Predictive Data Mining Techniques for Fault Diagnosis of Electric Equipment: A Review
Abstract
:1. Introduction
2. Predictive Model
2.1. Classification-Based Methods
2.2. Regression-Based Methods
2.3. Hybrid Techniques
3. Recent Methods for General Applications
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adil, A.M.; Ko, Y. Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy. Renew. Sustain. Energy Rev. 2016, 57, 1025–1037. [Google Scholar] [CrossRef]
- García-Villalobos, J.; Zamora, I.; San Martín, J.I.; Asensio, F.J.; Aperribay, V. Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches. Renew. Sustain. Energy Rev. 2014, 38, 717–731. [Google Scholar] [CrossRef]
- Valtierra-Rodriguez, M. Fractal dimension and data mining for detection of short-circuited turns in transformers from vibration signals. Meas. Sci. Technol. 2019, 31, 025902. [Google Scholar] [CrossRef]
- Mejia-Barron, A.; Valtierra-Rodriguez, M.; Granados-Lieberman, D.; Olivares-Galvan, J.C.; Escarela-Perez, R. Experimental data-based transient-stationary current model for inter-turn fault diagnostics in a transformer. Electr. Power Syst. Res. 2017, 152, 306–315. [Google Scholar] [CrossRef]
- Mejia-Barron, A.; de Santiago-Perez, J.J.; Granados-Lieberman, D.; Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M. Shannon Entropy Index and a Fuzzy Logic System for the Assessment of Stator Winding Short-Circuit Faults in Induction Motors. Electronics 2019, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Pack, J.H.; Lee, I.S. Fault Diagnosis of Induction Motor Using Convolutional Neural Network. Appl. Sci. 2019, 9, 2950. [Google Scholar] [CrossRef] [Green Version]
- Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms, 2nd ed.; Wiley—IEEE Press: Piscataway, NJ, USA, 2011. [Google Scholar]
- Han, J.; Pei, J.; Kamber, M. Data Mining: Concepts and Techniques, 3rd ed.; The Morgan Kaufmann Series in Data Management Systems; Elsevier Science: Waltham, MA, USA, 2011. [Google Scholar]
- Jothi, N.; Rashid, N.A.; Husain, W. Data Mining in Healthcare—A Review. Procedia Comput. Sci. 2015, 72, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Paramasivam, V.; Yee, T.S.; Dhillon, S.K.; Sidhu, A.S. A methodological review of data mining techniques in predictive medicine: An application in hemodynamic prediction for abdominal aortic aneurysm disease. Biocybern. Biomed. Eng. 2014, 34, 139–145. [Google Scholar] [CrossRef]
- Bellazzi, R.; Zupan, B. Predictive data mining in clinical medicine: Current issues and guidelines. Int. J. Med. Inf. 2008, 77, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Ngai, E.W.T.; Xiu, L.; Chau, D.C.K. Application of data mining techniques in customer relationship management: A literature review and classification. Expert Syst. Appl. 2009, 36, 2592–2602. [Google Scholar] [CrossRef]
- Ge, Z.; Song, Z.; Ding, S.X.; Huang, B. Data Mining and Analytics in the Process Industry: The Role of Machine Learning. IEEE Access 2017, 5, 20590–20616. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, Y.; Wan, J.; Liu, X.; Song, Z. Industrial Big Data for Fault Diagnosis: Taxonomy, Review, and Applications. IEEE Access 2017, 5, 17368–17380. [Google Scholar] [CrossRef]
- Odell, S.D.; Bebbington, A.; Frey, K.E. Mining and climate change: A review and framework for analysis. Extr. Ind. Soc. 2018, 5, 201–214. [Google Scholar] [CrossRef]
- Ngai, E.W.T.; Hu, Y.; Wong, Y.H.; Chen, Y.; Sun, X. The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decis. Support Syst. 2011, 50, 559–569. [Google Scholar] [CrossRef]
- Christina, A.J.; Salam, M.A.; Rahman, Q.M.; Wen, F.; Ang, S.P.; Voon, W. Causes of transformer failures and diagnostic methods—A review. Renew. Sustain. Energy Rev. 2018, 82, 1442–1456. [Google Scholar]
- De Faria, H.; Costa, J.G.S.; Olivas, J.L.M. A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis. Renew. Sustain. Energy Rev. 2015, 46, 201–209. [Google Scholar] [CrossRef]
- Sun, H.C.; Huang, Y.C.; Huang, C.M. Fault Diagnosis of Power Transformers Using Computational Intelligence: A Review. Energy Procedia 2012, 14, 1226–1231. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Ouyang, M.; Han, X.; Lu, L.; Li, J. Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles. J. Power Sources 2018, 377, 161–188. [Google Scholar] [CrossRef]
- Liu, Y.; Bazzi, A.M. A review and comparison of fault detection and diagnosis methods for squirrel-cage induction motors: State of the art. ISA Trans. 2017, 70, 400–409. [Google Scholar] [CrossRef]
- Prasad, A.; Belwin, E.J.; Ravi, K. A review on fault classification methodologies in power transmission systems: Part—I. J. Electr. Syst. Inf. Technol. 2018, 5, 48–60. [Google Scholar]
- Prasad, A.; Belwin, E.J.; Ravi, K. A review on fault classification methodologies in power transmission systems: Part-II. J. Electr. Syst. Inf. Technol. 2018, 5, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Gururajapathy, S.S.; Mokhlis, H.; Illias, H.A. Fault location and detection techniques in power distribution systems with distributed generation: A review. Renew. Sustain. Energy Rev. 2017, 74, 949–958. [Google Scholar] [CrossRef]
- Hare, J.; Shi, X.; Gupta, S.; Bazzi, A. Fault diagnostics in smart micro-grids: A survey. Renew. Sustain. Energy Rev. 2016, 60, 1114–1124. [Google Scholar] [CrossRef]
- Taylor, D.W.; Corne, D.W.; Taylor, D.L.; Harkness, J. Predicting alarms in supermarket refrigeration systems using evolved neural networks and evolved rulesets. In Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002. [Google Scholar]
- Magoulès, F.; Zhao, H.; Elizondo, D. Development of an RDP neural network for building energy consumption fault detection and diagnosis. Energy Build. 2013, 62, 133–138. [Google Scholar] [CrossRef]
- Tallam, R.M.; Habetler, T.G.; Harley, R.G.; Gritter, D.J.; Burton, B.H. Neural network based on-line stator winding turn fault detection for induction motors. In Proceedings of the Conference Record of the 2000 IEEE Industry Applications Conference, Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy, Rome, Italy, 8–12 October 2000. [Google Scholar]
- Martins, J.F.; Pires, V.F.; Pires, A.J. Unsupervised Neural-Network-Based Algorithm for an On-Line Diagnosis of Three-Phase Induction Motor Stator Fault. IEEE Trans. Ind. Electron. 2007, 54, 259–264. [Google Scholar] [CrossRef]
- Xu-hong, W.; Yi-gang, H. Fuzzy Neural Network based On-line Stator Winding Turn Fault Detection for Induction Motors. In Proceedings of the 2nd IEEE Conference on Industrial Electronics and Applications, Harbin, China, 23–25 May 2007. [Google Scholar]
- Ballal, M.S.; Khan, Z.J.; Suryawanshi, H.M.; Sonolikar, R.L. Adaptive Neural Fuzzy Inference System for the Detection of Inter-Turn Insulation and Bearing Wear Faults in Induction Motor. IEEE Trans. Ind. Electron. 2007, 54, 250–258. [Google Scholar] [CrossRef]
- Cabal-Yepez, E.; Valtierra-Rodriguez, M.; Romero-Troncoso, R.J.; Garcia-Perez, A.; Osornio-Rios, R.A.; Miranda-Vidales, H.; Alvarez-Salas, R. FPGA-based entropy neural processor for online detection of multiple combined faults on induction motors. Mech. Syst. Signal Process. 2012, 30, 123–130. [Google Scholar] [CrossRef]
- Camarena-Martinez, D.; Valtierra-Rodriguez, M.; Garcia-Perez, A.; Osornio-Rios, R.A.; Romero-Troncoso, R.J. Empirical mode decomposition and neural networks on FPGA for fault diagnosis in induction motors. Sci. World J. 2014, 2014, 908140. [Google Scholar] [CrossRef]
- Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M.; Camarena-Martinez, D.; Granados-Lieberman, D.; Romero-Troncoso, R.J.; Dominguez-Gonzalez, A. Fractal dimension-based approach for detection of multiple combined faults on induction motors. J. Vib. Control 2016, 22, 3638–3648. [Google Scholar] [CrossRef]
- Zolfaghari, S.; Noor, S.B.M.; Rezazadeh, M.M.; Marhaban, M.H.; Mariun, N. Broken rotor bar fault detection and classification using wavelet packet signature analysis based on fourier transform and multi-layer perceptron neural network. Appl. Sci. 2018, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Flores, A.; Quiles, E.; Garcia, E.; Morant, F. Fault Diagnosis of Electric Transmission Lines using Modular Neural Networks. IEEE Lat. Am. Trans. 2016, 14, 3663–3668. [Google Scholar] [CrossRef]
- Valtierra-Rodriguez, M.; Romero-Troncoso, R.J.; Osornio-Rios, R.A.; Garcia-Perez, A. Detection and classification of single and combined power quality disturbances using neural networks. IEEE Trans. Ind. Electron. 2013, 61, 2473–2482. [Google Scholar] [CrossRef]
- Rigatos, G.; Siano, P. Power transformers’ condition monitoring using neural modeling and the local statistical approach to fault diagnosis. Int. J. Electr. Power Energy Syst. 2016, 80, 150–159. [Google Scholar] [CrossRef]
- Menezes, A.G.C.; Almeida, O.M.; Barbosa, F.R. Use of decision tree algorithms to diagnose incipient faults in power transformers. In Proceedings of the Simposio Brasileiro de Sistemas Eletricos (SBSE), Niteroi, Brazil, 12–16 May 2018. [Google Scholar]
- Han, Y.; Zhao, D.; Hou, H. Oil-immersed Transformer Internal Thermoelectric Potential Fault Diagnosis Based on Decision-tree of KNIME Platform. Procedia Comput. Sci. 2016, 83, 1321–1326. [Google Scholar] [CrossRef]
- Samantaray, S.R.; Dash, P.K. Decision Tree based discrimination between inrush currents and internal faults in power transformer. Int. J. Electr. Power Energy Syst. 2011, 33, 1043–1048. [Google Scholar] [CrossRef]
- Sakthivel, N.R.; Sugumaran, V.; Babudevasenapati, S. Vibration based fault diagnosis of monoblock centrifugal pump using decision tree. Expert Syst. Appl. 2010, 37, 4040–4049. [Google Scholar] [CrossRef]
- Sharma, A.; Sugumaran, V.; Babu, S. Misfire detection in an IC engine using vibration signal and decision tree algorithms. Measurement 2014, 50, 370–380. [Google Scholar] [CrossRef]
- Volkanovski, A.; Čepin, M.; Mavko, B. Application of the fault tree analysis for assessment of power system reliability. Reliab. Eng. Syst. Saf. 2009, 94, 1116–1127. [Google Scholar] [CrossRef]
- Duan, R.; Zhou, H. A New Fault Diagnosis Method Based on Fault Tree and Bayesian Networks. Energy Procedia 2012, 17, 1376–1382. [Google Scholar] [CrossRef] [Green Version]
- Bonvini, M.; Sohn, M.D.; Granderson, J.; Wetter, M.; Piette, M.A. Robust on-line fault detection diagnosis for HVAC components based on nonlinear state estimation techniques. Appl. Energy 2014, 124, 156–166. [Google Scholar] [CrossRef]
- Li, D.; Zhou, Y.; Hu, G.; Spanos, C.J. Fault detection and diagnosis for building cooling system with a tree-structured learning method. Energy Build. 2016, 127, 540–551. [Google Scholar] [CrossRef]
- Rodríguez, P.V.J.; Arkkio, A. Detection of stator winding fault in induction motor using fuzzy logic. Appl. Soft Comput. 2008, 8, 1112–1120. [Google Scholar] [CrossRef]
- Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M.; Perez-Ramirez, C.A.; Camarena-Martinez, D.; Garcia-Perez, A.; Romero-Troncoso, R.J. Fractal dimension and fuzzy logic systems for broken rotor bar detection in induction motors at start-up and steady-state regimes. Meas. Sci. Technol. 2017, 28, 075001. [Google Scholar] [CrossRef]
- Islam, S.M.; Wu, T.; Ledwich, G. A novel fuzzy logic approach to transformer fault diagnosis. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 177–186. [Google Scholar] [CrossRef]
- Huang, Y.C.; Sun, H.C. Dissolved gas analysis of mineral oil for power transformer fault diagnosis using fuzzy logic. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 974–981. [Google Scholar] [CrossRef]
- Khan, S.A.; Equbal, M.D.; Islam, T. A comprehensive comparative study of DGA based transformer fault diagnosis using fuzzy logic and ANFIS models. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 590–596. [Google Scholar] [CrossRef]
- Chin, H.C. Fault section diagnosis of power system using fuzzy logic. IEEE Trans. Power Syst. 2003, 18, 245–250. [Google Scholar] [CrossRef]
- Valtierra-Rodriguez, M.; Granados-Lieberman, D.; Torres-Fernandez, J.E.; Rodríguez-Rodríguez, J.R.; Gómez-Aguilar, J.F. A new methodology for tracking and instantaneous characterization of voltage variations. IEEE Trans. Instrum. Meas. 2016, 65, 1596–1604. [Google Scholar] [CrossRef]
- Lauro, F.; Moretti, F.; Capozzoli, A.; Khan, I.; Pizzuti, S.; Macas, M.; Panzieri, S. Building Fan Coil Electric Consumption Analysis with Fuzzy Approaches for Fault Detection and Diagnosis. Energy Procedia 2014, 62, 411–420. [Google Scholar] [CrossRef]
- Zio, E.; Baraldi, P.; Popescu, I.C. A fuzzy decision tree method for fault classification in the steam generator of a pressurized water reactor. Ann. Nucl. Energy 2009, 36, 1159–1169. [Google Scholar] [CrossRef]
- Mittal, M.; Bhushan, M.; Patil, S.; Chaudhari, S. Optimal Feature Selection for SVM Based Fault Diagnosis in Power Transformers. IFAC Proc. Vol. 2013, 46, 809–814. [Google Scholar] [CrossRef] [Green Version]
- Lv, G.; Cheng, H.; Zhai, H.; Dong, L. Fault diagnosis of power transformer based on multi-layer SVM classifier. Electr. Power Syst. Res. 2005, 75, 9–15. [Google Scholar] [CrossRef]
- Bacha, K.; Souahlia, S.; Gossa, M. Power transformer fault diagnosis based on dissolved gas analysis by support vector machine. Electr. Power Syst. Res. 2012, 83, 73–79. [Google Scholar] [CrossRef]
- Johnson, J.M.; Yadav, A. Complete protection scheme for fault detection, classification and location estimation in HVDC transmission lines using support vector machines. IET Sci. Meas. Technol. 2017, 11, 279–287. [Google Scholar] [CrossRef]
- Parikh, U.B.; Das, B.; Maheshwari, R. Fault classification technique for series compensated transmission line using support vector machine. Int. J. Electr. Power Energy Syst. 2010, 32, 629–636. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Liu, M.; Bao, Z. Data-Based Line Trip Fault Prediction in Power Systems Using LSTM Networks and SVM. IEEE Access 2018, 6, 7675–7686. [Google Scholar] [CrossRef]
- Gangsar, P.; Tiwari, R. Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass-support vector machine algorithms. Mech. Syst. Signal Process. 2017, 94, 464–481. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, D.; Liu, Y. Robust locally linear embedding algorithm for machinery fault diagnosis. Neurocomputing 2018, 273, 323–332. [Google Scholar] [CrossRef]
- Das, S.; Purkait, P.; Koley, C.; Chakravorti, S. Performance of a load-immune classifier for robust identification of minor faults in induction motor stator winding. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 33–44. [Google Scholar] [CrossRef]
- Mulumba, T.; Afshari, A.; Yan, K.; Shen, W.; Norford, L.K. Robust model-based fault diagnosis for air handling units. Energy Build. 2015, 86, 698–707. [Google Scholar] [CrossRef]
- Yan, K.; Shen, W.; Mulumba, T.; Afshari, A. ARX model based fault detection and diagnosis for chillers using support vector machines. Energy Build. 2014, 81, 287–295. [Google Scholar] [CrossRef]
- Ayodeji, A.; Liu, Y. Support vector ensemble for incipient fault diagnosis in nuclear plant components. Nucl. Eng. Technol. 2018, 50, 1306–1313. [Google Scholar] [CrossRef]
- Lai, K.; Phung, B.; Blackburn, T. Application of data mining on partial discharge part I: Predictive modelling classification. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 846–854. [Google Scholar] [CrossRef]
- Liang, J.; Chen, K.; Lin, M.; Zhang, C.; Wang, F. Robust finite mixture regression for heterogeneous targets. Data Min. Knowl. Discov. 2018, 32, 1509–1560. [Google Scholar] [CrossRef]
- Jena, S.; Bhalja, B.R. Development of a new fault zone identification scheme for busbar using logistic regression classifier. IET Gener. Transm. Distrib. 2017, 11, 174–184. [Google Scholar] [CrossRef]
- Xu, L.; Chow, M.Y. A Classification Approach for Power Distribution Systems Fault Cause Identification. IEEE Trans. Power Syst. 2006, 21, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Cha, J.; Ha, C.; Ko, S.; Koo, J. Application of fault factor method to fault detection and diagnosis for space shuttle main engine. Acta Astronaut. 2016, 126, 517–527. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, S. Recursive Total Principle Component Regression Based Fault Detection and Its Application to Vehicular Cyber-Physical Systems. IEEE Trans. Ind. Inf. 2018, 14, 1415–1423. [Google Scholar] [CrossRef]
- Bolovinou, A.; Bakas, I.; Amditis, A.; Mastrandrea, F.; Vinciotti, W. Online prediction of an electric vehicle remaining range based on regression analysis. In Proceedings of the IEEE International Electric Vehicle Conference (IEVC), Florence, Italy, 17–19 December 2014. [Google Scholar]
- Cappiello, A.; Chabini, I.; Nam, E.K.; Lue, A.; Abou, Z.M. A statistical model of vehicle emissions and fuel consumption. In Proceedings of the IEEE 5th International Conference on Intelligent Transportation Systems, Singapore, 3–6 September 2002. [Google Scholar]
- Yu, Q.; Qin, Y.; Liu, P.; Ren, G. A Panel Data Model-Based Multi-Factor Predictive Model of Highway Electromechanical Equipment Faults. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1–7. [Google Scholar] [CrossRef]
- Gopinath, R.; Santhosh, K.C.; Ramachandran, K.I.; Upendranath, V.; Sai Kiran, P.V.R. Intelligent fault diagnosis of synchronous generators. Expert Syst. Appl. 2016, 45, 142–149. [Google Scholar] [CrossRef]
- Bangura, J.F.; Povinelli, R.J.; Demerdash, N.A.O.; Brown, R.H. Diagnostics of eccentricities and bar/end-ring connector breakages in polyphase induction motors through a combination of time-series data mining and time-stepping coupled FE-state space techniques. In Proceedings of the Conference Record of the 2001 IEEE Industry Applications Conference, 36th IAS Annual Meeting, Chicago, IL, USA, 30 September–4 October 2001. [Google Scholar]
- Wang, G.; Jiao, J. Quality-Related Fault Detection and Diagnosis Based on Total Principal Component Regression Model. IEEE Access 2018, 6, 10341–10347. [Google Scholar] [CrossRef]
- Seera, M.; Chee, P.L.; Ishak, D.; Singh, H. Fault Detection and Diagnosis of Induction Motors Using Motor Current Signature Analysis and a Hybrid FMM–CART Model. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Seera, M.; Chee, P.L. Online Motor Fault Detection and Diagnosis Using a Hybrid FMM-CART Model. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.T.; Yang, B.S.; Oh, M.S.; Tan, A.C.C. Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference. Expert Syst. Appl. 2009, 36, 1840–1849. [Google Scholar] [CrossRef] [Green Version]
- Pramesti, W.; Damayanti, I.; Asfani, D.A. Stator fault identification analysis in induction motor using multinomial logistic regression. In Proceedings of the International Seminar on Intelligent Technology and Its Applications (ISITIA), Lombok, Indonesia, 28–30 June 2016. [Google Scholar]
- Júnior, A.M.G.; Silva, V.V.R.; Baccarini, L.M.R.; Mendes, L.F.S. The design of multiple linear regression models using a genetic algorithm to diagnose initial short-circuit faults in 3-phase induction motors. Appl. Soft Comput. 2018, 63, 50–58. [Google Scholar] [CrossRef]
- Seshadrinath, J.; Singh, B.; Panigrahi, B.K. Incipient Interturn Fault Diagnosis in Induction Machines Using an Analytic Wavelet-Based Optimized Bayesian Inference. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 990–1001. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Huang, J.; Lu, F.; Thiyagalingam, J.; Kirubarajan, T. Echo state kernel recursive least squares algorithm for machine condition prediction. Mech. Syst. Signal Process. 2018, 111, 68–86. [Google Scholar] [CrossRef]
- Choi, K.; Singh, S.; Kodali, A.; Pattipati, K.R.; Sheppard, J.W.; Namburu, S.M.; Chigusa, S.; Prokhorov, D.V.; Qiao, L. Novel Classifier Fusion Approaches for Fault Diagnosis in Automotive Systems. IEEE Trans. Instrum. Meas. 2009, 58, 602–611. [Google Scholar] [CrossRef] [Green Version]
- Jakubek, S.; Strasser, T. Fault-diagnosis using neural networks with ellipsoidal basis functions. In Proceedings of the American Control Conference, Anchorage, AK, USA, 8–10 May 2002. [Google Scholar]
- Oliva, J.A.; Weihrauch, C.; Bertram, T. Model-Based Remaining Driving Range Prediction in Electric Vehicles by using Particle Filtering and Markov Chains. World Electr. Veh. J. 2013, 6, 204–213. [Google Scholar] [CrossRef] [Green Version]
- Tseng, C.M.; Chau, C.K. Personalized Prediction of Vehicle Energy Consumption Based on Participatory Sensing. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3103–3113. [Google Scholar] [CrossRef] [Green Version]
- Grubwinkler, S.; Lienkamp, M. A modular and dynamic approach to predict the energy consumption of electric vehicles. In Proceedings of the Conference on Future Automotive Technology, Munich, Germany, 18–19 March 2013. [Google Scholar]
- Cuma, M.U.; Koroglu, T. A comprehensive review on estimation strategies used in hybrid and battery electric vehicles. Renew. Sustain. Energy Rev. 2015, 42, 517–531. [Google Scholar] [CrossRef]
- Liao, R.; Zheng, H.; Grzybowski, S.; Yang, L. Particle swarm optimization-least squares support vector regression based forecasting model on dissolved gases in oil-filled power transformers. Electr. Power Syst. Res. 2011, 81, 2074–2080. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Y.; Liu, J.; Wei, H.; Zhao, J.; Liao, R. A novel model based on wavelet LS-SVM integrated improved PSO algorithm for forecasting of dissolved gas contents in power transformers. Electr. Power Syst. Res. 2018, 155, 196–205. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Wei, H.; Yang, Y.D.; Zheng, H.B.; Zhou, T.; Jiao, J. Forecasting of Dissolved Gases in Oil-immersed Transformers Based upon Wavelet LS-SVM Regression and PSO with Mutation. Energy Procedia 2016, 104, 38–43. [Google Scholar] [CrossRef]
- Yang, M.T.; Hu, L.S. Intelligent fault types diagnostic system for dissolved gas analysis of oil-immersed power transformer. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2317–2324. [Google Scholar] [CrossRef]
- Al-Janabi, S.; Rawat, S.; Patel, A.; Al-Shourbaji, I. Design and evaluation of a hybrid system for detection and prediction of faults in electrical transformers. Int. J. Electr. Power Energy Syst. 2015, 67, 324–335. [Google Scholar] [CrossRef]
- Fei, S.; Zhang, X. Fault diagnosis of power transformer based on support vector machine with genetic algorithm. Expert Syst. Appl. 2009, 36, 11352–11357. [Google Scholar] [CrossRef]
- Koley, C.; Purkait, P.; Chakravorti, S. Wavelet-Aided SVM Tool for Impulse Fault Identification in Transformers. IEEE Trans. Power Deliv. 2006, 21, 1283–1290. [Google Scholar] [CrossRef]
- Yunlong, Z.; Peng, Z. Vibration Fault Diagnosis Method of Centrifugal Pump Based on EMD Complexity Feature and Least Square Support Vector Machine. Energy Procedia 2012, 17, 939–945. [Google Scholar] [CrossRef] [Green Version]
- Sakthivel, N.R.; Sugumaran, V.; Nair, B.B. Comparison of decision tree-fuzzy and rough set-fuzzy methods for fault categorization of mono-block centrifugal pump. Mech. Syst. Signal Process. 2010, 24, 1887–1906. [Google Scholar] [CrossRef]
- Muralidharan, V.; Sugumaran, V.; Indira, V. Fault diagnosis of monoblock centrifugal pump using SVM. Eng. Sci. Technol. Int. J. 2014, 17, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Muralidharan, V.; Sugumaran, V. A comparative study of Naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis. Appl. Soft Comput. 2012, 12, 2023–2029. [Google Scholar] [CrossRef]
- Muralidharan, V.; Sugumaran, V. Feature extraction using wavelets and classification through decision tree algorithm for fault diagnosis of mono-block centrifugal pump. Measurement 2013, 46, 353–359. [Google Scholar] [CrossRef]
- Jamil, M.; Singh, R.; Sharma, S.K. Fault identification in electrical power distribution system using combined discrete wavelet transform and fuzzy logic. J. Electr. Syst. Inf. Technol. 2015, 2, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Mortazavi, S.H.; Moravej, Z.; Shahrtash, S.M. A hybrid method for arcing faults detection in large distribution networks. Int. J. Electr. Power Energy Syst. 2018, 94, 141–150. [Google Scholar] [CrossRef]
- Ramesh, B.N.; Jagan, M.B. Fault classification in power systems using EMD and SVM. Ain Shams Eng. J. 2017, 8, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Vishwakarma, D.N. A Novel Methodology for Identifying Cross-Country Faults in Series-Compensated Double Circuit Transmission Lines. Procedia Comput. Sci. 2018, 125, 427–433. [Google Scholar] [CrossRef]
- Da Silva, P.R.N.; Gabbar, H.A.; Vieira Junior, P.; da Costa Junior, C.T. A new methodology for multiple incipient fault diagnosis in transmission lines using QTA and Naïve Bayes classifier. Int. J. Electr. Power Energy Syst. 2018, 103, 326–346. [Google Scholar] [CrossRef]
- Lin, S.; Horng, S. A Classification-Based Fault Detection and Isolation Scheme for the Ion Implanter. IEEE Trans. Semicond. Manuf. 2006, 19, 411–424. [Google Scholar] [CrossRef]
- Di Maio, F.; Baraldi, P.; Zio, E.; Seraoui, R. Fault Detection in Nuclear Power Plants Components by a Combination of Statistical Methods. IEEE Trans. Reliab. 2013, 62, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Liangyu, M.; Yongguang, M.; Lee, K.Y. An Intelligent Power Plant Fault Diagnostics for Varying Degree of Severity and Loading Conditions. IEEE Trans. Energy Convers. 2010, 25, 546–554. [Google Scholar] [CrossRef]
- Madhusudana, C.K.; Kumar, H.; Narendranath, S. Fault diagnosis of face milling tool using decision tree and sound signal. Mater. Today Proc. 2018, 5, 12035–12044. [Google Scholar] [CrossRef]
- Du, Z.; Fan, B.; Jin, X.; Chi, J. Fault detection and diagnosis for buildings and HVAC systems using combined neural networks and subtractive clustering analysis. Build. Environ. 2014, 73, 1–11. [Google Scholar] [CrossRef]
- Camarena-Martinez, D.; Valtierra-Rodriguez, M.; Perez-Ramirez, C.A.; Amezquita-Sanchez, J.P.; Romero-Troncoso, R.J.; Garcia-Perez, A. Novel downsampling empirical mode decomposition approach for power quality analysis. IEEE Trans. Ind. Electron. 2015, 63, 2369–2378. [Google Scholar] [CrossRef]
- Djeffal, A.; Babahenini, M.C.; Ahmed, A.T. Fast binary support vector machine learning method by samples reduction. Int. J. Data Min. Model. Manag. 2017, 9, 1. [Google Scholar] [CrossRef]
- Zhao, Z.; Chu, L.; Tao, D.; Pei, J. Classification with label noise: A Markov chain sampling framework. Data Min. Knowl. Discov. 2018, 33, 1468–1504. [Google Scholar] [CrossRef]
- Hwang, D.; Son, Y. Prototype-based classification and error analysis under bootstrapping strategy. Int. J. Data Min. Model. Manag. 2018, 10, 293. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Chao, H.C.; Tseng, F.H. Kernel mixture model for probability density estimation in Bayesian classifiers. Data Min. Knowl. Discov. 2018, 32, 675–707. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Chen, L.; Gallinari, P. Multiple Bayesian discriminant functions for high-dimensional massive data classification. Data Min. Knowl. Discov. 2016, 31, 465–501. [Google Scholar] [CrossRef]
- Celotto, E. Visualizing the behavior and some symmetry properties of Bayesian confirmation measures. Data Min. Knowl. Discov. 2016, 31, 739–773. [Google Scholar] [CrossRef]
- Becker, M.; Lemmerich, F.; Singer, P.; Strohmaier, M.; Hotho, A. MixedTrails: Bayesian hypothesis comparison on heterogeneous sequential data. Data Min. Knowl. Discov. 2017, 31, 1359–1390. [Google Scholar] [CrossRef] [Green Version]
- Le, T.; Nguyen, K.; Nguyen, V.; Nguyen, T.D.; Phung, D. GoGP: Fast Online Regression with Gaussian Processes. In Proceedings of the IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017. [Google Scholar]
- Marx, A.; Vreeken, J. Telling Cause from Effect Using MDL-Based Local and Global Regression. In Proceedings of the IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017. [Google Scholar]
- Rudaś, K.; Jaroszewicz, S. Linear regression for uplift modeling. Data Min. Knowl. Discov. 2018, 32, 1275–1305. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Teinemaa, I.; Dumas, M.; Leontjeva, A.; Maggi, F.M. Temporal stability in predictive process monitoring. Data Min. Knowl. Discov. 2018, 32, 1306–1338. [Google Scholar] [CrossRef] [Green Version]
- Baldi, P. The inner and outer approaches to the design of recursive neural architectures. Data Min. Knowl. Discov. 2017, 32, 218–230. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Li, W.; Li, X.L.; Ng, S.K. Intelligent fault diagnosis under varying working conditions based on domain adaptive convolutional neural networks. IEEE Access 2018, 6, 66367–66384. [Google Scholar] [CrossRef]
- Bouguelia, M.R.; Nowaczyk, S.; Payberah, A.H. An adaptive algorithm for anomaly and novelty detection in evolving data streams. Data Min. Knowl. Discov. 2018, 32, 1597–1633. [Google Scholar] [CrossRef] [Green Version]
- Xi, P.P.; Zhao, Y.P.; Wang, P.X.; Li, Z.Q.; Pan, Y.T.; Song, F.Q. Least squares support vector machine for class imbalance learning and their applications to fault detection of aircraft engine. Aerosp. Sci. Technol. 2018, 84, 56–74. [Google Scholar] [CrossRef]
- Lu, F.; Wu, J.; Huang, J.; Qiu, X. Aircraft engine degradation prognostics based on logistic regression and novel OS-ELM algorithm. Aerosp. Sci. Technol. 2018, 84, 661–671. [Google Scholar] [CrossRef]
- Wu, X.; Kumar, V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.F.M.; Liu, B.; Yu, P.S.; et al. Top 10 Algorithms in Data Mining. Knowl. Inf. Syst. 2008, 14, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Wu, Q.; Hu, S.; Xu, H.; Rasmussen, C.N. Review of energy storage system for wind power integration support. Appl. Energy 2015, 137, 545–553. [Google Scholar] [CrossRef]
- Saponara, S.; Saletti, R.; Mihet-Popa, L. Hybrid micro-grids exploiting renewables sources, battery energy storages, and bi-directional converters. Appl. Sci. 2019, 9, 4973. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Yu, F.; Li, H.; Xin, W. A Quantitative Study on the Void Defects Evolving into Damage in Wind Turbine Blade Based on Internal Energy Storage. Appl. Sci. 2020, 10, 491. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.F.; Li, L.L.; Tseng, M.L.; Tan, R.R.; Aviso, K.B. Improving the reliability of photovoltaic and wind power storage systems using least squares support vector machine optimized by improved chicken swarm algorithm. Appl. Sci. 2019, 9, 3788. [Google Scholar] [CrossRef] [Green Version]
Classification Methods | Equipment Under test | Physical Variable Used as Information Source |
---|---|---|
|
| |
|
| |
|
| |
|
|
Regression Methods | Equipment Under Test | Type of Fault | Effectiveness Percentage |
---|---|---|---|
|
|
| 100 |
|
|
| 100 |
|
|
| 90 |
|
|
| 100 |
|
|
| 98.703 |
|
|
| 97.7 |
|
|
| 97.48 |
|
|
| 90–100 |
|
|
| 95.1, 80.8, and 92.7 |
|
|
| 92.3 |
|
|
| 90.31 |
|
|
| 100 |
|
|
| 99.69 |
|
|
| 95.58–98.15 |
|
|
| 100 |
Data Mining Techniques | Other Techniques | Application |
---|---|---|
| - |
|
| - |
|
| WT |
|
| RMS |
|
| DWT |
|
| - |
|
| - |
|
| - |
|
| - |
|
| Similarity Matching |
|
| - |
|
| Particle swarm optimization algorithm |
|
| WT |
|
| - |
|
| - |
|
| - |
|
| WT |
|
| EMD |
|
| - |
|
| Wavelet analysis |
|
| Wavelet analysis |
|
| CWT |
|
| WT |
|
| WT |
|
| EMD |
|
| EMD |
|
| Qualitative trend analysis |
|
| - |
|
| - |
|
| Optimal zoom search |
|
| DWT |
|
| - |
|
Year | Methods | Usage |
---|---|---|
2016 | Naïve Bayes and feature weighting approaches [121] |
|
Visual approach to represent Bayesian confirmation measures (BCMs) [122] |
| |
XGBoost [127] |
| |
2017 | Covering-based samples reduction [117] |
|
MixedTrails, a Bayesian approach [123] |
| |
Geometric-based Online Gaussian Process for fast regression [124] |
| |
Kolmogorov complexity and use the Minimum Description Length [125] |
| |
Recursive neural architectures [129] |
| |
2018 | Heterogeneous-target robust mixture regression (HERMIT) [70] |
|
Markov chain sampling [118] |
| |
Prototype-based classification [119] |
| |
Kernel mixture model [120] |
| |
Linear regression [126] |
| |
Random forest, XGBoost, and LSTM [128] |
| |
Convolutional NN [130] |
| |
Growing Neural Gas Algorithm [131] |
| |
2019 | Least squares support vector machine [132] |
|
Logistic regression and Kalman filter [133] |
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras-Valdes, A.; Amezquita-Sanchez, J.P.; Granados-Lieberman, D.; Valtierra-Rodriguez, M. Predictive Data Mining Techniques for Fault Diagnosis of Electric Equipment: A Review. Appl. Sci. 2020, 10, 950. https://doi.org/10.3390/app10030950
Contreras-Valdes A, Amezquita-Sanchez JP, Granados-Lieberman D, Valtierra-Rodriguez M. Predictive Data Mining Techniques for Fault Diagnosis of Electric Equipment: A Review. Applied Sciences. 2020; 10(3):950. https://doi.org/10.3390/app10030950
Chicago/Turabian StyleContreras-Valdes, Arantxa, Juan P. Amezquita-Sanchez, David Granados-Lieberman, and Martin Valtierra-Rodriguez. 2020. "Predictive Data Mining Techniques for Fault Diagnosis of Electric Equipment: A Review" Applied Sciences 10, no. 3: 950. https://doi.org/10.3390/app10030950
APA StyleContreras-Valdes, A., Amezquita-Sanchez, J. P., Granados-Lieberman, D., & Valtierra-Rodriguez, M. (2020). Predictive Data Mining Techniques for Fault Diagnosis of Electric Equipment: A Review. Applied Sciences, 10(3), 950. https://doi.org/10.3390/app10030950