Synthetic Microstructure Generation and Multiscale Analysis of Asphalt Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microstructure Generation
2.1.1. Generation of Spheres (Circles)
2.1.2. Voronoi Tessellation
2.1.3. Shrinkage Procedure
2.2. Multiscale Modeling
3. Results
- for the aggregate particles (inclusions) − GPa, , and
- for the mastic (matrix) − GPa, .
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Rossi, C.O. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742. [Google Scholar] [CrossRef] [Green Version]
- Collop, A.; Scarpas, A.; Kasbergen, C.; de Bondt, A. Development and finite element implementation of a stress dependent elasto-visco-plastic constitutive model with damage for asphalt. Transp. Res. Rec. 2003, 1832, 96–104. [Google Scholar] [CrossRef]
- Kim, Y.; Souza, F.; Teixeira, J. A two-way coupled multiscale model for predicting damage-associated performance of asphaltic roadways. Comput. Mech. 2013, 51, 187–201. [Google Scholar] [CrossRef]
- Liu, P.; Hu, J.; Wang, D.; Oeser, M.; Alber, S.; Ressel, W.; Fala, G. Modelling and evaluation of aggregate morphology on asphalt compression behavior. Constr. Build. Mater. 2017, 133, 196–208. [Google Scholar] [CrossRef]
- Mitra, K.; Das, A.; Basu, S. Mechanical behavior of asphalt mix: An experimental and numerical study. Constr. Build. Mater. 2012, 27, 545–552. [Google Scholar] [CrossRef]
- Schüller, T.; Manke, R.; Jänicke, R.; Radenberg, M.; Steeb, H. Multi-scale modelling of elastic/viscoelastic compounds. ZAMM J. Appl. Math. Mech. 2013, 93, 126–137. [Google Scholar] [CrossRef]
- Schüller, T.; Jänicke, R.; Steeb, H. Nonlinear modeling and computational homogenization of asphalt concrete on the basis of XRCT scans. Constr. Build. Mater. 2016, 109, 96–108. [Google Scholar] [CrossRef]
- Woldekidan, M.; Huurman, M.; Pronk, A. Linear and Nonlinear Viscoelastic Analysis of Bituminous Mortar. Transp. Res. Rec. J. Transp. Res. Board 2013, 2370, 53–62. [Google Scholar] [CrossRef]
- Dai, Q.; You, Z. Prediction of creep stiffness of asphalt mixture with micromechanical finite-element and discrete-element models. J. Eng. Mech. 2007, 133, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Arshadi, A.; Bahia, H. Development of an image-based multi-scale finite-element approach to predict mechanical response of asphalt mixtures. Road Mater. Pavement Des. 2015, 16, 214–229. [Google Scholar] [CrossRef]
- Aigner, E.; Lackner, R.; Pichler, C. Multiscale Prediction of Viscoelastic Properties of Asphalt Concrete. J. Mater. Civ. Eng. 2009, 21, 771–780. [Google Scholar] [CrossRef] [Green Version]
- Al-Rub, R.; You, T.; Masad, E.; Little, D. Mesomechanical modeling of the thermo-viscoelastic, thermo-viscoplastic, and thermo-viscodamage response of asphalt concrete. Int. J. Adv. Eng. Sci. Appl. Math. 2011, 3, 14–33. [Google Scholar] [CrossRef]
- You, T.; Al-Rub, R.; Darabi, M.; Masad, E.; Little, D. Three-dimensional microstructural modeling of asphalt concrete using a unified viscoelastic-viscoplastic-viscodamage model. Constr. Build. Mater. 2012, 28, 531–548. [Google Scholar] [CrossRef]
- Ziaei-Rad, V.; Nouri, N.; Ziaei-Rad, S.; Abtahi, M. A numerical study on mechanical performance of asphalt mixture using a meso-scale finite element model. Finite Elem. Anal. Des. 2012, 57, 81–91. [Google Scholar] [CrossRef]
- Klimczak, M.; Cecot, W. An adaptive MsFEM for non periodic viscoelastic composites. Int. J. Numer. Methods Eng. 2018, 114, 861–881. [Google Scholar] [CrossRef]
- Wimmer, J.; Stier, B.; Simon, J.W.; Reese, S. Computational homogenisation from a 3D finite element model of asphalt concrete–linear elastic computations. Finite Elem. Anal. Des. 2016, 110, 43–57. [Google Scholar] [CrossRef]
- Mo, L.; Huurman, M.; Wu, S.; Molenaar, A. 2D and 3D meso-scale finite element models for ravelling analysis of porous asphalt concrete. Finite Elem. Anal. Des. 2008, 44, 186–196. [Google Scholar] [CrossRef]
- Tschopp, M.; Wilks, G.; Spowart, J. Multi-scale characterization of orthotropic microstructures. Model. Simul. Mater. Sci. Eng. 2008, 16, 065009. [Google Scholar] [CrossRef]
- Cecot, W.; Oleksy, M. High order FEM for multigrid homogenization. Comput. Math. Appl. 2015, 70, 1391–1400. [Google Scholar] [CrossRef]
- Efendiev, Y.; Hou, T. Multiscale finite element methods for porous media flows and their applications. Appl. Numer. Math. 2007, 57, 577–596. [Google Scholar] [CrossRef] [Green Version]
- Hou, T.; Wu, X. A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 1997, 134, 169–189. [Google Scholar] [CrossRef] [Green Version]
- Cecot, W. Adaptive FEM analysis of selected elastic-visco-plastic problems. Comput. Methods Appl. Mech. Eng. 2007, 196, 3859–3870. [Google Scholar] [CrossRef]
- Cecot, W. Application of h-adaptive FEM and Zarka’s approach to analysis of shakedown problems. Int. J. Numer. Methods Eng. 2004, 61, 2139–2158. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimczak, M.; Cecot, W. Synthetic Microstructure Generation and Multiscale Analysis of Asphalt Concrete. Appl. Sci. 2020, 10, 765. https://doi.org/10.3390/app10030765
Klimczak M, Cecot W. Synthetic Microstructure Generation and Multiscale Analysis of Asphalt Concrete. Applied Sciences. 2020; 10(3):765. https://doi.org/10.3390/app10030765
Chicago/Turabian StyleKlimczak, Marek, and Witold Cecot. 2020. "Synthetic Microstructure Generation and Multiscale Analysis of Asphalt Concrete" Applied Sciences 10, no. 3: 765. https://doi.org/10.3390/app10030765
APA StyleKlimczak, M., & Cecot, W. (2020). Synthetic Microstructure Generation and Multiscale Analysis of Asphalt Concrete. Applied Sciences, 10(3), 765. https://doi.org/10.3390/app10030765