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Abstract: We describe novel topological phases of isofrequency k-space surfaces in bianisotropic
optical materials—tri- and tetrahyperbolic materials—which are induced by the introduction of
chirality. This completes the classification of isofrequency topologies for bianisotropic materials, as
we showed that all optical materials belong to one of the following topological classes—tetra-, tri-,
bi-, mono-, or nonhyperbolic. We showed that phase transitions between these classes occur in the
k-space directions with zero group velocity at high k-vectors. This classification is based on the sets
of high-k polaritons (HKPs), supported by materials. We obtained the equation describing these sets
and characterized the longitudinal polarization-impedance of HKPs.
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1. Introduction

Hyperbolic topologies have sparked the imaginations of science fiction prosaists for almost a
century [1]. In turn, the topology of isofrequency k-surfaces in photonic materials now fascinates the
members of the optics community. The known topologies include bounded k-surfaces, such as spheres
or ellipsoids, and unbounded k-surfaces—single- and double-leaf hyperboloids [2–4], and recently
discovered bihyperboloids [5]. As can be seen from this list of k-surface topologies, the main difference
between them and therefore the key to their classification is the propagation or absence of high-k modes
in the corresponding materials (Figure 1). The high-k modes, which are the short-wavelength solutions
of macroscopic Maxwell’s equations in hyperbolic metamaterials, are of primary interest in photonics,
and have already found applications for optical imaging in nanoscopic resolution using hyperlenses,
emission control due to diverging optical density of high-k states, and emission-directivity control [6].

With the development of nanofabrication, a variety of bianisotropic and chiral metamaterials have
been realized, which includes a combination of split-ring resonators, helixes, gammadions, and other
metallic shapes in unit cells [6]. In this letter we theoretically predict novel isofrequency topology
phases, tri- and tetrahyperbolic materials, and obtain an equation that describes the k-space directions
in which the high-k modes exist in terms of the 36 material parameters of an arbitrary bianisotropic
material. Furthermore, we employ a theorem from Zeuthen (1873) [7] to show that our prediction of
the tri- and tetrahyperbolic topological phases completes the classification of bianisotropic materials,
meaning that an optical material belongs to one of the following classes—tetra-, tri-, bi-, mono-, or
nonhyperbolic. The novel tetra- and trihyperbolic phases which we predict here are induced via
the introduction of chirality. Chirality-induced modification of topology in the energy–momentum
space was previously studied for monohyperbolic materials [8]. Here we discuss the topology of
isofrequency surfaces in k-space.
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Figure 1. Isofrequency k-surface in k-space with high-k polaritons (HKPs) in a conventional 
monohyperbolic material (a) and a tetra-hyperbolic material (b) introduced in this paper and 
described in detail in the discussion below. 

We show that in all high-k modes, both electric and magnetic fields are polarized longitudinally. 
In this sense, these modes are similar [9] to the bulk plasmon polaritons, bulk magnon polaritons, or 
longitudinal optical phonon polaritons, except that the high-k modes are short-wavelength. 
Therefore, we shall refer to these modes as high-k polaritons (HKPs). For these HKPs, we explicitly 
express the ratio between the longitudinal electric and magnetic field, i.e., longitudinal impedance 𝑍, in term of the 36 bianisotropic material parameters. To accomplish this, we introduce the index of 
refraction operator 𝑁. We obtain the direction-dependent refraction indices explicitly in arbitrary 
bianisotropic material. 

2. Theory of Isofrequency Surfaces in Bianisotropic Materials 

Consider bianisotropic materials with 6 × 6 effective parameters matrix 𝑀 ൌ 𝜖̂ 𝑋𝑌 �̂�൨, such that 

the constitutive relations are given by ቀ𝑫𝑩ቁ ൌ 𝑀 ቀ𝑬𝑯ቁ. It is known that the isofrequency surface of the 

most generic bianisotropic material with arbitrary material parameters 𝑀  is a quartic surface in k-
space given by [10]. 𝑓ሺ𝒌, 𝑘ሻ ൌ ∑ ሾ𝛼𝑘௫ 𝑘௬ 𝑘௭ 𝑘ାାାୀସ ሿ ൌ 0.  (1)

As was demonstrated in Ref. [10], the coefficients 𝛼 follow from the solution of Maxwell’s 
equation. The topological asymptotic skeleton of the isofrequency surfaces (Equation (1)) can be 
found in the high-k limit 𝑘 ≫ 𝑘. The high-k states are those tending to the conical k-surfaces given 
by ℎሺ𝒌ሻ ൌ 𝑓ሺ𝑘 → ∞, 𝑘ሻ ൌ ∑ ሾ𝛼𝑘௫ 𝑘௬ 𝑘௭ାାୀସ ሿ ൌ 0  (2)

Below we establish the detailed form and properties of the function ℎሺ𝒌ሻ  in terms of the 
material parameters 𝑀  and the topological properties of the skeleton asymptotic surfaces of 
Equation (2). 

We start by considering Maxwell’s equations for the amplitudes 𝛤 ൌ ቀ𝑬𝑯ቁ of the plane waves 

with wave vectors 𝒌 and frequencies 𝜔 ൌ 𝑐𝑘 written as 
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Figure 1. Isofrequency k-surface in k-space with high-k polaritons (HKPs) in a conventional
monohyperbolic material (a) and a tetra-hyperbolic material (b) introduced in this paper and described
in detail in the discussion below.

We show that in all high-k modes, both electric and magnetic fields are polarized longitudinally.
In this sense, these modes are similar [9] to the bulk plasmon polaritons, bulk magnon polaritons, or
longitudinal optical phonon polaritons, except that the high-k modes are short-wavelength. Therefore,
we shall refer to these modes as high-k polaritons (HKPs). For these HKPs, we explicitly express the
ratio between the longitudinal electric and magnetic field, i.e., longitudinal impedance Zl, in term of the
36 bianisotropic material parameters. To accomplish this, we introduce the index of refraction operator
N̂. We obtain the direction-dependent refraction indices explicitly in arbitrary bianisotropic material.

2. Theory of Isofrequency Surfaces in Bianisotropic Materials

Consider bianisotropic materials with 6 × 6 effective parameters matrix M̂ =

[
ε̂ X̂
Ŷ µ̂

]
, such that

the constitutive relations are given by
(

D
B

)
= M̂

(
E
H

)
. It is known that the isofrequency surface of

the most generic bianisotropic material with arbitrary material parameters M̂ is a quartic surface in
k-space given by [10].

f (k, k0) =
∑

i+ j+l+m=4

[αi jlmki
xk j

ykl
zkm

0 ] = 0. (1)

As was demonstrated in Ref. [10], the coefficients αi jlm follow from the solution of Maxwell’s
equation. The topological asymptotic skeleton of the isofrequency surfaces (Equation (1)) can be found
in the high-k limit k� k0. The high-k states are those tending to the conical k-surfaces given by

h(k) = f (k→∞, k0) =
∑

i+ j+l=4

[αi jl0ki
xk j

ykl
z] = 0 (2)

Below we establish the detailed form and properties of the function h(k) in terms of the material
parameters M̂ and the topological properties of the skeleton asymptotic surfaces of Equation (2).



Appl. Sci. 2020, 10, 763 3 of 9

We start by considering Maxwell’s equations for the amplitudes Γ̂ =

(
E
H

)
of the plane waves

with wave vectors k and frequencies ω = ck0 written as

kQ̂Γ̂ = k0M̂Γ̂, Q̂ =

[
0̂ R̂
−R̂ 0̂

]
, R̂ =


0 −kz ky

kz 0 −kx

−ky kx 0

 (3)

Consider a wave propagating in the direction k̂ = k/k =
(
qx, qy, qz

)
. Let us use the

transformation T̂:

T̂ =


qzqx/qρ qzqy/qρ −qρ
−qy/qρ qx/qρ 0

qx qy qz

 =


q1
q2

q3 = k̂


where qρ =

√
q2

x + q2
y and vectors qi are the rows of matrix T̂. Note that T̂ =

(
T̂T

)−1
and is a proper

rotation detT̂ = 1.
Let us apply transformation T̂ to Maxwell’s Equation (Equation (3))

kQ̃Γ̃ = k0M̃Γ̃, Γ̃ = T̂6Γ̂, Q̃ = T̂6Q̂T̂−1
6 =

 0̂ R̃
−R̃ 0̂

 (4)

R̃ =


0 −1 0
1 0 0
0 0 0

, M̃ = T̂6M̂T̂−1
6 =

 ε̃ X̃
Ỹ µ̃

, T̂6 =

[
T̂ 0
0 T̂

]
(5)

According to Equation (5) the transformed matrices ã = ε̃, µ̃, X̃, Ỹ can be expressed in terms of the
original â = ε̂, µ̂, X̂, Ŷ as

ãi j = qi · â · q
T
j (6)

The zeroes in the bottom row of matrix R̃ are due to the conditions k ·D = 0 and k ·B = 0. Thus,
the longitudinal components of fields Ez and Hz can be decoupled from the transverse field components
in the transformed coordinates as

(
Ez

Hz

)
= −

 ε̃33 X̃33

Ỹ33 µ̃33

−1 ε̃31 ε̃32 X̃31 X̃32

Ỹ31 Ỹ32 µ̃31 µ̃32




Ex

Ey

Hx

Hy

, (7)

while the transverse components satisfy the system of equations

k


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0




Ex

Ey

Hx

Hy

 = k0


ε11 ε12 X11 X12

ε21 ε22 X21 X22

Y11 Y12 µ11 µ12
Y21 Y22 µ21 µ22




Ex

Ey

Hx

Hy

 = k0m


Ex

Ey

Hx

Hy

 (8)

m =


ε̃11 ε̃12 X̃11 X̃12

ε̃21 ε̃22 X̃21 X̃22

Ỹ11 Ỹ12 µ̃11 µ̃12

Ỹ21 Ỹ22 µ̃21 µ̃22

−

ε̃13 X̃13

ε̃23 X̃23

Ỹ13 µ̃13

Ỹ23 µ̃23


 ε̃33 X̃33

Ỹ33 µ̃33

−1 ε̃31 ε̃32 X̃31 X̃32

Ỹ31 Ỹ32 µ̃31 µ̃32

.
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We rearrange this and introduce the index of refraction operator N̂:

N̂


Ex

Hy

Hx

Ey

 = n


Ex

Hy

Hx

Ey

, N̂ =


−Y21 −µ22 −µ21 −Y22

−ε11 −X12 −X11 −ε12

ε21 X22 X21 ε22

Y11 µ12 µ11 Y12

. (9)

The characteristic equation for the eigenvalue problem (Equation (9)) is a quartic equation
equivalent to Equation (1), which is valid for a generic bianisotropic medium without an assumption
of reciprocity

n4
− tr

(
N̂
)

n3
− ξn2

− ζn + det
(
N̂

)
= 0, (10)

where
ξ =

1
2

(
tr
(
N̂2

)
− tr

(
N̂

)2
)

ζ =
1
6

(
2 tr

(
N̂3

)
− 3 tr

(
N̂2

)
tr
(
N̂

)
+ tr

(
N̂

)3
)

Consider reciprocal materials. The material parameters are bound by ε̂T = ε̂, µ̂T = µ̂, X̂T = −Ŷ,
which is true in the transformed coordinates for the elements of ε̃, µ̃, X̃, Ỹ and for the elements of m in
Equations (8) and (9). In this case tr

(
N̂
)
= tr

(
N̂3

)
= 0, which turns Equation (10) into

n4
−

1
2

tr
(
N̂2

)
n2 + det

(
N̂

)
= 0 (11)

The roots of Equation (11) are

n2 =
1
4

tr
(
N̂2

)
±

√(
tr
(
N̂2

))2
− 16detN̂

 (12)

This is an explicit expression for the refraction indices of waves in arbitrary reciprocal materials,
and this confirms our previous conclusion from Reference [11], that isofrequency k-surfaces have
reflection symmetry in reciprocal materials.

3. Results

Let us turn to the asymptotic behavior at high k. If one of the eigenvalues of the index of refraction
operator N̂ becomes infinite, then detN̂ = n1n2n3n4 →∞ also diverges, since it is the product of all
the eigenvalues ni. If the elements of the matrix M̂ are finite, then, according to the expression for
matrix m (Equation (8)), whose elements compose N̂ (Equation (9)), such divergence is only possible
for waves propagating in directions k̂ such that

∆∞ = det

 ε̃33 X̃33

Ỹ33 µ̃33

 = 0. (13)

Considering Equation (6) and that q3 = k̂, Equation (13) can be rewritten as an equation of a
quartic conical surface

h(k) = 0, (14)

where h(k) =
(
kTε̂k

)(
kTµ̂k

)
−

(
kTX̂k

)(
kTŶk

)
for a generic bianisotropic medium without an assumption

of reciprocity.
Direct comparison shows that function h(k) of Equation (14) is identical to Equation (2). Note that

functions a(k) =
(
kT âk

)
=

∑
i j ai jkik j, where â = ε̂, µ̂, X̂, Ŷ, are quadratic forms on k-space.
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If ∆∞ → 0 , then the longitudinal components of fields Ez and Hz are much greater than the
transverse components, so E = Ezk̂, H = Hzk̂. Consequently, Maxwell’s equations can be written as

k ·D =
(
kTε̂k

)
Ez +

(
kTX̂k

)
Hz = 0, (15)

k ·B =
(
kTµ̂k

)
Hz +

(
kTŶk

)
Ez = 0. (16)

Equations (15) and (16) have a nonzero solution for the longitudinal fields (Ez, Hz) only if
Equation (14) is met. Note that from k × E = k0B and k ×H = −k0D, it follows that for HKPs
D = B = 0, since HKP fields are purely longitudinal E = Ezk̂, H = Hzk̂.

An important characteristic of an HKP is its longitudinal impedance, which we introduce using
Equations (15) and (16):

Zl =
Ez

Hz
= −

(
kTX̂k

)
(kTε̂k)

= −

(
kTµ̂k

)(
kTŶk

) (17)

For reciprocal materials,
(
kTŶk

)
= −

(
kTX̂k

)
and Equation (14) breaks into two solution branches:√(

kTε̂k
)(

kTµ̂k
)
± i

(
kTX̂k

)
= 0, (18)

corresponding to impedances

Zl = ±i

√√√√(
kTµ̂k

)(
kTε̂k

) (19)

The conventional condition of hyperbolicity requires the principle values of the dielectric
permittivity tensor ε̂ to be of different signs [2–4]. Indeed, for such materials, h(k) =

(
kTε̂k

)
can only be zero if principle values of ε̂ have different signs. According to Equations (17) and (19), the
longitudinal impedance for the HKP in these materials is Z−1

l = 0. Similarly, for magnetic hyperbolic

materials [12], the function from Equation (17) is h(k) = ε
(
kTµ̂k

)
, assuming ε is a scalar, and the tensor

µ̂ has to have principle values of different signs. The HKP waves have Zl = 0 in magnetic hyperbolic
materials (see Equations (17) and (19)).

It has been theoretically predicted in Reference [7] that in the absence of magnetoelectric coupling
(X̂ = Ŷ = 0̂), if both ε̂ and µ̂ have principal values of different signs at the same frequency ω,
then bihyperboloid isofrequency k-surfaces are possible. As can be seen from Equation (14), if
X̂ = Ŷ = 0̂, then h(k) =

(
kTε̂k

)(
kTµ̂k

)
and, indeed, two hyperboloids in the k-surface can form

corresponding to electric Z−1
l = 0 branch with

(
kTε̂k

)
= 0 and magnetic branch Zl = 0 with

(
kTµ̂k

)
= 0

(cf. the discussion of Figure 3).
Let us consider anisotropic magnetoelectric coupling and study the drastic changes to the topology

of the isofrequency surfaces it leads to. We first study materials which are nonhyperbolic in the absence
of magnetoelectric coupling, i.e., the principal values of their ε̂ and µ̂ tensors have the same signs.

Consider a material with ε̂ = ε1̂, µ̂ = µ1̂, and Ŷ = −X̂T = diag(iκ1, iκ1, iκ2). Equation (14) then

turns into
(
q2
ρκ1 + q2

zκ2
)2

= εµ, which shows that HKPs propagate if
(
κ2

1 − εµ
)

and
(
κ2

2 − εµ
)

have
opposite signs. Note that κ = κ1 = κ2 = ±

√
εµ does not lead to the formation of HKPs, since in this

case a 0/0 indeterminacy forms in Equation (9), which resolves as 0, since for an isotropic chiral material
n =

√
εµ± κ [13]. The formation of a hyperbolic material here is due to the anisotropic chirality tensor

and is shown in Figure 2a.
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Figure 2. (a–d) Chirality-inducing hyperbolicity in nonhyperbolic phases (material parameters detailed
in text). (e,f) Chirality-induced phase modifications in anisotropic materials. (e) Plot of the function(
kT ε̂k

)(
kTµ̂k

)
for the ε̂, µ̂ matrices used in (f) and Figure 3.

If reciprocity is broken X̂T , −Ŷ, then h(k) = εµ−
(
kTX̂k

)(
kTŶk

)
and a bihyperboloidal k-surface

may form. In Figure 2b we plot k-surfaces for a material with ε̂ = ε1̂, µ̂ = µ1̂, X̂ = −i diag(κ1,κ1,κ2),
and Ŷ = i diag(κ2,κ2,κ1) for the same values of κ1 and κ2 as in Figure 2a and demonstrate the
bihyperbolic dispersion.

In Figure 2c,d we demonstrate that a material with anisotropic ε̂ = diag(1, 1, 5), µ̂ = diag(5, 1, 1),
which is nonhyperbolic without magnetoelectric coupling, forms bihyperbolic and trihyperbolic phases
if anisotropic chirality Ŷ = −X̂T = diag(iκ1, iκ2, iκ1) is added with κ1 = 2.9 and κ2 = 0.9 for Figure 2c
and κ1 = 2.3 and κ2 = 1.1 for Figure 2d.
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Matrices 𝑀ଵ, 𝑀ଶ are plotted in (d). 

The HKP states for the 𝜅 noted in panels (e)–(j) are color-coded in accordance with their 𝑍 as 
indicated to the right of Figure 3f. The HKP for nonzero 𝜅 are positioned in the ሺ𝒌்𝜖̂𝒌ሻሺ𝒌்�̂�𝒌ሻ  0 
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the intersections of 𝜅 ൌ 0 and ൫𝒌்𝑋𝒌൯ ൌ 0. The HKP states group into several disconnected curves, 

Figure 3. Topological phase transitions (f,h) between bihyperbolic (a,e), trihyperbolic, (b,g) and
tetrahyperbolic (c,i) phases with material parameters matrix M̂ = M̂1 + iκM̂2 as κ is changed.
Panel (j) shows the limit of high κ. Matrices M1, M2 are plotted in (d).
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Now let us turn to materials that are hyperbolic in the absence of magnetoelectric coupling and
consider how magnetoelectric coupling changes their topologies and HKPs. Below we consider a

numerical example of matrix M1 =

[
ε̂ 0
0 µ̂

]
shown in the inset Figure 3d (to the left of the black

line). This matrix M1 describes an anisotropic material with the dispersion transitional between
hyperbolic and bihyperbolic. The HKP propagation directions for M1 are illustrated in Figure 2e,f. In
Figure 2e we plot the function

(
kTε̂k

)(
kTµ̂k

)
(yellow), whose intersection with zero (blue) corresponds

to the HKP propagation direction. These directions are also plotted in Figure 2f for the electric
branch Z−1

l = 0, with
(
kTε̂k

)
= 0 (purple) and magnetic branch Zl = 0 with

(
kTµ̂k

)
= 0 (red), which

corresponds to the color scale for Zl shown to the right. Let us turn to a material characterized by matrix

M̂ = M̂1 + iκM̂2, where M2 =

[
0̂ 1̂
−1̂ 0̂

]
is responsible for magnetoelectric coupling. The change in

the HKP propagation directions with increasing κ from zero corresponds to raising the level of the blue
plane in Figure 2e to level κ2, which confines the HKP states to the positive region

(
kTε̂k

)(
kTµ̂k

)
. The

HKP propagation directions for κ = 1 are shown in Figure 2f with four disconnected curves, which
corresponds to bihyperbolic dispersion. These connectivity curves are color-coded corresponding to Zl
of the HKP states.

Let us consider a material described by the matrix M̂ = M̂1 + iκM̂2 with the individual matrices
M1, M2 plotted on Figure 3d. Changing parameter κ leads to topological transitions between
bihyperbolic (Figure 3a,e), trihyperbolic (Figure 3b,g), and tetrahyperbolic (Figure 3c,i) phases. The
progression of the phase changes is demonstrated in Figure 3e–j. In these panels the HKP states for
κ = 0 satisfying

(
kTε̂k

)(
kTµ̂k

)
= 0 are outlined in black, which are the same curves as in Figure 2f. The

directions for which κ = 0 and
(
kTX̂k

)
= 0 (brown) satisfy Equations (14) and (18) for all κ and serve

as the framework for the topological transitions. These intersection points in Figure 3e–j have invariant
impedances Z−1

l = 0 for the electric branch with
(
kTε̂k

)
= 0 and Zl = 0 for the magnetic branch.

The HKP states for the κ noted in panels (e)–(j) are color-coded in accordance with their Zl as
indicated to the right of Figure 3f. The HKP for nonzero κ are positioned in the

(
kTε̂k

)(
kTµ̂k

)
> 0

regions between the κ = 0 lines, in accordance with Equations (14) and (18), and touch these lines at
the intersections of κ = 0 and

(
kTX̂k

)
= 0. The HKP states group into several disconnected curves, the

number of which characterizes the topology of the phase. Note that each curve is split into two parts
by the

(
kTX̂k

)
= 0 curves at their intersections with κ = 0. The resulting two subcurves of HKP states

correspond to two different branches of Equation (18).
The addition of a small κ leads to a transition to the bihyperbolic phase (four disconnected curves)

as shown in Figure 3e. At κ = 0.3 (Figure 3f), a phase transition occurs from the bihyperbolic to the
trihyperbolic phase (six curves) in the k-space direction marked by the red arrows. In this direction the
group velocity, which is normal to the k-surface, becomes zero

vg = ∇kω ∝ ∇k f (k, k0) = ∇kh(k) = 0 (20)

In general, we identify the condition (Equation (20) with topological phase transitions. The
topological phase transition of the isofrequency k-surfaces were first discussed in Reference [14] for
the monohyperbolic phase. The transition from the trihyperbolic (Figure 3g) to the tetrahyperbolic
phase (eight curves in Figure 3i) occurs at κ = 0.666 (Figure 3h). The k-space direction in which the
transition occurs satisfies Equation (20) and is marked by the red arrows. For a large κ, the HKP states
closely follow the

(
kTX̂k

)
= 0 curves between their intersections with κ = 0. Therefore, in the general

case of arbitrary matrices M̂1 and M̂2, the number of disconnected sections of
(
kTX̂k

)
= 0 between

their intersections with κ = 0 can serve as the prediction of the topological phase of the isofrequency
surfaces for a large κ.
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4. Conclusions

To conclude, let us ask the following question—what is the limit on the number of hyperboloids
in isofrequency surfaces of bianisotropic materials? To classify the quartic k-surfaces in the k� k0 limit
topologically, it is convenient to use the projective plane P2. As was noted in relation to bianisotropic
materials [10], the classification follows from the following theorem [7]—a smooth-projective real
quartic curve consists topologically of (i) one oval (hyperbolic medium), (ii) two non-nested ovals
(bihyperbolic medium), (iii) two nested ovals, (iv) three ovals (trihyperbolic medium), (v) four ovals
(tetrahyperbolic medium), and (vi) an empty set (nonhyperbolic medium).

Therefore, in the present manuscript we complete the topological classification of bianisotropic
optical materials.
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