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Abstract: In this somewhat pedagogical paper we revisit complementarity relations in bipartite
quantum systems. Focusing on continuous-variable systems, we examine the influential
class of EPR-like states through a generalization to Gaussian states and present some new
quantitative relations between entanglement and local interference within symmetric and asymmetric
double-double-slit scenarios. This approach is then related to ancilla-based quantum measurements,
and weak measurements in particular. Finally, we tie up the notions of distinguishability,
predictability, coherence and visibility while drawing some specific connections between them.
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1. Introduction

Distinguishability (or predictability) of paths in quantum interference experiments is closely
linked with entanglement. For instance, to gain “which-path” information in a double-slit experiment,
one should employ some kind of a measuring pointer (be it responsible for a strong, weak,
partial measurement, etc.). The process of measuring the system’s path involves entangling it with the
device. For simplicity, one could assume the system is already entangled with another, similar system
(in the desired basis); then, the “which-path” information is contained in the correlations between the
two systems—i.e., knowing which slit the particle went through in one system supplies information
regarding which slit the other particle went through in the other system.

This approach was used by Jaeger et al. in [1], where the authors proposed a quantitative measure
for two-particle interference, denoted by v12, and proved a duality relation between one-particle
interference visibility and two-particle interference visibility: v2

i + v2
12 ≤ 1 (where vi denotes the ith

particle’s interference visibility). This and other similar duality relations were studied in [2–5]. For
general definitions and discussion of interferometric quantities in multiple-slit scenarios, please see
Appendix A.

However, it seems to us that most of these works did not emphasize enough the state- and
geometry-dependent quantitative relations between entanglement and interference of continuous
variables (CV) such as position and momentum (or the corresponding quadratures of the
electromagnetic field). The notions of nonlocality and entanglement in continuous-variable systems are
intricate and subtle. Working in infinite-dimensional Hilbert spaces necessitates new theoretical
methods (for entanglement and even quantumness quantification), new practical methods (like
homodyne and heterodyne detectors), new tools (like Wigner functions, Q- and P-representations)
and new conceptual ideas, but they also enable new opportunities for quantum communication
and computation.
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Since the first entangled state to reach world-wide acclaim was the continuous-variable EPR
state [6,7], it is natural to ask whether complementarity relations similar to the aforementioned ones
can be formulated in EPR-like states using continuous variables. However, in fact, our analysis here is
more general, considering asymmetric configurations of Gaussian states, which reach the EPR state
as a special, limiting case. Moreover, these CV states seem to offer richer relations between local and
nonlocal observables than their discrete variables counterparts.

While discrete variable systems benefit from high-fidelity operations, they are limited by the
imperfect generation and detection of single quanta (e.g., photons), as well as the absence of
deterministic interactions of single quanta [8]. In contrast, encoding of quantum information in
continuous variables can achieve deterministic, unconditional operation of quantum protocols, albeit at
the expense of lower fidelities [8,9]. Although the high efficiency and unconditional preparation of
CV entanglement is paid for with imperfection of the entanglement [10–12], the prepared Gaussian
entangled states approach an ideal EPR state in the limit of infinite squeezing [13]. Thus, the practicality
of continuous variables in quantum protocols is due to currently available highly efficient sources of
squeezed laser light and existing techniques for preparing, unitarily manipulating, and measuring
entangled quantum states, with the use of continuous quadrature amplitudes of the quantized
electromagnetic field [10]. It is worth noting that in this paper we are mainly focused on theoretical
aspects; experimental tests of complementarity using quantum optics may be found in [14–19], as well
as a recent experiment using complementarity for nonlocal erasure of phase objects [20].

In Section 3 we define a family of EPR-like states, modeled using Gaussian wavepackets, where the
strength of entanglement may be controlled by some parameter θ. We propose a quantitative measure
for v12, and find a relation analogous to the one-particle and two-particle interference complementarity.
In the limit of zero-width Gaussian wavepackets (i.e., delta functions), our proposed system effectively
reduces to a two-dimensional system, reproducing results similar to those shown in [1,2].

Furthermore, in Section 4 we define an “asymmetric” state, i.e., one where Alice’s system may
have different parameters than Bob’s, in terms of how wide the slits are and to which extent the
wavepacket is localized. Again, we derive an expression for the one-particle interference pattern
visibility, and study its relation to the family of states we defined in Section 3. We conclude by
discussing the generality of our work.

2. Model for Entangled Double-Slit Experiment Using Gaussian Wave Packets

In this section, we shall introduce a wavefunction which describes an entangled double-slit
experiment, based on the famous EPR state. In the original EPR paper [6], the following state
is presented

ψEPR (x1, x2) =
∫ ∞

−∞
dx δ (x1 − x) δ (x− x2 + x0) . (1)

For simplicity, we shall choose x0 = 0. However, the above state does not reside in the Hilbert space L2

of square integrable functions. Recalling that the delta function may be realized as a limit of Gaussian
functions

lim
∆→0

1

(π∆2)
1/2 e−(x−x′)2/∆2

= δ
(
x− x′

)
, (2)

we substitute the delta functions in (1) with the LHS of (2), taken with finite ∆. This yields the following
wavefunction

ψG (x1, x2) =
a
π

∫ ∞

−∞
dx e−a(x1−x)2

e−a(x2−x)2
, (3)

where a := 1/∆2. We note that (1) is reproduced in the limit a→ ∞. Now, we wish to pass both particles
through a double slit, i.e., we are interested only in Gaussians centralized at one of two separate pairs
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of slits, located at xi = ±hi for i = 1, 2 (see Figure 1 for an illustration). Thus, immediately after
passing through the double slit, our initial wavefunction becomes

ψ (x1, x2) = A
(

e−a(x1−h1)
2
e−a(x2−h2)

2
+ e−a(x1+h1)

2
e−a(x2+h2)

2)
, (4)

where A =
√

a/π

1+e−2a(h2
1+h2

2)
is a normalization factor.

Figure 1. The proposed “double-double slit” setup: each particle of an entangled two-mode Gaussian
state ψθ (x1, x2) (5) is sent through a double slit with a screen behind it. The amount of quantum
entanglement between the two particles is controlled by a parameter θ ∈

[
0, π

4
]
. The experiment is

repeated many times with the same initial state, and the positions where the particles hit the screen are
registered to infer the one-particle and two-particle probability distributions. Generally, the distance
between each pair of slits may vary. The plotted probability distributions on the screens are for θ = π

4 .

3. A Partially Entangled Double-Slit Experiment

In this section, we shall construct a model for a partially entangled double-slit experiment.
Following Sec. III of [1], we start from (4), substitute h1 = h2 = h, construct an “opposite” wavefunction
and take a normalized superposition of the two, yielding

ψθ (x1, x2) =
Aθ

A
[ψ (x1, x2) cos θ + ψ (x1,−x2) sin θ] , (5)

where θ ∈
[
0, π

4
]

is a parameter controlling the amount of entanglement (note the entanglement
strength decreases as θ increases), and

1
A2

θ

=
π

a

[
1 + 2e−2ah2

sin (2θ) + e−4ah2
]

. (6)

Propagation of a wave from the near to the far field transforms an initial state into its Fourier transform.
Thus, the position wavefunction in some time t such that the wave has propagated to reach a screen
located in the far field domain, is proportional to the initial momentum wavefunction. This implies
the momentum wavefunction may be used to define and compute the interferometric quantities we
wish to consider (i.e., one- and two-particle visibility). The momentum wavefunction and related
derivations appear in Appendix B.1. The momentum probability density is

fp1,θ (p1) =

√
2π

a
πBθe−

p2
1

2a

([
1 + e−2ah2

cos (2hp1)
]
+ sin (2θ)

[
e−2ah2

+ cos (2hp1)
])

. (7)

Taking a close look at (7), we notice that this probability density function is a sum of two parts: one
which is independent of p1 (up to normalization), and an oscillating part, with amplitude proportional
to sin (2θ). This allows us to write down expressions for the “envelopes” of these oscillations
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env+ (p1) = π

√
2π

a
Bθe−

p2
1

2a

(
1 + e−2ah2

)
[1 + sin (2θ)] (8)

env− (p1) = π

√
2π

a
Bθe−

p2
1

2a

(
1− e−2ah2

)
[1− sin (2θ)] . (9)

These were computed by substituting ±1 for the cosine. However, it should be noted that because of
the Gaussian, the extreme points of fp1,θ are not necessarily located in the extreme points of cos (2hp1).
Thus, the above envelopes are merely approximations. They are “good” approximations if the Gaussian
changes much slower than the cosine, i.e., ah2 � 1.

Now we wish to construct measures for the strength of interference. First, we compute the ratio
between the envelopes

rθ ,
env+ (p1)

env− (p1)
=

1 + e−2ah2

1− e−2ah2 ·
1 + sin (2θ)

1− sin (2θ)
= coth

(
ah2
) 1 + sin (2θ)

1− sin (2θ)
, (10)

where coth denotes the hyperbolic cotangent. The envelopes also yield the well-known
visibility measure

Vθ =
env+ (p1)− env− (p1)

env+ (p1) + env− (p1)
=

e−2ah2
+ sin (2θ)

1 + e−2ah2 sin (2θ)
. (11)

Here, we note that sin (2θ) ≤ Vθ ≤ 1, i.e., sin (2θ) serves as a lower bound to the interference visibility.
The more localized the Gaussian wavepackets, the closer the visibility is to sin (2θ), which is also the
value of the one-particle visibility in Sec. III of [1].

Next we compute the momentum joint probability distribution

fp1 p2,θ (p1, p2) =

= Bθ
π

a
e−

p2
1+p2

2
2a

[
1 + cos2 θ cos (2hp+) + 2 sin (2θ) cos (hp+) cos (hp−) + sin2 θ cos (2hp−)

]
, (12)

where p± := p1 ± p2. Again, motivated by [1], we wish to define the two-particle visibility. To do so,
we may construct the following “corrected” joint probability

F̄θ (p1, p2) = fp1 p2,θ (p1, p2)− fp1,θ (p1) fp2,θ (p2) + fp1,θ=0 (p1) fp2,θ=0 (p2) ,

where the “correction” term fp1,θ=0 (p1) fp2,θ=0 (p2) is simply the value of fp1,θ (p1) fp2,θ (p2) in the
maximally entangled case, analogous to the term 1

4 added in [1].
However, this is not precisely what we do. Instead, we take the added term with the same

normalization factor Bθ as the subtracted one. This yields a much “nicer” expression with nearly the
same value

F̃θ (p+, p−) =
e−

p2
++p2

−
4a

Cθ

[
e4ah2

+ cos2 (2θ) + 2 sin2 (2θ) e2ah2
cos (hp+) cos (hp−)

]
+

+
1
2

e−
p2
++p2

−
4a

Cθ

(
1 + cos2 (2θ) e4ah2

+ cos (2θ)
[
1 + e4ah2

+ 2 sin (2θ)
])

cos (2hp+) + (13)

+
1
2

e−
p2
++p2

−
4a

Cθ

(
1 + cos2 (2θ) e4ah2 − cos (2θ)

[
1 + e4ah2

+ 2 sin (2θ)
])

cos (2hp−) ,

where Cθ := 8πa
[
cosh

(
2ah2)+ sin (2θ)

]2. Since the trigonometric functions are all non-negative in
our domain of interest (0 ≤ θ ≤ π/4), cos (2hp+) has a larger amplitude than cos (2hp−). Thus, the
oscillations are dominated by p+, implying the envelopes are naturally defined by examining the
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section p− = 0, i.e., p1 = p2. The upper envelope is obtained by making the additional substitution
hp+ = 2πn, n ∈ Z

env+ (p+) = Nθe−
p2
+

4a

[
2 + 2e4ah2 − sin2 (2θ)

(
1− e2ah2

)2
]

, (14)

and the lower envelope by hp+ = π/2 + 2πn, n ∈ Z

env− (p+) = Nθe−
p2
+

4a

(
e4ah2 − cos (2θ)

[
1 + e4ah2

+ 2 sin (2θ)− cos (2θ)
])

, (15)

where Nθ = 1/Cθ = 1
8πa[cosh(2ah2)+sin(2θ)]

2 . Again, the envelopes are merely approximations, becoming

more precise as ah2 grows larger. Thus, we are motivated to produce even simpler expressions for the
envelopes, by applying approximations valid for ah2 � 1

env+ (p+) ≈ Nθe−
p2
+

4a e4ah2
[
1 + cos2 (2θ)

]
, env− (p+) ≈ Nθe−

p2
+

4a e4ah2
[1− cos (2θ)] . (16)

Thus, we obtain the following expression for the two-particle interference Pθ

Pθ =
cos (2θ) cos2 θ

1− cos (2θ) sin2 θ
. (17)

Taking the simple expression for the visibility, Vθ = sin (2θ), we obtain

P2
θ + V2

θ ≤ 1, (18)

since Pθ ≤ cos (2θ). We note that cos (2θ) is the value of the two-particle interference visibility in
Sec. III of [1]. The complementarity (18) is illustrated in Figure 2.

2θ

Vθ

Pθ

1Vθ = 0Pθ =

0Vθ = 1Pθ =

0.858Pθ =0.5Vθ =

0.429Pθ =0.866Vθ =

Figure 2. One-particle visibility Vθ (11) and two-particle visibility (predictability) Pθ (17) computed
from the corresponding quantum probability distributions fp1,θ(p1) (7) and F̃θ(p+, p− = 0) (13) for
different strengths of entanglement controlled by θ = 0, π/12, π/6 and π/4. This plot illustrates
the smooth transition from zero visibility and maximal predictability, to maximal visibility and zero
predictability, as the entanglement diminishes. The bold line depicts a polar curve of P2

θ + V2
θ .
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The significance of inequalities of the form (18) is that they link a locally measured property
(one-particle visibility) and a nonlocal property (two-particle visibility). A closely related inequality is
illustrated in [21] (

B

2
√

2

)2
+ |η|2 ≤ 1, (19)

where B is the Bell-CHSH parameter—again a measure of nonlocality; and η is the quantum
Pearson correlation between Alice’s observables, i.e., a property one may infer from measurements on
Alice’s system.

4. Model for Asymmetric Entangled Double-Slit Experiment

In this section, we consider a generalization of (4). Recalling the aforementioned analogy between
the double-double slit and two measurement pointers measuring the entangled pair of particles,
we note that Bob’s system might be different from Alice’s system in several aspects. Bob’s pointer
state could be implemented by an electron [22], cold ion [23] or any other quantum system. Moreover,
his measuring system could correspond to variable strength coupling and could even have many
degrees of freedom. However, we are only interested in one continuous degree of freedom out of the
above giving rise to a pair of operators denoted by x2, p2 (not necessarily position and momentum),
obeying the canonical commutation relations [x2, p2] = i. We therefore consider now asymmetric
interactions corresponding to different measurements on the slits. Applying these interactions results
in the following state

ψ (x1, x2) = M
(

e−a(x1−h1)
2
e−b(x2−h2)

2
+ e−a(x1+h1)

2
e−b(x2+h2)

2)
, (20)

that is, Bob’s two slits are not in the same distance as Alice’s two slits, and his Gaussians have different
widths than Alice’s (M is a normalization constant). The Wigner function of this state appears in
Appendix B.2. We begin by writing down the wavefunction in momentum space:

ψ (p1, p2) =
M

2
√

ab

(
e−

1
4a (p1+2ah1i)2−ah2

1 e−
1
4b (p2+2bh2i)2−bh2

2 + e−
1
4a (p1−2ah1i)2−ah2

1 e−
1
4b (p2−2bh2i)2−bh2

2

)
, (21)

and computing the probability density of p1:

fp1 (p1) = πG

√
2π

a
e−

p2
1

2a

[
1 + e−2bh2

2 cos (2h1 p1)
]

. (22)

As before, (22) yields an expression for the upper (lower) envelope by substituting
cos (2h1 p1) = +1 (−1)

env±asymmetric = πG

√
2π

a
e−

p2
1

2a

[
1± e−2bh2

2

]
. (23)

As in the previous section, these are approximations, valid for ah2
1 � 1; however, we need not assume

anything about b, h2. Again, we obtain a constant ratio

rasymmetric =
1 + e−2bh2

2

1− e−2bh2
2
= coth

(
bh2

2

)
, (24)

and constant visibility
Vasymmetric = e−2bh2

2 . (25)

We note that because of the asymmetry, the one-particle visibility for particle 1 (which is the one
defined above) differs from the one-particle visibility for particle 2. Comparing (25) and (11), we wish
to find a relation between the parameters determining the one-particle interference visibility. In the
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“asymmetric” wavefunction, it is determined by b, h2, while in the theta-wavefunction it is determined
by a, h1, sin (2θ). Taking the two expressions to be equal, we obtain

e−2ah2
1 + sin (2θ)

1 + sin (2θ) e−2ah2
1
= e−2bh2

2 . (26)

Solving for sin (2θ) yields

sin (2θ) =
e−2bh2

2 − e−2ah2
1

1− e−2ah2
1 e−2bh2

2
=

Vasymmetric − e−2ah2
1

1− e−2ah2
1 Vasymmetric

. (27)

This also allows a simple way for Alice to generate a purification of her state, using only the parameters
of her system and the interference visibility she measures. To put it more precisely, the state of the
form (5) where θ is given by (27), yields the same single-particle Wigner function for Alice as the state
(20) considered throughout this section (a proof appears in the Appendix B.3). Thus, (27) allows Alice
to use any of the results obtained in the previous section, e.g., by computing the predictability.

We also note that Alice and Bob may switch roles and achieve similar results; this fact is manifested
in (27) by noting the expression is invariant under permutation of the two particles.

5. Conclusions

In this work we derived a complementarity relation analogous to the one presented in [1], for a
family of CV systems described by EPR-like states. This complementarity relation is sensitive to
the parameters of the double-double-slit experiment, namely the width of each double slit and the
separation between the slits. In addition, we have demonstrated that in CV systems, the “analog”
visibility measures defined using interferometric envelopes, are closely related to the ones defined in
previous works [1–4] with binary-outcome quantum probabilities.

Moreover, (27) allows application of this complementarity relation to any experiment where a CV
is subjected to a binary-outcome measurement: one should have it evolve in a manner analogous to
propagation of the double-slit wavefunction to the far field; afterwards, an interference pattern should
be extracted, either an actual one or some analog; and finally, computation of the envelope-based
visibility allow finding the “θ” and consequentially the predictability, thus inferring the strength
of entanglement.

Additionally, common descriptions of the double-slit experiment usually consider two variants:
one where a detector is placed next to one of the slits, and another variant where no detector is placed.
However, since the process of measurement may be described by entangling the system and the
measuring pointer, a natural way to describe weak measurements [24–27] or intermediate strength
measurements [28,29] in a double-slit setting is by considering weak entanglement of the system
and pointer. In this context, by varying the parameter θ which controls the amount of entanglement
between the two particles in the initial state ψθ(x1, x2), this work may be also viewed as a model for
“weak” variants of the double-slit experiment with continuous variables.

Finally, this paper strengthens and elucidates the tight relation between local and nonlocal
correlations that we previously explored e.g., in [21,30,31].
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manuscript.
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Appendix A. Complementary Quantum Measures and Relations

Quantum particles can explore simultaneously multiple paths in a quantum coherent
superposition. In general, the n alternative paths could be explicitly described with the use of quantum
histories Q̂1, Q̂2, . . ., Q̂n, which are defined in history Hilbert space as tensor products of projection
operators at multiple times, and the corresponding quantum probability amplitudes ψ1, ψ2, . . ., ψn

propagating along each path can be experimentally measured in the form of complex-valued sequential
weak values [32]. Without loss of generality, after normalization it may be assumed that all given paths
form a complete set of quantum histories ∑i |ψi|2 = 1. In the special case of n-slit interference setups,
the sequential weak values reduce to ordinary weak values [24,25] with a single intermediate time
at the slits, between the initial emission from the particle source and the final detection at a sensitive
screen. The quantum coherence C exhibited by each quantum particle in multi-slit setups could be
manifested in visibility V of interference fringes and is constrained by complementary relations to path
predictability P or path distinguishability D, the latter demanding quantum entanglement with external
path measuring devises.

Definition 1. Path distinguishability D is defined with the use of external entanglement with measuring
devices inserted on the paths. For the case of n paths, the distinguishability is [33–36]

D =

√√√√1−
(

1
n− 1 ∑

i 6=j
|ψi||ψj||〈di|dj〉|

)2

(A1)

where different device states |di〉, |dj〉 are normalized but not necessarily orthogonal [37]. For orthogonal states
〈di|dj〉 = 0, the path distinguishability is maximal, D = 1.

For two equally likely paths, the path distinguishability reduces to

D =
√

1− |〈d1|d2〉|2 (A2)

Definition 2. Path predictability P is defined without the need of external entanglement. The idea is that if
two paths have different probabilities, one could predict which of the two paths has been taken with a success
which exceeds a 50% random guess. For n paths, the predictability is [38]

P =

√√√√1−
(

1
n− 1 ∑

i 6=j
|ψi||ψj|

)2

(A3)

For two paths, the path predictability becomes [2]

P =
∣∣∣|ψ1|2 − |ψ2|2

∣∣∣ (A4)

Proof. Indeed, squaring both sides of (A3) and using ∑i |ψi|2 = 1, we obtain

P2 = 12 − (2|ψ1||ψ2|)2 =
(
|ψ1|2 + |ψ2|2

)2
− 4|ψ1|2|ψ2|2

= |ψ1|4 + 2|ψ1|2|ψ2|2 + |ψ2|4 − 4|ψ1|2|ψ2|2

=
(
|ψ1|2 − |ψ2|2

)2

Taking the square root on both sides gives (A4).

Definition 3. Path coherence C quantifies the quantum interference between different paths [35]

C = 1
n− 1 ∑

i 6=j
|ψi||ψj||〈di|dj〉| (A5)
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In the absence of any path detectors, 〈di|dj〉 = 1, the coherence reduces to

C = 1
n− 1 ∑

i 6=j
|ψi||ψj| (A6)

Definition 4. Fringe visibility V quantifies the contrast in observed interferometric distribution patterns and
is given by

V =
Imax − Imin

Imax + Imin
(A7)

For two paths, the fringe visibility reduces to coherence

V =
2|ψ1||ψ2|
|ψ1|2 + |ψ2|2

= 2|ψ1||ψ2| (A8)

Proof. Consider using (A7) together with the Born rule for Imax and Imin to get

V =
(|ψ1|+ |ψ2|)2 − (|ψ1| − |ψ2|)2

(|ψ1|+ |ψ2|)2 + (|ψ1| − |ψ2|)2

=
|ψ1|2 + |ψ2|2 + 2|ψ1||ψ2| −

(
|ψ1|2 + |ψ2|2 − 2|ψ1||ψ2|

)
|ψ1|2 + |ψ2|2 + 2|ψ1||ψ2|+ |ψ1|2 + |ψ2|2 − 2|ψ1||ψ2|

=
4|ψ1||ψ2|

2|ψ1|2 + 2|ψ2|2
= 2|ψ1||ψ2|

Even though for double-slit setups the fringe visibility reduces to coherence, for multiple slits
fringe visibility is not a good measure of coherence. In fact, fringe visibility may increase with
increasing decoherence as explicitly shown in a specific case of four-path interference by Qureshi [39].

The most general equality for multi-path interference of a quantum particle in the presence of
path detectors is between path distinguishability and path coherence

D2 + C2 = 1 (A9)

Proof. Sum the squares of (A1) and (A5) to verify that the result is a unit.

As a special case, where there are no external path measuring devices, 〈di|dj〉 = 1, we obtain path
relationship between path predictability and path coherence

P2 + C2 = 1 (A10)

And if we further limit the setup only to two-path interference, the coherence can be replaced with
fringe visibility

D2 + V2 = 1 (A11)

P2 + V2 = 1 (A12)

Recently, Qureshi proposed to assess n path coherence using a method of blocking most of the
paths to measure interference visibilities of path pairs [40]. It should be noted that the moduli of
quantum probability amplitudes |ψi| for n paths could be determined with only n measurements of
individual path probabilities, |ψi| =

√
Pi. However, to determine orthogonality relations between

external path detectors
∣∣〈di|dj〉

∣∣one would need n2 − n pairs of measurements. In essence, Qureshi’s
proposal is to combine both types of measurements and assess n2− n pairs of visibilities |ψi||ψj||〈di|dj〉|,
which will then be summed according to Formula (A5).
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Appendix B. Computations and Wigner Functions

Appendix B.1. The Wigner Function for a Partially Entangled Double-Slit Experiment

Let us write down the Wigner function of the state (5):

Wθ (x1, x2, p1, p2) =Bθ cos2 θ
(

g−1 g−2 + g+1 g+2 + 2g0
1g0

2 cos [2h (p1 + p2)]
)
+

+ Bθ sin (2θ)
[
cos (2hp1) g0

1
(

g−2 + g+2
)
+ cos (2hp2) g0

2
(

g−1 + g+1
)]

(A13)

+ Bθ sin2 θ
(

g−1 g+2 + g+1 g−2 + 2g0
1g0

2 cos [2h (p1 − p2)]
)

where g±i := e−2a(xi±h)2
e−

p2
i

2a , g0
i := e−2ax2

i e−
p2

i
2a and Bθ := A2

θ
2πa . Now we shall compute the “partial”

Wigner function of x1, p1

W1,θ (x1, p1) :=
∫

dx2
∫

dp2 Wθ (x1, x2, p1, p2) =

= πBθ

[
1 + e−2ah2

sin (2θ)
] (

g−1 + g+1
)
+ 2πBθ

[
e−2ah2

+ sin (2θ)
]

g0
1 cos (2hp1)

(A14)

We note that for θ = π/4 we have

W1,θ=π/4 (x1, p1) =
1

2π
(

1 + e−2ah2
) [g−1 + g+1 + 2g0

1 cos (2hp1)
]

(A15)

which is equal to the Wigner function for a single-particle double-slit system. The momentum
probability density is computed by

fp1,θ (p1) =
∫

dx1 W1,θ (x1, p1) (A16)

and the momentum joint probability distribution is

fp1 p2,θ (p1, p2) :=
∫

dx1

∫
dx2 Wθ (x1, x2, p1, p2) (A17)

= Bθ
π

a
e−

p2
1+p2

2
2a

{
1 + cos2 θ cos [2h (p1 + p2)] + sin (2θ) [cos (2hp1) + cos (2hp2)] +

+ sin2 θ cos [2h (p1 − p2)]
}

= Bθ
π

a
e−

p2
1+p2

2
2a

{
1 + cos (2hp1) cos (2hp2)− cos (2θ) sin (2hp1) sin (2hp2) +

+ sin (2θ) [cos (2hp1) + cos (2hp2)]
}

= Bθ
π

a
e−

p2
1+p2

2
2a

[
1 + cos2 θ cos (2hp+) + 2 sin (2θ) cos (hp+) cos (hp−) +

+ sin2 θ cos (2hp−)
]
. (A18)
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The “corrected” momentum joint probability is defined by

F̃θ (p1, p2) := fp1 p2,θ (p1, p2)− fp1,θ (p1) fp2,θ (p2) +
Bθ

Bθ=0
fp1,θ=0 (p1) fp2,θ=0 (p2) =

= + e−
p2

1+p2
2

2a
Cθ

[
e4ah2

+ cos (2hp1) cos (2hp2) + cos2 (2θ)
]
+

+ e−
p2

1+p2
2

2a
Cθ

[
sin2 (2θ) e2ah2

[cos (2hp1) + cos (2hp2)]− cos (2θ) sin (2hp1) sin (2hp2)
]
+

+ e−
p2

1+p2
2

2a
Cθ

[
cos2 (2θ) e4ah2

cos (2hp1) cos (2hp2)− cos (2θ) e4ah2
sin (2hp1) sin (2hp2)

]
+

− e−
p2

1+p2
2

2a
Cθ

sin (4θ) e2ah2
sin (2hp1) sin (2hp2) =

= + e−
p2
++p2

−
4a

Cθ

(
e4ah2

+ cos2 (2θ) + 1
2

[
1 + cos2 (2θ) e4ah2

]
[cos (2hp+) + cos (2hp−)]

)
+

+2 e−
p2
++p2

−
4a

Cθ
sin2 (2θ) e2ah2

cos (hp+) cos (hp−) +

− 1
2

e−
p2
++p2

−
4a

Cθ
cos (2θ)

[
1 + e4ah2

+ 2 sin (2θ)
]
[cos (2hp−)− cos (2hp+)] =

= + e−
p2
++p2

−
4a

Cθ

[
e4ah2

+ cos2 (2θ) + 2 sin2 (2θ) e2ah2
cos (hp+) cos (hp−)

]
+

+ 1
2

e−
p2
++p2

−
4a

Cθ

(
1 + cos2 (2θ) e4ah2

+ cos (2θ)
[
1 + e4ah2

+ 2 sin (2θ)
])

cos (2hp+) +

+ 1
2

e−
p2
++p2

−
4a

Cθ

(
1 + cos2 (2θ) e4ah2 − cos (2θ)

[
1 + e4ah2

+ 2 sin (2θ)
])

cos (2hp−) .

(A19)

Substituting p− = 0, we obtain

F̃θ (p+, p− = 0) = e−
p2
+

4a
Cθ

[
e4ah2

+ cos2 (2θ) + 2 sin2 (2θ) e2ah2
cos (hp+)

]
+

+ 1
2

e−
p2
+

4a
Cθ

(
1 + cos2 (2θ) e4ah2

+ cos (2θ)
[
1 + e4ah2

+ 2 sin (2θ)
])

cos (2hp+) +

+ 1
2

e−
p2
+

4a
Cθ

(
1 + cos2 (2θ) e4ah2 − cos (2θ)

[
1 + e4ah2

+ 2 sin (2θ)
])

.

(A20)

Appendix B.2. The Wigner Function for an Asymmetric Double-Slit Experiment

The Wigner function corresponding to (20) is:

W (x1, x2, p1, p2) = G
(
γ−1 γ−2 + γ+

1 γ+
2
)
+ 2Gγ0

1γ0
2 cos (2h1 p1 + 2h2 p2) (A21)

where γ±1 := e−2a(x1±h1)
2
e−

p2
1

2a , γ±2 := e−2b(x2±h2)
2
e−

p2
2

2b , γ0
1 := e−2ax2

1 e−
p2

1
2a , γ0

2 := e−2bx2
2 e−

p2
2

2b and
G := M2

2π
√

ab
. The “partial” Wigner function is:

W1 (x1, p1) :=
∫

dx2

∫
dp2 W (x1, x2, p1, p2) = πG

[
γ−1 + γ+

1 + 2e−2bh2
2 γ0

1 cos (2h1 p1)
]

. (A22)

Appendix B.3. Purification of Alice’s Subsystem

Suppose Alice is entangled with Bob in an asymmetric manner, and has no knowledge of anything
outside her system; however, she knows the parameters a, h1. She performs interference experiments,
obtains an interference pattern and uses it to compute Vasymmetric. Here we demonstrate she can always
purify her state - i.e., write down a pure “Alice-Bob” state of the form (5) yielding the same one-particle
Wigner function for Alice.
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Our claim here, is that the state (5) where θ is a solution of (27) satisfies the above requirement.
Indeed, substituting (26) in (A22) yields:

W1,asym (x1, p1) = πG
[

g−1 + g+1 + 2g0
1

e−2ah2
1+sin(2θ)

1+sin(2θ)e−2ah2
1

cos (2h1 p1)

]
=

= πG

1+sin(2θ)e−2ah2
1

([
1 + e−2ah2

1 sin (2θ)
] (

g−1 + g+1
)
+ 2

[
e−2ah2

1 + sin (2θ)
]

g0
1 cos (2h1 p1)

) (A23)

which is identical to (A14) up to normalization, implying it should be completely identical, thus
concluding the proof.
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