) 0.2329 0.2621 0.2150

Sample 2
(mg/L)

actual concentration 0.2700 0.4000 0.3000

predication
concentration(mg/L) 0.2840 0.4086 0.3173

run time (s) 356.37 405.86 382.53

RMSEP (%) 2.89 1.77 1.78

Selected wavelength
predication

Sample 1
(mg/L)

actual concentration 0.2500 0.2500 0.2000

predication
concentration(mg/L) 0.2260 0.2445 0.1889

Sample 2
(mg/L)

actual concentration 0.2700 0.4000 0.3000

predication
concentration(mg/L) 0.2619 0.4065 0.2954

run time (s) 127.67 130.98 127.26

RMSEP (%) 1.35 1.05 1.62

RMSEP: the root mean squared error of prediction concentration.
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4. Conclusions

This study aims to increase the accuracy of the prediction concentration by selecting the excitation
wavelengths and emission wavelengths from the EEM. To eliminate the redundant information,
the excitation wavelengths were selected based on the clustering method; to refine the most useful
emission wavelengths, the emission wavelengths corresponding to the selected excitation wavelengths
were determined based on the Monte Carlo method. Comparing to the predicted concentration with all
spectra, the accuracy of the prediction concentrations with the selected spectra is increased by selecting
the irrelevant excitation spectra and reserving the emission wavelengths contributing most to predict
component concentration based on the proposed method. The RMSEP for Naphthalene, 1-naphthol,
and 2-naphthol with the selected wavelengths are 1.54%, 0.72%, and 0.16% lower than those with
all wavelengths, respectively. Furthermore, the running time of the concentration prediction is also
reduced because only the selected spectra were used instead of the full spectra. The running time for
Naphthalene, 1-naphthol, and 2-naphthol with the selected wavelengths is 228.7, 274.88, and 255.27 s
shorter than that with all wavelengths, respectively.
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