Tunable Effect of the Calcination of the Silanol Groups of KIT-6 and SBA-15 Mesoporous Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Characterization
2.3. Synthesis of SBA-15
2.4. Synthesis of KIT-6
2.5. The Methodology of Mesoporous Calcination
3. Results and Discussion
3.1. Effect of Calcination Temperature on the Quantity of Polymer
3.2. Effect of Calcination Temperature on the Mesostructure of the MNS
3.3. Effect of the Calcination Temperature on the Textural Properties of the MNS
3.4. Effect of the Calcination Temperature on the Silanol Groups
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guillet-Nicolas, R.; Ahmad, R.; Cychosz, K.A.; Kleitz, F.; Thommes, M. Insights into the pore structure of KIT-6 and SBA-15 ordered mesoporous silica—Recent advances by combining physical adsorption with mercury porosimetry. New J. Chem. 2016, 40, 4351–4360. [Google Scholar] [CrossRef]
- Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-Based mesoporous organic-inorganic hybrid materials. Angew. Chem. Int. Ed. 2006, 45, 3216–3251. [Google Scholar] [CrossRef] [PubMed]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Kishor, R.; Ghoshal, A.K. Understanding the hydrothermal, thermal, mechanical and hydrolytic stability of mesoporous KIT-6: A comprehensive study. Microporous Mesoporous Mater. 2017, 242, 127–135. [Google Scholar] [CrossRef]
- Chen, C.Y.; Burkett, S.L.; Li, H.X.; Davis, M.E. Studies on mesoporous materials II. Synthesis mechanism of MCM-41. Microporous Mater. 1993, 2, 27–34. [Google Scholar] [CrossRef]
- Chen, C.Y.; Li, H.X.; Davis, M.E. Studies on mesoporous materials I: Synthesis and characterization of MCM-41. Microporous Mater. 1993, 2, 17–26. [Google Scholar] [CrossRef]
- Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373–2420. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M.; Ryoo, R.; Kim, J.M. Characterization of high-quality MCM-48 and SBA-1 mesoporous silicas. Chem. Mater. 1999, 119, 2568–2572. [Google Scholar] [CrossRef]
- Soler Illia, G.J.A.A.; Crepaldi, E.L.; Grosso, D.; Sanchez, C. Block copolymer-templated mesoporous oxides. Curr. Opin. Colloid Interface Sci. 2003, 8, 109–126. [Google Scholar] [CrossRef]
- Meynen, V.; Cool, P.; Vansant, E.F. Verified syntheses of mesoporous materials. Microporous Mesoporous Mater. 2009, 125, 170–223. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, Y.; Yang, Z. Mesoporous materials: Tunable structure, morphology and composition. Chem. Commun. 2009, 2270–2277. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036. [Google Scholar] [CrossRef]
- Kleitz, F.; Choi, S.H.; Ryoo, R. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 2003, 7, 2136–2137. [Google Scholar] [CrossRef]
- Guo, W.; Kleitz, F.; Cho, K.; Ryoo, R. Large pore phenylene-bridged mesoporous organosilica with bicontinuous cubic Ia3d (KIT-6) mesostructure. J. Mater. Chem. 2010, 20, 8257. [Google Scholar] [CrossRef]
- Boulaoued, A.; Fechete, I.; Donnio, B.; Bernard, M.; Turek, P.; Garin, F. Microporous and mesoporous materials Mo/KIT-6, Fe/KIT-6 and Mo-Fe/KIT-6 as new types of heterogeneous catalysts for the conversion of MCP. Microporous Mesoporous Mater. 2012, 155, 131–142. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Kim, T.W.; Ryoo, R.; Terasaki, O. Three-Dimensional structure of large-pore mesoporous cubic Ia3d silica with complementary pores and its carbon replica by electron crystallography. Angew. Chem. Int. Ed. 2004, 43, 5231–5234. [Google Scholar] [CrossRef]
- Qian, L.; Ren, Y.; Liu, T.; Pan, D.; Wang, H.; Chen, G. Influence of KIT-6′ s pore structure on its surface properties evaluated by inverse gas chromatography. Chem. Eng. J. 2012, 213, 186–194. [Google Scholar] [CrossRef]
- Arribas, M.A.; Prieto, G. Cobalt supported on morphologically tailored SBA-15 mesostructures: The impact of pore length on metal dispersion and catalytic activity in the Fischer—Tropsch synthesis. Appl. Catal. A Gen. 2009, 367, 146–156. [Google Scholar] [CrossRef]
- Mohammadzadeh, M.; Nourbakhsh, M.S.; Khodaverdi, E.; Hadizadeh, F.; Omid Malayeri, S. Enhanced loading and release of non-steroidal anti-inflammatory drugs from silica-based nanoparticle carriers. Chem. Biol. Drug Des. 2016, 88, 370–379. [Google Scholar] [CrossRef]
- Janković-Tomanić, M.; Todorovic, D.; Stanivukovic, Z.; Peric Mataruga, V.; Wessjohann, L.; Kaludjerovic, G. Mesoporous silica nanoparticles SBA-15 loaded with emodin upregulate the antioxidative defense of Euproctis chrysorrhoea (L.) larvae. Turk. J. Biol. 2017, 41, 935–942. [Google Scholar] [CrossRef]
- Chaudhari, S.; Gupte, A. Mesoporous silica as a carrier for amorphous solid dispersion. Br. J. Pharm. Res. 2017, 16, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Varghese, J.; Sakthipriya, P.; Rachel, G.; Ananthi, N. Polylactic acid coated SBA-15 functionalized with 3-aminopropyl triethoxysilane. Indian J. Chem. Sect. A Inorg. Phys. Theor. Anal. Chem. 2017, 56A, 621–625. Available online: http://nopr.niscair.res.in/handle/123456789/42313 (accessed on 26 November 2019).
- Huang, W.; Zhang, Y.; Li, D. Adsorptive removal of phosphate from water using mesoporous materials: A review. J. Environ. Manag. 2017, 193, 470–482. [Google Scholar] [CrossRef]
- Jahandar Lashaki, M.; Sayari, A. CO2 capture using triamine-grafted SBA-15: The impact of the support pore structure. Chem. Eng. J. 2018, 334, 1260–1269. [Google Scholar] [CrossRef]
- Pathan, S.; Solanki, P.; Patel, A. Functionalized SBA-15 for controlled release of poorly soluble drug, Erythromycin. Microporous Mesoporous Mater. 2018, 258, 114–121. [Google Scholar] [CrossRef]
- Szewczyk, A.; Prokopowicz, M.; Sawicki, W.; Majda, D.; Walker, G. Aminopropyl-Functionalized mesoporous silica SBA-15 as drug carrier for cefazolin: Adsorption profiles, release studies, and mineralization potential. Microporous Mesoporous Mater. 2019, 274, 113–126. [Google Scholar] [CrossRef]
- Yan, Z.; Ikram, M.; Ullah, R.; Zeng, J.; Subhan, F.; Aslam, S.; Rehman, S.; Xing, W.; Liu, Y. Rapid functionalization of as-synthesized KIT-6 with nickel species occluded with template for adsorptive desulfurization. Microporous Mesoporous Mater. 2015, 214, 54–63. [Google Scholar] [CrossRef]
- Zeng, J.; Ahmad, A.; Naeem, M.; Aslam, S.; Subhan, F.; Ullah, R.; Zhen, L.; Yan, Z.; Etim, U.J. Facile functionalization of 3-D ordered KIT-6 with cuprous oxide for deep desulfurization. Chem. Eng. J. 2017, 330, 372–382. [Google Scholar] [CrossRef]
- Saadati-Moshtaghin, H.R.; Zonoz, F.M.; Amini, M.M. Synthesis and characterization of ZnO incorporated magnetically recoverable KIT-6 as a novel and efficient catalyst in the preparation of symmetrical N,N′-alkylidene bisamides. J. Solid State Chem. 2018, 260, 16–22. [Google Scholar] [CrossRef]
- Taghizadeh, M.; Akhoundzadeh, H.; Rezayan, A.; Sadeghian, M. Excellent catalytic performance of 3D-mesoporous KIT-6 supported Cu and Ce nanoparticles in methanol steam reforming. Int. J. Hydrog. Energy 2018, 43, 10926–10937. [Google Scholar] [CrossRef]
- Lv, Y.; Xin, Z.; Meng, X.; Tao, M.; Bian, Z.; Gu, J.; Gao, W. Essential role of organic additives in preparation of efficient Ni/KIT-6 catalysts for CO methanation. Appl. Catal. A Gen. 2018, 558, 99–108. [Google Scholar] [CrossRef]
- Mahdizadeh Ghohe, N.; Tayebee, R.; Amini, M.M. Synthesis and characterization of mesoporous Nb-Zr/KIT-6 as a productive catalyst for the synthesis of benzylpyrazolyl coumarins. Mater. Chem. Phys. 2019, 223, 268–276. [Google Scholar] [CrossRef]
- Cho, J.M.; Kasipandi, S.; Park, Y.M.; Bae, J.W. Spatially confined cobalt nanoparticles on zirconium phosphate-modified KIT-6 for an enhanced stability of CO hydrogenation to hydrocarbons. Fuel 2019, 239, 547–558. [Google Scholar] [CrossRef]
- Swirk, K.; Galvez, M.E.; Motak, M.; Grzybek, T.; Rønning, M.; Da Costa, P. Syngas production from dry methane reforming over yttrium-promoted nickel-KIT-6 catalysts. Int. J. Hydrog. Energy 2019, 44, 274–286. [Google Scholar] [CrossRef]
- Naidu, S.; Ramadass, K.; Ruban, S.J.; Benzigar, M. 3D cubic mesoporous C3N4 with tunable pore diameters derived from KIT-6 and their application in base catalyzed Knoevenagel reaction. Catal. Today 2019, 324, 33–38. [Google Scholar] [CrossRef]
- Bao, B.Q.; Le, N.H.; Nguyen, D.H.T.; Tran, T.V.; Pham, L.P.T.; Bach, L.G.; Ho, H.M.; Nguyen, T.H.; Nguyen, D.H. Evolution and present scenario of multifunctionalized mesoporous nanosilica platform: A mini review. Mater. Sci. Eng. C 2018, 91, 912–928. [Google Scholar] [CrossRef]
- Rosenholm, J.M.; Sahlgren, C.; Lindén, M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles—Opportunities & challenges. Nanoscale 2010, 2, 1870–1883. [Google Scholar] [CrossRef]
- Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534. [Google Scholar] [CrossRef]
- Alothman, Z.A.; Apblett, A.W. Metal ion adsorption using polyamine-functionalized mesoporous materials prepared from bromopropyl-functionalized mesoporous silica. J. Hazard. Mater. 2010, 182, 581–590. [Google Scholar] [CrossRef]
- Alothman, Z.A.; Apblett, A.W. Preparation of mesoporous silica with grafted chelating agents for uptake of metal ions. Chem. Eng. J. 2009, 155, 916–924. [Google Scholar] [CrossRef]
- Alothman, Z.A.; Apblett, A.W. Synthesis and characterization of a hexagonal mesoporous silica with enhanced thermal and hydrothermal stabilities. Appl. Surf. Sci. 2010, 256, 3573–3580. [Google Scholar] [CrossRef]
- Brinker, C.J.; Scherer, G. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 1st ed.; Academic Press Inc.: New York, NY, USA, 1990. [Google Scholar]
- Alothman, Z.A. A review: Fundamental aspects of silicate mesoporous materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef] [Green Version]
- Esposito, S. “Traditional” sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials 2019, 12, 668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danks, A.E.; Hallb, S.R.; Schnepp, Z. The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Esposito, S.; Sannino, F.; Pansini, M.; Bonelli, B.; Garrone, E. Modes of interaction of simazine with the surface of model amorphous silicas in water. J. Phys. Chem. C 2013, 117, 11203–11210. [Google Scholar] [CrossRef]
- Esposito, S.; Sannino, F.; Pansini, M.; Bonelli, B.; Garrone, E. Modes of interaction of simazine with the surface of amorphous silica in water. Part II: Adsorption at temperatures higher than ambient. J. Phys. Chem. C 2013, 117, 27047–27051. [Google Scholar] [CrossRef]
- Al-Atia, M.H.J.H.; Saeed, H.K.; Fliayh, A.R.; Addie, A.J. Investigating the effects of calcination temperatures on the structure of modified nanosilica prepared by sol-gel. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 590–596. [Google Scholar] [CrossRef]
- Ojeda-López, R.; Hermosillo, I.J.P.; Esparza-Schulz, J.M.; Domínguez, A. Efecto de la temperatura de calcinación sobre la concentración de grupos silanoles en superficies de SiO2 (SBA-15). Av. Quím. 2014, 9, 21–28. Available online: http://www.redalyc.org/articulo.oa?id=93330767007 (accessed on 28 July 2019).
- Van Der Voort, P.; Gillis-D’Hamers, I.; Vrancken, K.C.; Vansant, E.F. Effect of porosity on the distribution and reactivity of hydroxyl groups on the surface of silica gel. J. Chem. Soc. Faraday Trans. 1991, 87, 3899–3905. [Google Scholar] [CrossRef]
- Chen, S.Y.; Tang, C.Y.; Lee, J.F.; Jang, L.Y.; Tatsumi, T.; Cheng, S. Effect of calcination on the structure and catalytic activities of titanium incorporated SBA-15. J. Mater. Chem. 2011, 21, 2255–2265. [Google Scholar] [CrossRef]
- Li, C.Y.; Qi, N.; Liu, Z.W.; Zhou, B.; Chen, Z.Q.; Wang, Z. Effect of synthesis temperature on the ordered pore structure in mesoporous silica studied by positron annihilation spectroscopy. Appl. Surf. Sci. 2016, 363, 445–450. [Google Scholar] [CrossRef]
- Mariano-Neto, F.; Cides, L.C.; Oliveira, C.L.P.; Fantini, M.C.A. Vacuum calcination behavior of SBA-15 ordered mesoporous silica. Braz. J. Phys. 2018, 48, 442–450. [Google Scholar] [CrossRef]
- Wang, X.; Lin, K.S.K.; Chan, J.C.C.; Cheng, S. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. J. Phys. Chem. B 2005, 109, 1763–1769. [Google Scholar] [CrossRef]
- Rossetto, E.; Nicola, B.P.; De Souza, R.F.; Pergher, S.B.C.; Bernardo-Gusmão, K. Anchoring via covalent binding of β-diimine-nickel complexes in SBA-15 and its application in catalytic reactions. Appl. Catal. A Gen. 2015, 502, 221–229. [Google Scholar] [CrossRef]
- Rossetto, E. Heterogenized Nickel-β-Diimines Complexes in MCM-41 and SBA-15: Application in Olefin Oligomerization. Ph.D. Thesis, Federal University of Rio Grande do Norte, Natal, Brazil, 2015. Available online: https://repositorio.ufrn.br/jspui/bitstream/123456789/20557/1/EnedersonRossetto_TESE.pdf (accessed on 27 November 2019).
- Sayed, E.; Haj-Ahmad, R.; Ruparelia, K.; Arshad, M.S.; Chang, M.-W.; Ahmad, Z. Porous inorganic drug delivery systems—A review. AAPS PharmSciTech 2017, 18, 1507–1525. [Google Scholar] [CrossRef]
- Vallet-Regí, M.; Colilla, M.; Izquierdo-Barba, I.; Manzano, M. Mesoporous silica nanoparticles for drug delivery: Current insights. Molecules 2017, 23, 47. [Google Scholar] [CrossRef] [Green Version]
- Falahati, M.; Ma’mani, L.; Saboury, A.A.; Shafiee, A.; Foroumadi, A.; Badiei, A.R. Aminopropyl-Functionalized cubic Ia3d mesoporous silica nanoparticle as an efficient support for immobilization of superoxide dismutase. Biochim. Biophys. Acta Proteins Proteom. 2011, 1814, 1195–1202. [Google Scholar] [CrossRef]
- Kalbasi, R.J.; Mosaddegh, N. Pd-poly(N-vinyl-2-pyrrolidone)/KIT-6 nanocomposite: Preparation, structural study, and catalytic activity. C. R. Chim. 2012, 15, 988–995. [Google Scholar] [CrossRef]
- Lee, A.F.; Pirez, C.; Wilson, K.; Caderon, J.-M.; Dacquin, J.-P. Tunable KIT-6 mesoporous sulfonic acid catalysts for fatty acid esterification. ACS Catal. 2012, 2, 1607–1614. [Google Scholar] [CrossRef]
- Shafiee, A.; Ma’mani, L.; Saboury, A.A.; Rafieepour, H.A.; Falahati, M. The effect of functionalization of mesoporous silica nanoparticles on the interaction and stability of confined enzyme. Int. J. Biol. Macromol. 2012, 50, 1048–1054. [Google Scholar] [CrossRef]
- Valle-Vigón, P.; Sevilla, M.; Fuertes, A.B. Functionalization of mesostructured silica-carbon composites. Mater. Chem. Phys. 2013, 139, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Visuvamithiran, P.; Palanichamy, M.; Shanthi, K.; Murugesan, V. Selective epoxidation of olefins over Co(II)-Schiff base immobilised on KIT-6. Appl. Catal. A Gen. 2013, 462–463, 31–38. [Google Scholar] [CrossRef]
- Xu, L.; Wang, C.; Guan, J. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction. J. Solid State Chem. 2014, 213, 250–255. [Google Scholar] [CrossRef]
- Tran, T.T.V.; Kongparakul, S.; Karnjanakom, S.; Reubroycharoen, P.; Guan, G.; Chanlek, N.; Samart, C. Highly productive xylose dehydration using a sulfonic acid functionalized KIT-6 catalyst. Fuel 2019, 236, 1156–1163. [Google Scholar] [CrossRef]
- Benamor, T.; Michelin, L.; Lebeau, B.; Marichal, C. Flash induction calcination: A powerful tool for total template removal and fine tuning of the hydrophobic/hydrophilic balance in SBA-15 type silica mesoporous materials. Microporous Mesoporous Mater. 2012, 147, 334–342. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Vargas, C. A comparison of methods for the heterogenization of the chiral Jacobsen catalyst on mesostructured SBA-15 supports. Appl. Catal. A Gen. 2008, 335, 172–179. [Google Scholar] [CrossRef]
- Li, G.; Zhao, X.S. Characterization and photocatalytic properties of titanium-containing mesoporous SBA-15. Ind. Eng. Chem. Res. 2006, 45, 3569–3573. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, H.; Xu, J.; Yuan, H.; Wang, J.; Li, X. Monodispersed mesoporous SBA-15 with novel morphologies: Controllable synthesis and morphology dependence of humidity sensing. CrystEngComm 2011, 13, 402–405. [Google Scholar] [CrossRef]
- Wang, W.; Qi, R.; Shan, W.; Wang, X.; Jia, Q.; Zhao, J.; Zang, C.; Ru, H. Synthesis of KIT-6 type mesoporous silicas with tunable pore sizes, wall thickness and particle sizes via the partitioned cooperative self-assembly process. Microporous Mesoporous Mater. 2014, 194, 167–173. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Galarneau, A.; Cambon, H.; Di Renzo, F.; Ryoo, R.; Choi, M.; Fajula, F. Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. New J. Chem. 2003, 27, 73–79. [Google Scholar] [CrossRef]
- Rocha, J.V.; Barrera, D.; Sapag, K. Distribución de tamaño de poros de materiales mesoporos ordenados de sílice con poros de geometría cilíndrica utilizando el método macroscópico VBS. Mater. Adsorción Catál. 2014, 7, 5–14. Available online: https://ri.conicet.gov.ar/handle/11336/32159 (accessed on 18 October 2019).
- Ren, Y.; Jiao, F.; Bruce, P.G. Tailoring the pore size/wall thickness of mesoporous transition metal oxides. Microporous Mesoporous Mater. 2009, 121, 90–94. [Google Scholar] [CrossRef]
- Van Der Meer, J.; Bardez-Giboire, I.; Mercier, C.; Revel, B.; Davidson, A.; Denoyel, R. Mechanism of metal oxide nanoparticle loading in SBA-15 by the double solvent technique. J. Phys. Chem. C 2010, 114, 3507–3515. [Google Scholar] [CrossRef]
Method | Temperature 1 (°C) | Time (h) | SBA-15 Mass (mg) | KIT-6 Mass (mg) |
---|---|---|---|---|
1 | 300 | 5 | 514 | 519 |
2 | 300 | 10 | 515 | 516 |
3 | 400 | 5 | 512 | 556 |
4 | 400 | 10 | 515 | 516 |
5 | 500 | 5 | 508 | 514 |
6 | 500 | 10 | 502 | 503 |
Samples | Residual Carbon Content (%) | Samples | Residual Carbon Content (%) |
---|---|---|---|
SM0 | 25.33 | KM0 | 28.86 |
SM1 | 0.32 | KM1 | 0.42 |
SM2 | 0.19 | KM2 | 0.30 |
SM3 | 0.08 | KM3 | 0.09 |
SM4 | 0.08 | KM4 | 0.09 |
SM5 | 0.03 | KM5 | 0.09 |
SM6 | 0.01 | KM6 | 0.07 |
Samples | d110 (nm) | a0 (nm) 1 | Samples | d211 (nm) | a0 (nm) 2 |
---|---|---|---|---|---|
SM0 | 11.2 | 13.0 | KM0 | 10.7 | 26.2 |
SM1 | 10.4 | 12.0 | KM1 | 9.4 | 23.0 |
SM2 | 10.3 | 11.9 | KM2 | 9.8 | 24.0 |
SM3 | 10.8 | 12.5 | KM3 | 9.6 | 23.5 |
SM4 | 10.8 | 12.5 | KM4 | 9.7 | 23.8 |
SM5 | 10.6 | 12.2 | KM5 | 9.8 | 24.0 |
SM6 | 10.4 | 12.0 | KM6 | 9.4 | 23.3 |
Samples | ABET (m2 g−1) | VT (cm3 g−1) | VMi (cm3 g−1) | VMe (cm3 g−1) | Dp (nm) | Wt (nm) |
---|---|---|---|---|---|---|
SM1 | 572 | 0.78 | 0.02 | 0.76 | 7.5 | 4.5 |
SM2 | 632 | 0.86 | 0.02 | 0.84 | 7.5 | 4.4 |
SM3 | 641 | 0.84 | 0.03 | 0.81 | 7.8 | 4.7 |
SM4 | 1197 | 1.52 | 0.04 | 1.48 | 7.5 | 5.0 |
SM5 | 1099 | 1.69 | 0.00 | 1.69 | 8.9 | 3.3 |
SM6 | 770 | 0.98 | 0.06 | 0.92 | 7.8 | 4.2 |
KM1 | 695 | 0.82 | 0.07 | 0.75 | 7.2 | 15.8 |
KM2 | 826 | 0.98 | 0.07 | 0.91 | 6.1 | 17.9 |
KM3 | 905 | 1.07 | 0.07 | 1.00 | 7.5 | 16.0 |
KM4 | 852 | 1.03 | 0.08 | 0.95 | 7.9 | 15.9 |
KM5 | 1174 | 1.44 | 0.08 | 1.36 | 7.3 | 16.7 |
KM6 | 874 | 1.10 | 0.05 | 1.05 | 7.4 | 15.6 |
Samples | Signal | δ (ppm) | Intensity | Area (%) |
---|---|---|---|---|
Q2 | −91.3 | 127 | 8.0 | |
SM0 | Q3 | −101.3 | 549 | 65.8 |
Q4 | −110.3 | 228 | 26.2 | |
Q2 | −91.2 | 145 | 15.9 | |
SM1 | Q3 | −100.5 | 455 | 72.5 |
Q4 | −109.7 | 76 | 11.6 | |
Q2 | −91.4 | 39 | 16.1 | |
SM2 | Q3 | −100.5 | 123 | 72.3 |
Q4 | −109.0 | 25 | 11.6 | |
Q2 | −91.6 | 662 | 13.8 | |
SM3 | Q3 | −100.3 | 2227 | 73.4 |
Q4 | −109.0 | 516 | 12.8 | |
Q2 | −91.1 | 740 | 14.8 | |
SM4 | Q3 | −100.2 | 2308 | 72.0 |
Q4 | −108.1 | 548 | 13.2 | |
Q2 | −91.3 | 160 | 16.0 | |
SM5 | Q3 | −100.4 | 449 | 70.5 |
Q4 | −108.1 | 126 | 13.5 | |
Q2 | −91.2 | 746 | 15.6 | |
SM6 | Q3 | −100.1 | 1931 | 69.3 |
Q4 | −109.7 | 439 | 15.1 | |
Q2 | −91.2 | 196 | 16.9 | |
KM0 | Q3 | −100.8 | 605 | 67.8 |
Q4 | −109.8 | 142 | 15.3 | |
Q2 | −91.4 | 315 | 16.1 | |
KM1 | Q3 | −100.5 | 961 | 72.2 |
Q4 | −108.9 | 188 | 11.7 | |
Q2 | −91.2 | 105 | 14.6 | |
KM2 | Q3 | −100.1 | 362 | 75.0 |
Q4 | −109.0 | 64 | 10.4 | |
Q2 | −91.5 | 73 | 15.0 | |
KM3 | Q3 | −100.3 | 204 | 73.8 |
Q4 | −109.0 | 39 | 11.2 | |
Q2 | −91.2 | 1103 | 11.8 | |
KM4 | Q3 | −100.7 | 3928 | 77.3 |
Q4 | −111.0 | 956 | 11.0 | |
Q2 | −91.2 | 1329 | 15.8 | |
KM5 | Q3 | −100.7 | 3528 | 69.0 |
Q4 | −111.0 | 1086 | 15.2 | |
Q2 | −91.6 | 113 | 14.0 | |
KM6 | Q3 | −100.3 | 295 | 69.9 |
Q4 | −108.7 | 76 | 16.0 |
Samples | Q2:Q4 | Q3:Q4 | Q2:Q3 |
---|---|---|---|
SM1 | 1.37 | 6.25 | 0.22 |
SM2 | 1.38 | 6.23 | 0.22 |
SM3 | 1.07 | 5.73 | 0.19 |
SM4 | 1.12 | 5.45 | 0.21 |
SM5 | 1.19 | 5.22 | 0.23 |
SM6 | 1.03 | 4.58 | 0.22 |
KM1 | 1.37 | 6.17 | 0.22 |
KM2 | 1.40 | 7.21 | 0.19 |
KM3 | 1.33 | 6.59 | 0.20 |
KM4 | 1.07 | 7.03 | 0.15 |
KM5 | 1.03 | 4.54 | 0.23 |
KM6 | 0.88 | 4.37 | 0.20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basso, A.M.; Nicola, B.P.; Bernardo-Gusmão, K.; Pergher, S.B.C. Tunable Effect of the Calcination of the Silanol Groups of KIT-6 and SBA-15 Mesoporous Materials. Appl. Sci. 2020, 10, 970. https://doi.org/10.3390/app10030970
Basso AM, Nicola BP, Bernardo-Gusmão K, Pergher SBC. Tunable Effect of the Calcination of the Silanol Groups of KIT-6 and SBA-15 Mesoporous Materials. Applied Sciences. 2020; 10(3):970. https://doi.org/10.3390/app10030970
Chicago/Turabian StyleBasso, Adriano M., Bruna P. Nicola, Katia Bernardo-Gusmão, and Sibele B. C. Pergher. 2020. "Tunable Effect of the Calcination of the Silanol Groups of KIT-6 and SBA-15 Mesoporous Materials" Applied Sciences 10, no. 3: 970. https://doi.org/10.3390/app10030970
APA StyleBasso, A. M., Nicola, B. P., Bernardo-Gusmão, K., & Pergher, S. B. C. (2020). Tunable Effect of the Calcination of the Silanol Groups of KIT-6 and SBA-15 Mesoporous Materials. Applied Sciences, 10(3), 970. https://doi.org/10.3390/app10030970