Effect of Mechanical Stimulation Applied to the Lower-Limb Musculature on Stability and Function of Stair Climbing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject
2.2. Vibratory Perception Threshold Measurement for Vibratory Stimulus Intensity Setting
2.3. Mu Rhythm Measurement for Vibration Frequency Setting
2.4. Mu Rhythm Analysis
2.5. Stair Climbing Procedure
2.6. Electromyogram (EMG) Signal Recording and Processing
2.7. EMG and Co-Activation Analysis
2.8. Statistical Analysis
3. Results
3.1. Changing the Mu Rhythm Using Localized Vibrations
3.2. Changes in Muscle Activity According to the Local Vibratory Stimulation Conditions
3.3. Co-Activation Differences with Vibration Conditions and Phases of Gait Cycle
4. Discussion
4.1. Effect of Vibration Frequency on Mu Rhythm
4.2. Effect of Vibratory Stimulation Conditions on EMG Activation
4.3. Changes in the Co-Activation by Localized Vibratory Stimuli during Stair Climbing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hortobágyi, T.; DeVita, P. Muscle pre-and coactivity during downward stepping are associated with leg stiffness in aging. J. Electromyogr. Kinesiol. 2000, 10, 117–126. [Google Scholar] [CrossRef]
- Souissi, H.; Zory, R.; Bredin, J.; Gerus, P. Comparison of methodologies to assess muscle co-contraction during gait. J. Biomech. 2017, 57, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Falconer, K.; Winter, D.A. Quantitative assessment of co-contraction at the ankle joint in walking. Electromyogr. Clin. Neurophysiol. 1985, 25, 135–149. [Google Scholar] [PubMed]
- Nagai, K.; Yamada, M.; Tanaka, B.; Uemura, K.; Mori, S.; Aoyama, T.; Ichihashi, N.; Tsuboyama, T. Effects of balance training on muscle coactivation during postural control in older adults: A randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 882–889. [Google Scholar] [CrossRef]
- Asaka, T.; Wang, Y.; Fukushima, J.; Latash, M.L. Learning effects on muscle modes and multi-mode postural synergies. Exp. Brain Res. 2008, 184, 323–338. [Google Scholar] [CrossRef] [Green Version]
- Darainy, M.; Malfait, N.; Gribble, P.L.; Towhidkhah, F.; Ostry, D.J. Learning to control arm stiffness under static conditions. J. Neurophysiol. 2004, 92, 3344–3350. [Google Scholar] [CrossRef] [Green Version]
- Baratta, R.; Solomonow, M.; Zhou, B.H.; Letson, D.; Chuinard, R.; D’Ambrosia, R. Muscular coactivation. The role of the antagonist musculature in maintaining knee stability. Am. J. Sports Med. 1988, 16, 113–122. [Google Scholar] [CrossRef]
- Di Nardo, F.; Mengarelli, A.; Maranesi, E.; Burattini, L.; Fioretti, S. Assessment of the ankle muscle co-contraction during normal gait: A surface electromyography study. J. Electromyogr. Kinesiol. 2015, 25, 347–354. [Google Scholar] [CrossRef]
- Lopez, S.; Bini, F.; Del Percio, C.; Marinozzi, F.; Celletti, C.; Suppa, A.; Ferri, R.; Staltari, E.; Camerota, F.; Babiloni, C. Electroencephalographic sensorimotor rhythms are modulated in the acute phase following focal vibration in healthy subjects. Neuroscience 2017, 352, 236–248. [Google Scholar] [CrossRef]
- Pineda, J.A.; Allison, B.Z.; Vankov, A. The effects of self-movement, observation, and imagination on/spl mu/rhythms and readiness potentials (RP’s): Toward a brain-computer interface (BCI). IEEE Trans. Rehabil. Eng. 2000, 8, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Muthukumaraswamy, S.D.; Johnson, B.W. Changes in rolandic mu rhythm during observation of a precision grip. Psychophysiology 2004, 41, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Gilman, S. Joint position sense and vibration sense: Anatomical organisation and assessment. J. Neurol. Neurosurg. Psychiatry 2002, 73, 473–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodama, T.; Nakano, H.; Ohsugi, H.; Murata, S. Effects of vibratory stimulation-induced kinesthetic illusions on the neural activities of patients with stroke. J. Phys. Ther. Sci. 2016, 28, 419–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; McNamara, B.P.; Moran, K. A portable vibrator for muscle performance enhancement by means of direct muscle tendon stimulation. Med. Eng. Phys. 2005, 27, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Carson, R.G.; Popple, A.E.; Verschueren, S.M.P.; Riek, S. Superimposed vibration confers no additional benefit compared with resistance training alone. Scand. J. Med. Sci. Sports 2010, 20, 827–833. [Google Scholar] [CrossRef]
- Mima, T.; Simpkins, N.; Oluwatimilehin, T.; Hallett, M. Force level modulates human cortical oscillatory activities. Neurosci. Lett. 1999, 275, 77–80. [Google Scholar] [CrossRef]
- Steyvers, M.; Levin, O.; Verschueren, S.M.; Swinnen, S.P. Frequency-dependent effects of muscle tendon vibration on corticospinal excitability: A TMS study. Exp. Brain Res. 2003, 151, 9–14. [Google Scholar] [CrossRef]
- Couto, B.P.; Silva, H.R.; Barbosa, M.P.; Szmuchrowski, L.A. Chronic effects of different frequencies of local vibrations. Int. J. Sports Med. 2012, 33, 123–129. [Google Scholar] [CrossRef]
- Lapole, T.; Pérot, C. Effects of repeated Achilles tendon vibration on triceps surae stiffness and reflex excitability. J. Electromyogr. Kinesiol. 2011, 21, 87–94. [Google Scholar] [CrossRef]
- Sharif Bidabadi, S.; Murray, I.; Lee, G.Y.F. Validation of foot pitch angle estimation using inertial measurement unit against marker-based optical 3D motion capture system. Biomed. Eng. Lett. 2018, 8, 283–290. [Google Scholar] [CrossRef]
- Kwak, K.Y.; Kim, H.G.; Kim, D.W. Variation of Ankle Biomechanical Property according to Vibro-Perception Threshold and Vibration Frequency. Biomed. Eng. Lett. 2016, 6, 16–25. [Google Scholar] [CrossRef]
- Prakash, A.; Sharma, S.; Sharma, N. A compact-sized surface EMG sensor for myoelectric hand prosthesis. Biomed. Eng. Lett. 2019, 9, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, J.; Kim, J. Electromyography-signal-based muscle fatigue assessment for knee rehabilitation monitoring systems. Biomed. Eng. Lett. 2018, 8, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.; Freriks, B.; Merletti, R.; Stegeman, D.; Block, J.; Rau, G.; Disselhorst-Klug, C.; Hagg, G. SENIAM: European Recommendations for Surface Electromyography; Roessingh Research and Development: Enschede, The Netherlands, 1999; ISBN 90-75452-15-2. [Google Scholar] [CrossRef]
- McFadyen, B.J.; Winter, D.A. An integrated biomechanical analysis of normal stair ascent and descent. J. Biomech. 1988, 21, 733–744. [Google Scholar] [CrossRef]
- Johansson, R.S.; Vallbo, A.B. Tactile sensibility in the human hand: Relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J. Physiol. 1979, 286, 283–300. [Google Scholar] [CrossRef]
- Shah, V.A.; Casadio, M.; Scheidt, R.A.; Mrotek, L.A. Vibration Propagation on the Skin of the Arm. Appl. Sci. 2019, 9, 4329. [Google Scholar] [CrossRef] [Green Version]
- Marconi, B.; Filippi, G.M.; Koch, G.; Pecchioli, C.; Salerno, S.; Don, R.; Camerota, F.; Saraceni, V.M.; Caltagirone, C. Long-term effects on motor cortical excitability induced by repeated muscle vibration during contraction in healthy subjects. J. Neurol. Sci. 2008, 275, 51–59. [Google Scholar] [CrossRef]
- Siggelkow, S.; Kossev, A.; Schubert, M.; Kappels, H.H.; Wolf, W.; Dengler, R. Modulation of motor evoked potentials by muscle vibration: The role of vibration frequency. Muscle Nerve 1999, 22, 1544–1548. [Google Scholar] [CrossRef]
- Kossev, A.; Siggelkow, S.; Kapels, H.H.; Dengler, R.; Rollnik, J.D. Crossed effects of muscle vibration on motor-evoked potentials. Clin. Neurophysiol. 2001, 112, 453–456. [Google Scholar] [CrossRef]
- Ridding, M.C.; Taylor, J.L. Mechanisms of motor-evoked potential facilitation following prolonged dual peripheral and central stimulation in humans. J. Physiol. 2001, 537 Pt 2, 623–631. [Google Scholar] [CrossRef]
- Klykken, L.W.; Pietrosimone, B.G.; Kim, K.M.; Ingersoll, C.D.; Hertel, J. Motor-neuron pool excitability of the lower leg muscles after acute lateral ankle sprain. J. Athl. Train. 2011, 46, 263–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riener, R.; Rabuffetti, M.; Frigo, C. Stair ascent and descent at different inclinations. Gait Posture 2002, 15, 32–44. [Google Scholar] [CrossRef]
- Nadeau, S.; McFadyen, B.J.; Malouin, F. Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: What are the challenges compared to level walking? Clin. Biomech. 2003, 18, 950–959. [Google Scholar] [CrossRef]
- Hortobágyi, T.; Solnik, S.; Gruber, A.; Rider, P.; Steinweg, K.; Helseth, J.; DeVita, P. Interaction between age and gait velocity in the amplitude and timing of antagonist muscle coactivation. Gait Posture 2009, 29, 558–564. [Google Scholar] [CrossRef]
- Tucker, M.G.; Kavanagh, J.J.; Barrett, R.S.; Morrison, S. Age-related differences in postural reaction time and coordination during voluntary sway movements. Hum. Mov. Sci. 2008, 27, 728–737. [Google Scholar] [CrossRef]
- Spanjaard, M.; Reeves, N.D.; van Dieen, J.H.; Baltzopoulos, V.; Maganaris, C.N. Gastrocnemius muscle fascicle behavior during stair negotiation in humans. J. Appl. Physiol. 2007, 102, 1618–1623. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, M.; Komi, P.V.; Grey, M.J.; Lepola, V.; Bruggemann, G.P. Muscle-tendon interaction and elastic energy usage in human walking. J. Appl. Physiol. 2005, 99, 603–608. [Google Scholar] [CrossRef] [Green Version]
- Mian, O.S.; Thom, J.M.; Ardigò, L.P.; Minetti, A.E.; Narici, M.V. Gastrocnemius muscle–tendon behaviour during walking in young and older adults. Acta Physiol. 2007, 189, 57–65. [Google Scholar] [CrossRef]
- Simeonov, P.; Hsiao, H.; Powers, J.; Ammons, D.; Kau, T.; Amendola, A. Postural stability effects of random vibration at the feet of construction workers in simulated elevation. Appl. Ergon. 2011, 42, 672–681. [Google Scholar] [CrossRef]
- Pope, M.H.; Magnusson, M.; Wilder, D.G. Low Back Pain and Whole Body Vibration. Clin. Orthop. Relat. Res. 1998, 354, 241–248. [Google Scholar] [CrossRef]
- Priplata, A.A.; Patritti, B.L.; Niemi, J.B.; Hughes, R.; Gravelle, D.C.; Lipsitz, L.A.; Veves, A.; Stein, J.; Bonato, P.; Collins, J.J. Noise-enhanced balance control in patients with diabetes and patients with stroke. Ann. Neurol. 2006, 59, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Priplata, A.A.; Niemi, J.B.; Harry, J.D.; Lipsitz, L.A.; Collins, J.J. Vibrating insoles and balance control in elderly people. Lancet 2003, 362, 1123–1124. [Google Scholar] [CrossRef]
Frequencies | 100 Hz | 120 Hz | 140 Hz | 160 Hz | 180 Hz | 190 Hz | 200 Hz | 210 Hz | 220 Hz | 240 Hz | 250 Hz | 260 Hz |
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 Hz | * | * | * | * | ||||||||
120 Hz | * | * | * | * | * | |||||||
140 Hz | * | * | * | * | * | * | * | * | ||||
160 Hz | * | * | * | * | * | * | ||||||
180 Hz | * | * | * | * | * | |||||||
190 Hz | * | * | * | * | ||||||||
200 Hz | * | * | * | |||||||||
210 Hz | * | * | * | * | ||||||||
220 Hz | * | * | * | |||||||||
240 Hz | * | * | ||||||||||
250 Hz | ||||||||||||
260 Hz |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, S.; Kwak, K.; Kim, H.; Kim, D. Effect of Mechanical Stimulation Applied to the Lower-Limb Musculature on Stability and Function of Stair Climbing. Appl. Sci. 2020, 10, 799. https://doi.org/10.3390/app10030799
Ko S, Kwak K, Kim H, Kim D. Effect of Mechanical Stimulation Applied to the Lower-Limb Musculature on Stability and Function of Stair Climbing. Applied Sciences. 2020; 10(3):799. https://doi.org/10.3390/app10030799
Chicago/Turabian StyleKo, Seunghun, Kiyoung Kwak, Huigyun Kim, and Dongwook Kim. 2020. "Effect of Mechanical Stimulation Applied to the Lower-Limb Musculature on Stability and Function of Stair Climbing" Applied Sciences 10, no. 3: 799. https://doi.org/10.3390/app10030799
APA StyleKo, S., Kwak, K., Kim, H., & Kim, D. (2020). Effect of Mechanical Stimulation Applied to the Lower-Limb Musculature on Stability and Function of Stair Climbing. Applied Sciences, 10(3), 799. https://doi.org/10.3390/app10030799