Prediction of the Load-Bearing Behavior of SPSW with Rectangular Opening by RBF Network
Abstract
:1. Introduction
2. Finite Element Modeling (FEM)
3. Neural Network Modeling
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sitar, N.; Mikola, R.G.; Candia, G. Seismically Induced Lateral Earth Pressures on Retaining Structures and Basement Walls; Geotechnical Special Publication: Oakland, CA, USA, 2012; pp. 335–358. [Google Scholar]
- Shabani, A.; Erfani, S. Seismic Performance Evaluation of SSMF with Simple Beam–Column Connections Under the Base Level. Int. J. Steel Struct. 2019, 20, 1–12. [Google Scholar] [CrossRef]
- Shan, S.; Li, S.; Kose, M.M.; Sezen, H.; Wang, S. Effect of partial infill walls on collapse behavior of reinforced concrete frames. Eng. Struct. 2019, 197, 109377. [Google Scholar] [CrossRef]
- Shan, S.; Li, S.; Wang, S.; Sezen, H.; Kose, M.M. Influence of masonry infill walls on fire-induced collapse mechanisms of steel frames. J. Constr. Steel Res. 2019, 155, 426–437. [Google Scholar] [CrossRef]
- Moradi, M.J.; Hariri-Ardebili, M.A. Developing a Library of Shear Walls Database and the Neural Network Based Predictive Meta-Model. Appl. Sci. 2019, 9, 2562. [Google Scholar] [CrossRef] [Green Version]
- AISC. Resistance Factor Design Specification for Structural Steel Buildings; American Institute of Steel Construction: Chicago, IL, USA, 1999; Volume 1. [Google Scholar]
- CAN, C. CSA-S16-01, Limit States Design of Steel Structures; Canadian Standards Association: Toronto, ON, Canada, 2001. [Google Scholar]
- Timler, P. Economical design of steel plate shear walls from a consulting engineers perspective. In Proceedings of the 1999 North American Steel Construction Conference (NASCC), Toronto, ON, Canada, 10–12 May 1999; p. 36. [Google Scholar]
- Sabouri-Ghomi, S.; Ahouri, E.; Sajadi, R.; Alavi, M.; Roufegarinejad, A.; Bradford, M. Stiffness and strength degradation of steel shear walls having an arbitrarily-located opening. J. Constr. Steel Res. 2012, 79, 91–100. [Google Scholar] [CrossRef]
- Timler, P.A.; Kulak, G.L. Experimental Study of Steel Plate Shear Walls; Structural Engineering Report No. 114; Department of Civil Engineering, University of Alberta: Edmonton, AB, Canada, 1983. [Google Scholar]
- Hajimirsadeghi, M.; Mirtaheri, M.; Zandi, A.; Hariri-Ardebili, M. Experimental cyclic test and failure modes of a full scale enhanced modular steel plate shear wall. Eng. Fail. Anal. 2019, 95, 283–288. [Google Scholar] [CrossRef]
- Driver, R.G.; Kulak, G.L.; Kennedy, D.L.; Elwi, A.E. Cyclic test of four-story steel plate shear wall. J. Struct. Eng. 1998, 124, 112–120. [Google Scholar] [CrossRef]
- Park, H.S.; Hong, K.; Seo, J.H. Drift design of steel-frame shear-wall systems for tall buildings. Struct. Des. Tall Build. 2002, 11, 35–49. [Google Scholar] [CrossRef]
- Bypour, M.; Kioumarsi, B.; Kioumarsi, M. Investigation of Failure Mechanism of Thin Steel Plate Shear Wall in RC Frame. In Key Engineering Materials; Trans Tech Publication Ltd.: Zürich, Switzerland, 2019; Volume 803, pp. 314–321. [Google Scholar]
- Bypour, M.; Gholhaki, M.; Kioumarsi, M.; Kioumarsi, B. Nonlinear analysis to investigate effect of connection type on behavior of steel plate shear wall in RC frame. Eng. Struct. 2019, 179, 611–624. [Google Scholar] [CrossRef]
- Kioumarsi, B.; Gholhaki, M.; Kheyroddin, A.; Kioumarsi, M. Analytical study of building height effects over Steel Plate Shear Wall Behavior. Int. J. Eng. Technol. Innov. 2016, 6, 255. [Google Scholar]
- Afshari, M.J.; Gholhaki, M. Shear strength degradation of steel plate shear walls with optional located opening. Arch. Civ. Mech. Eng. 2018, 18, 1547–1561. [Google Scholar] [CrossRef]
- Behbahanifard, M.R.; Grondin, G.Y.; Elwi, A.E.A. Experimental and Numerical Investigation of Steel Plate Shear Walls; University of Alberta, Department of Civil and Environmental Engineering: Edmonton, AB, Canada, 2003. [Google Scholar]
- Takahashi, Y.; Takemoto, Y.; Takeda, T.; Takagi, M. Experimental Study on Thin Steel Shear Walls and Particular Bracing under Alternative Horizontal Load; Preliminary Report; IABSE: Lisbon, Portugal, 1973; pp. 185–191. [Google Scholar]
- Roberts, T.M.; Sabouri-Ghomi, S. Hysteretic characteristics of unstiffened perforated steel plate shear panels. Thin-Walled Struct. 1992, 14, 139–151. [Google Scholar] [CrossRef]
- Deylami, A.; Daftari, H. Non-linear behavior of steel shear wall with large rectangular opening. In Proceedings of the 12th World Conference on Earthquake Engineering 2000, Auckland, New Zealand, 30 January–4 February 2000. [Google Scholar]
- Vian, D.; Bruneau, M. Testing of Specially Steel Plate Shear Walls. In Proceedings of the 4th International Conference on Earthquake Engineering, Graz, Austria, 6–8 September 2006. [Google Scholar]
- Pellegrino, C.; Maiorana, E.; Modena, C. Linear and non-linear behaviour of steel plates with circular and rectangular holes under shear loading. Thin-Walled Struct. 2009, 47, 607–616. [Google Scholar] [CrossRef]
- Paik, J.K. Ultimate strength of perforated steel plates under edge shear loading. Thin-Walled Struct. 2007, 45, 301–306. [Google Scholar] [CrossRef]
- Valizadeh, H.; Sheidaii, M.; Showkati, H. Experimental investigation on cyclic behavior of perforated steel plate shear walls. J. Constr. Steel Res. 2012, 70, 308–316. [Google Scholar] [CrossRef]
- Alavi, E.; Nateghi, F. Experimental study on diagonally stiffened steel plate shear walls with central perforation. J. Constr. Steel Res. 2013, 89, 9–20. [Google Scholar] [CrossRef]
- Bhowmick, A.K. Seismic behavior of steel plate shear walls with centrally placed circular perforations. Thin-Walled Struct. 2014, 75, 30–42. [Google Scholar] [CrossRef]
- Purba, R.; Bruneau, M. Seismic performance of steel plate shear walls considering two different design philosophies of infill plates. I: Deterioration model development. J. Struct. Eng. 2014, 141, 04014160. [Google Scholar] [CrossRef] [Green Version]
- Khalilzadeh Vahidi, E.; Roshani, M. Prediction of load-carrying capacity in steel shear wall with opening using artificial neural network. J. Eng. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Nassernia, S.; Showkati, H. Experimental study of opening effects on mid-span steel plate shear walls. J. Constr. Steel Res. 2017, 137, 8–18. [Google Scholar] [CrossRef]
- Asteris, P.G.; Nikoo, M. Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures. Neural Comput. Appl. 2019, 31, 4837–4847. [Google Scholar] [CrossRef]
- Asteris, P.G.; Armaghani, D.J.; Hatzigeorgiou, G.D.; Karayannis, C.G.; Pilakoutas, K. Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks. Comput. Concr. 2019, 24, 469–488. [Google Scholar]
- Asteris, P.G.; Plevris, V. Anisotropic masonry failure criterion using artificial neural networks. Neural Comput. Appl. 2017, 28, 2207–2229. [Google Scholar] [CrossRef]
- Asteris, P.G.; Apostolopoulou, M.; Skentou, A.D.; Moropoulou, A. Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars. Comput. Concr. 2019, 24, 329–345. [Google Scholar]
- Asteris, P.G.; Mokos, V.G. Concrete compressive strength using artificial neural networks. Neural Comput. Appl. 2019, 1–20. [Google Scholar] [CrossRef]
- Plevris, V.; Asteris, P.G. Modeling of masonry failure surface under biaxial compressive stress using Neural Networks. Constr. Build. Mater. 2014, 55, 447–461. [Google Scholar] [CrossRef]
- Zhao, Z.; Ren, L. Failure criterion of concrete under triaxial stresses using neural networks. Comput. Civ. Infrastruct. Eng. 2002, 17, 68–73. [Google Scholar] [CrossRef]
- Hossain, M.S.; Ong, Z.C.; Ismail, Z.; Noroozi, S.; Khoo, S.Y. Artificial neural networks for vibration based inverse parametric identifications: A review. Appl. Soft Comput. 2017, 52, 203–219. [Google Scholar] [CrossRef]
- Sabouri-Ghomi, S.; Mamazizi, S. Experimental investigation on stiffened steel plate shear walls with two rectangular openings. Thin-Walled Struct. 2015, 86, 56–66. [Google Scholar] [CrossRef]
- Abaqus, I. ABAQUS/Explicit User’s Manual; Dassault Systèmes Simulia Corp.: Providence, RI, USA, 2002. [Google Scholar]
- Roshani, S.; Roshani, S. Two-Section Impedance Transformer Design and Modeling for Power Amplifier Applications. Appl. Comput. Electromagn. Soc. J. 2017, 32, 1042–1047. [Google Scholar]
- Roshani, G.H.; Roshani, S.; Nazemi, E.; Roshani, S. Online measuring density of oil products in annular regime of gas-liquid two phase flows. Measurement 2018, 129, 296–301. [Google Scholar] [CrossRef]
- Yao, W.; Fang, J.; Zhao, P.; Liu, S.; Wen, J.; Wang, S. TCSC nonlinear adaptive damping controller design based on RBF neural network to enhance power system stability. J. Electr. Eng. Technol. 2013, 8, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Zirak, A.R.; Roshani, S. A Reduced Switch Voltage Stress Class E Power Amplifier Using Harmonic Control Network. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 38–42. [Google Scholar]
- Militkỳ, J. Fundamentals of soft models in textiles. In Soft Computing in Textile Engineering; Elsevier: Amsterdam, The Netherlands, 2011; pp. 45–102. [Google Scholar]
Name | Year | No. Sample | Investigated Parameters | No. Story | Type of Research | Ref. |
---|---|---|---|---|---|---|
Takahashi | 1973 | 12 | SPSW with opening and without opening | 1 | Experimental | [19] |
Roberts and Sabouri-ghomi | 1991 | 16 | Opening Diameter and Plate Thickness | 1 | Experimental | [20] |
Deylami and Daftari | 2000 | 50 | Plate thickness, opening aspect ratio and opening percentage | 1 | Analytical | [21] |
Vian and Bruneau | 2004 | 2 | Opening | 1 | Experimental | [22] |
Paik | 2007 | N.A. | Opening with a different infill plate thickness | 1 | Analytical | [24] |
Pellegrino et al. | 2009 | N.A. | Dimension, position shape and, orientation | 1 | Analytical | [23] |
Valizadeh et al. | 2012 | 8 | Opening dimensions and slenderness factors | 1 | Experimental | [25] |
Sabouri-Ghomi et al. | 2012 | 45 | Opening dimensions and shapes | 1 | Analytical | [9] |
Alavi and Nateghi | 2013 | 3 | SPSW with and without Opening and Stiffener | 1 | Experimental and Analytical | [26] |
Bhowmick | 2014 | N.A. | Opening Diameter, plate thickness and Aspect ratio | 1 | Analytical | [27] |
Pourba and Bruneau | 2015 | 17 | Deterioration modes | 1 | Analytical | [28] |
Sabouri et al. | 2015 | 4 | Behavior of SPSW with 2 openings | 1 | Experimental | [39] |
Khalilzadeh and Roshani | 2016 | 54 | Opening Location, Infill plate and, Stiffener Thickness | 1 | Analytical | [29] |
Nassernia and Showkati | 2017 | 3 | Opening Diameter in mid-span SPSW | 1 | Experimental and Analytical | [30] |
Afshari and Gholhaki | 2018 | N.A. | Opening Shape, Diameter, Location and H/b ratio of SPSW | 1 | Analytical | [17] |
Element | E (MPa) | F (MPa) | F (MPa) | (%) | (%) |
---|---|---|---|---|---|
HEB 160 (SPSW s4) | 2.06 × 10 | 340 | 450 | 0.17 | 14.4 |
HEB 160 (SPSW2) | 2.07 × 10 | 400 | 450 | 0.19 | 13.2 |
The stiffener plate (t = 5 mm) | 2.05 × 10 | 340 | 470 | 0.17 | 20.5 |
The infill plate (t = 1 mm) | 2.04 × 10 | 280 | 500 | 0.14 | 21.6 |
Parameter | Range | Number of Samples |
---|---|---|
Infill plate thickness (mm) | 0.7, 0.8, 1, 1.2, 1.4 | 5 |
Opening area (mm) | No Opening − 200 × 200 − 250 × 250 − 300 × 300 − 350 × 350 − 400 × 400 450 × 450 − 500 × 500 − 550 × 550 − 600 × 600 − 650 × 650 700 × 700 − 750 × 750 − 800 × 800 − 850 ×850 − 900 × 900 − 950 × 950 1000 × 1000 − 1050 × 1050 − 1100 × 1100 − 1150 × 1150 − 1200 × 1200 | 22 |
Parameters | Specifications |
---|---|
Input parameters | 3 |
Outputs parameters | 2 |
hidden layer functions | Radial basis |
Output layer functions | Linear |
Maximum number of epochs | 70 |
Train data number | 77 |
Test data number | 33 |
Total data number | 110 |
Error Values | Normalized Shear Strength | Normalized Energy Absorption | Normalized Stiffness |
---|---|---|---|
MAE Train | |||
MAE Test | |||
MSE Train | |||
MSE Test |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradi, M.J.; Roshani, M.M.; Shabani, A.; Kioumarsi, M. Prediction of the Load-Bearing Behavior of SPSW with Rectangular Opening by RBF Network. Appl. Sci. 2020, 10, 1185. https://doi.org/10.3390/app10031185
Moradi MJ, Roshani MM, Shabani A, Kioumarsi M. Prediction of the Load-Bearing Behavior of SPSW with Rectangular Opening by RBF Network. Applied Sciences. 2020; 10(3):1185. https://doi.org/10.3390/app10031185
Chicago/Turabian StyleMoradi, Mohammad Javad, Mohammad Mahdi Roshani, Amirhosein Shabani, and Mahdi Kioumarsi. 2020. "Prediction of the Load-Bearing Behavior of SPSW with Rectangular Opening by RBF Network" Applied Sciences 10, no. 3: 1185. https://doi.org/10.3390/app10031185
APA StyleMoradi, M. J., Roshani, M. M., Shabani, A., & Kioumarsi, M. (2020). Prediction of the Load-Bearing Behavior of SPSW with Rectangular Opening by RBF Network. Applied Sciences, 10(3), 1185. https://doi.org/10.3390/app10031185