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Abstract: Electrocardiogram (ECG) signal analysis is a critical task in diagnosing the presence of
any cardiac disorder. There are limited studies on detecting P-waves in various atrial arrhythmias,
such as atrial fibrillation (AFIB), atrial flutter, junctional rhythm, and other arrhythmias due to
P-wave variability and absence in various cases. Thus, there is a growing need to develop an efficient
automated algorithm that annotates a 2D printed version of P-waves in the well-known ECG signal
databases for validation purposes. To our knowledge, no one has annotated P-waves in the MIT-BIH
atrial fibrillation database. Therefore, it is a challenge to manually annotate P-waves in the MIT-BIH
AF database and to develop an automated algorithm to detect the absence and presence of different
shapes of P-waves. In this paper, we present the manual annotation of P-waves in the well-known
MIT-BIH AF database with the aid of a cardiologist. In addition, we provide an automatic P-wave
segmentation for the same database using a fully convolutional neural network model (U-Net).
This algorithm works on 2D imagery of printed ECG signals, as this type of imagery is the most
commonly used in developing countries. The proposed automatic P-wave detection method obtained
an accuracy and sensitivity of 98.56% and 98.78%, respectively, over the first 5 min of the second lead
of the MIT-BIH AF database (a total of 8280 beats). Moreover, the proposed method is validated
using the well-known automatically and manually annotated QT database (a total of 11,201 and
3194 automatically and manually annotated beats, respectively). This results in accuracies of 98.98
and 98.9%, and sensitivities of 98.97 and 97.24% for the automatically and manually annotated QT
databases, respectively. Thus, these results indicate that the proposed automatic method can be used
for analyzing long-printed ECG signals on mobile battery-driven devices using only images of the
ECG signals, without the need for a cardiologist.
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1. Introduction

According to the World Health Organization, deaths due to cardiac disorder will reach about 23.3
million worldwide by 2030 [1]. Therefore, improvement in cardiovascular diagnosis technologies is
especially important for humanity.

In developed countries, modern electrocardiograms (ECGs) that produce digital output are the
most commonly used diagnosis technology. On the other hand, in developing countries, paper-based
ECGs are still dominant [2,3]. This study is concerned with the medical environment in developing

Appl. Sci. 2020, 10, 976; doi:10.3390/app10030976 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3791-7691
https://orcid.org/0000-0002-0354-5976
http://www.mdpi.com/2076-3417/10/3/976?type=check_update&version=1
http://dx.doi.org/10.3390/app10030976
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 976 2 of 17

countries where paper-based ECGs are used. These paper-based ECG images require digitization
so that they can be transformed into 1D signals in order to apply the state-of-the-art algorithms that
have been well studied in the literature. Working on a digitized version of paper-based ECGs (1D
version) has important advantages in terms of storage space and the ease of exchanging patients’
clinical information between healthcare facilities [2,4,5]. Yet, certain limitations remain, such as dealing
with alignment issues, the loss of relative timing between leads, and inaccuracy in high-frequency
regions, to name of few. Moreover, digitizing the output of paper-based ECGs requires costly and
complicated algorithms [6]. Thus, there is a need to develop a highly accurate and sensitive automatic
segmentation algorithm that works directly on paper-based ECGs (a 2D version) without the need
for digitization.

An ECG signal consists of these main components: the P-waves, followed by the QRS complex,
and then the T-waves [7]. In many cases, cardiologists need to manually analyze ECG recordings
acquired from patients over several days, making the task very troublesome and time-consuming [8].
The automatic annotation of ECG waves is important for understanding the regulation of heartbeats
during sleep and hypertension [9–14], for diagnosing several cardiac arrhythmias [15–22], and for
detecting other atrial disorders. Many research methods have been devoted to annotating the QRS
complex (R-peaks) [23]. Although R-peaks have robust noise resistance due to their high signal-to
noise ratio (SNR), there is a limitation in the information conveyed by them. Annotation of P-waves
is even more challenging for many reasons, such as a low SNR, the possible overlapping of P- and
T-waves, and their absence and variability due to some specific morphologies [24].

To our knowledge, there have been limited attempts to automatically annotate P-waves in available
standard datasets [25]. This is due to a lack of available standard datasets with annotated P-waves
used as a benchmark for validation. Therefore, there is a growing need for P-wave annotation in
different available datasets.

The QT Database [26] is considered one of the most commonly used databases for P-wave
annotation purposes. This database contains a total of 105 15-min records of two-channel ECGs,
each sampled at 250 Hz. The records have been selected mainly from the currently available ECG
databases, including the MIT-BIH Arrhythmia Database [27], the European Society of Cardiology ST-T
Database [28], and several other ECG databases obtained at the Beth Israel Deaconess Medical Center
in Boston, and recordings of patients who experienced sudden cardiac death. This makes this dataset
an excellent source of varied and well-characterized data.

The MIT-BIH AF database [29,30] is considered a challenging database for P-wave annotation.
This dataset contains a total of 25 10-h records of two-channel ECGs, each sampled at 250 Hz. The records
are of people suffering from atrial problems, such as atrial fibrillation (AFIB), atrial flutter (AFL),
junctional rhythms (AV), and other rhythms. Unfortunately, the MIT-BIH AF database [29,30] includes
only annotations of R-peaks and lacks P-wave annotation. Hence, in this paper, the manual annotation
of P-waves in the MIT-BIH AF database [29,30] is performed with the help of a cardiologist who was
used as a benchmark for the evaluation of different algorithms. However, there is no guarantee that all
present P-waves have been labeled, nor that all labels are correct.

In the literature, P-waves have been automatically detected using different techniques. In [31–37],
the authors presented an automatic P-waves detection technique based on wavelet transform. However,
the authors in [31–33] did not validate the algorithms with any standard databases. In [33], no P-wave
delineation criterion is explained. In [38–40], the authors proposed an automated P-wave detection
method based on second order derivatives and low-pass differentiation. In [41,42], other algorithms for
automatic P-wave detection based on adaptive threshold are presented. Although the algorithm in [42]
achieved high sensitivity, it was not validated with any standard database. In [43–45], the authors
introduced deep neural networks for P-wave detection. The authors of [43], used a neural network
with asymmetric basis functions for the purpose of extracting the features of P-waves in the MIT-BIH
Arrhythmia Database [27], but the detection rate is not mentioned.
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Over the past few years, deep convolutional neural networks have gained attention in the field
of visual recognition [46,47]. However, in biomedical image processing, the desired output should
include localization and pixel labels. In [48], the authors trained a deep convolutional network using
a sliding-window to label each pixel in the image by providing a patch around that pixel as an input.
This network is good at localizing, but suffers from redundancy, due to overlapping patches. In [49],
the authors introduced the U-Net fully convolutional neural network architecture. This network
provides good classification, as well as localization, using very few training images.

To our knowledge, this paper is the first to introduce the manual annotation of P-waves
in the MIT-BIH AF database [29,30] to be used as a benchmark for validation and evaluation
purposes. In addition, it introduces an automated prediction algorithm for P-waves, with their
variable morphologies, in the aforementioned database. This should help clinicians in diagnosing
several cardiac arrhythmias. Furthermore, the proposed algorithm works on printed ECG signals,
which are the most commonly used in developing countries, without the need for digitalization, as in [2].
The proposed automated algorithm uses U-Net deep fully convolutional networks. The proposed
algorithm is validated over the well-known QT database [26] and the performance is compared to
other algorithms in the literature.

This paper is organized as follows; in Section 2, we provide information on datasets used in this
article. In addition, we introduce the proposed algorithm. In Section 3, we present the experimental
results obtained, and our conclusions are given in Section 4.

2. Materials and Methods

2.1. Used Databases

The presence of standard ECG databases is essential for the evaluation of ECG signal detection
algorithms. Most of these databases contain annotation files for QRS, but lack P-wave annotation.
In this study, two databases were used to evaluate the performance of the proposed algorithm.
A self-annotated database (MIT-BIH AF database) and a standard annotated database (QT database).
In Table 1, we provide a summary of the aforementioned databases.

Table 1. Databases used for evaluation and validation.

Database # Annotated Beats # Records Record Duration

MIT-BIH AF [29,30] 8280 23 5 min
QT Manual Annotation [26] 3194 103 15 min

QT Automatic Annotation [26] 11,201 105 15 min

2.1.1. Self-Annotated Database (MIT-BIH AF)

The MIT-BIH AF database [29,30] recordings were made at Boston’s Beth Israel Hospital (now
the Beth Israel Deaconess Medical Center) using ambulatory ECG recorders with a typical recording
bandwidth of approximately 0.1 to 40 Hz. This database contains 605 episodes for different rhythms of
atrial fibrillation (AFIB), atrial flutter (AFL), junctional rhythms (AV), and other rhythms. This database
provides an opportunity to test the robustness of P-wave detection in many different cases: the absence
of P-waves in AFIB (f-waves), sawtooth P-waves in AFL, inverted P-waves in AV, and normal P-waves
in other rhythms.

Annotation files for R-peaks in this standard database are available for the evaluation of the QRS
detection algorithms, but, this is not the case for P-waves. Thus, in this paper, a cardiologist manually
annotated the P-waves in the MIT-BIH AF database [29,30]. Manual annotation is performed for the
first 5 min of each record from Lead II, as sinus P-waves are usually most prominently seen in Lead
II [3]. Figures 1 and 2 provide samples of the manual annotations obtained, where P-waves have
sometimes been detected for normal and abnormal beats, and other times are absent for atrial fibrillation.
The annotation file of P-waves can be found as Supplementary Material.
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Figure 1. Samples of manually annotated P-waves in the MIT-BIH AF database for normal beats. (a) 
05091 record; (b) 08405 record; (c) 08455 record; and (d) 08215 record, where the light blue areas 
represent P-wave duration. 
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Figure 1. Samples of manually annotated P-waves in the MIT-BIH AF database for normal beats.
(a) 05091 record; (b) 08405 record; (c) 08455 record; and (d) 08215 record, where the light blue areas
represent P-wave duration.
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Figure 2. Samples of manually annotated P-waves in the MIT-BIH AF database, where the P-wave
is absent in case of atrial fibrillation, (a) 07162 record; (b) 04126 record; (c) 06426 record; and (d)
06995 record.

2.1.2. Standard Annotated Database (QT Database)

Since the MIT-BIH AF database [29,30] is self-annotated, a standard annotated database must be
used to validate the proposed automatic algorithm. The standard annotated QT database [26] is used
for this purpose.

This database has two types of annotations: manual annotation and automatic annotation.
The manual annotation was carried by two cardiologists who annotated only the selected beats (in
a file called “q1c”) in all recordings except “sel35” and “sel37”. The automatic annotation of the
whole database was carried out using ECGPUWAVE” software, which reads “pu” files. In this study,
the P-wave duration of Lead II of the entire automatically annotated QT database [26], along with the
manually annotated beats for the same database, is used for validation purposes for the proposed
automatic detection algorithm.

2.2. Proposed P-Wave Image-Based Detection Algorithm

In this study, a knowledge-based P-wave detection algorithm based on fully convolutional
networks is proposed and evaluated. This algorithm is inspired by the framework proposed
in [49], which is mainly used for the segmentation of biomedical images, such as brain lesion
segmentation [50], tumor segmentation [51], and many other segmentation applications. We build
upon this approach to automatically detect P-waves from ECG images, taking into consideration that
an ECG is always printed on a grid paper. The grid background can be removed by the algorithm
proposed in [2], as a pre-processing stage. Our proposed algorithm is then used to detect P-waves in
the image-based ECG.

Segmentation via U-Net Architecture

The U-Net is a fully convolutional network that was developed in [49] for biomedical image
segmentation. The goal of the U-Net is to produce a semantic segmentation, with an output that is the
same size as the original input image, but in which each pixel in the image is colored one of X colors,
where X represents the number of classes to be segmented.

The U-Net architecture, as shown in Figure 3, consists of two paths. The first path is the
encoder path, which is used to capture the image’s contents. The encoder is just traditional blocks
of convolutional and maximum pooling layers. The convolutional operation has two inputs: the
input image of size n*n* number of channels, where n*n is the image pixel size and there is a set of ‘k’
filters (also called kernels or feature extractors), each one of size f × f × number of channels, where f is
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typically 3 [52]. The output of a convolutional operation is also a 3D output image of size (nout × nout ×

k). The relationship between nin and nout is given by [49]

nout =
nin + 2p− k

s
(1)

where nin is the number of input features, nout is the number of output features, k is the convolution
kernel size, p is the convolution padding size, and s is the convolution stride size.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 21 

 

𝑛௨௧ = 𝑛 + 2𝑝 − 𝑘𝑠   (1) 

where nin is the number of input features, nout is the number of output features, k is the convolution 
kernel size, p is the convolution padding size, and s is the convolution stride size. 

Figure 3. U-Net architecture and the parameters used in the proposed algorithm. Each box contains 
an n* n* k input and 2@Conv layers (which means that two consecutive convolution Layers are 
applied). The left-hand side is the contraction path (Encoder), where we apply regular convolutions 
and max-pooling layers, and the right-hand side is the expansion path (Decoder) where we apply 
transposed convolutions along with regular convolutions. 

The maximum pooling layer is then used to retain the maximum value of a pre-defined area and 
stores its position in a switch variable. This creates a pooling map that reduces the feature map size, 
which results in fewer network parameters. 

The filter and stride sizes are two important parameters in the maximum pooling operation. The 
idea is to retain only the important features of the maximum valued pixels from each region and 
neglect the rest. Both the convolution operation and the pooling operation result in down-sampled 
images. When applying the convolution operation again, the filters in the next layer will be able to 
show the larger context. As the number of filters used gradually increases, more complex features 
from the image can be extracted. By down-sampling, the model better understands what is present 
in the image, but it loses the information of where it is present. 

The second path is the decoder, which is used to obtain precise localization using transposed 
convolutions. Transposed convolution (deconvolution) is a technique to perform the up-sampling of 
an image with learnable parameters. Transposed convolution is exactly the opposite process of a 
normal convolution, where the input volume is a low-resolution image and the output volume is a 
high-resolution image with location information. It is followed by the merged layer, where the output 
of the transposed convolution layers is merged with the feature maps from the encoder at the same 
level to obtain more precise locations. 

3. Experimental Results 

3.1. Experimental Setup 

The U-Net model was run on a K80 GPU with a total of 12 GB of ram with the Python 3.5 
anaconda package, tensor flow 1.2.1, and Keras 1.0. As the MIT-BIH AF database [29,30] consists of 
ECG signals in the time domain while the U-Net inputs must be images, the data were first converted 
to 2D ECG images. This makes this approach applicable to any printed ECG signal after background 

 

Encoder stage Decoder stage 

Figure 3. U-Net architecture and the parameters used in the proposed algorithm. Each box contains
an n* n* k input and 2@Conv layers (which means that two consecutive convolution Layers are
applied). The left-hand side is the contraction path (Encoder), where we apply regular convolutions
and max-pooling layers, and the right-hand side is the expansion path (Decoder) where we apply
transposed convolutions along with regular convolutions.

The maximum pooling layer is then used to retain the maximum value of a pre-defined area and
stores its position in a switch variable. This creates a pooling map that reduces the feature map size,
which results in fewer network parameters.

The filter and stride sizes are two important parameters in the maximum pooling operation.
The idea is to retain only the important features of the maximum valued pixels from each region and
neglect the rest. Both the convolution operation and the pooling operation result in down-sampled
images. When applying the convolution operation again, the filters in the next layer will be able to
show the larger context. As the number of filters used gradually increases, more complex features
from the image can be extracted. By down-sampling, the model better understands what is present in
the image, but it loses the information of where it is present.

The second path is the decoder, which is used to obtain precise localization using transposed
convolutions. Transposed convolution (deconvolution) is a technique to perform the up-sampling
of an image with learnable parameters. Transposed convolution is exactly the opposite process of
a normal convolution, where the input volume is a low-resolution image and the output volume is
a high-resolution image with location information. It is followed by the merged layer, where the output
of the transposed convolution layers is merged with the feature maps from the encoder at the same
level to obtain more precise locations.

3. Experimental Results

3.1. Experimental Setup

The U-Net model was run on a K80 GPU with a total of 12 GB of ram with the Python 3.5 anaconda
package, tensor flow 1.2.1, and Keras 1.0. As the MIT-BIH AF database [29,30] consists of ECG signals
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in the time domain while the U-Net inputs must be images, the data were first converted to 2D ECG
images. This makes this approach applicable to any printed ECG signal after background removal.
A total of 690 one-channel input images of time-domain ECG signals were used, each of 10 s from the
MIT-BIH AF database [29,30]. They were divided into a training set and a testing set (2:1). Every image
had corresponding manually annotated ground truth labeling. Four hundred and sixty images were
used for training. This number of images is not nearly enough to feed a deep learning neural network.
Therefore, we used a module called “ImageDataGenerator” in a Keras preprocessing image to perform
data augmentation [48]. The remaining images (230 images) were used to test the trained U-Net model.
The model takes less than 15 min to train over 20 epochs. This number of epochs was used as the test
accuracy did not increase much for the last five epochs, as shown in Figure 4.

In the encoder process of the U-Net model, each input image of size 512 × 512 × 1 was first
fed to two convolutional layers of size 2 × 2 and strides of 2, and this process was repeated until
an output image size of 32 × 32 × 1024 was obtained, while in the decoder process successive layers of
deconvolution and merge layers were applied till the output image of size 512 × 512 × 1 was obtained.
The output represents the segmented P-waves and their corresponding locations.
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Figure 4. Model accuracy chart, where the blue line represents the training accuracy, while the orange
one represents the validation (testing) accuracy.

Since there are only two classes (P and no P), each pixel within the image has a value between 0
and 1. Zero represents no P-waves, and 1 represents P-wave presence. We take 0.5 as the threshold to
decide whether to classify a pixel as 0 or 1.

3.2. Evaluation Metrics

The performance of the P–wave detection algorithms were evaluated using three statistical
measures: sensitivity (SE), positive predictivity (+P), and accuracy given by Equations (2)–(4),
where TP represents the number of true positives (P-waves as detected similarly to the manually
annotated P-waves), FN represents the number of false negatives (the annotated P-wave has not been
detected by the proposed method), and FP represents the number of false positives (P-waves detected
by the system but not similar to the manually annotated data).

SE =
TP

TP + FN
(2)

+ P =
TP

TP + FP
(3)

Accuracy =
#Correctly predicted data

#Total beats
(4)
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3.3. Evaluation Results

The proposed algorithm was evaluated using the MIT-BIH AF database. The MIT-BIH AF
database [29,30] contains ECG signals with no P-waves in the case of AFIB, sawtooth P-waves in the
case of AFL, and normal P-waves in other cases. Figure 5 indicates that the proposed algorithm is
able to successfully detect the P-waves, even when the P- and T-waves are merged in the ECG signals.
It correctly located P-waves in normal and abnormal cases. The abnormal cases have overlapping P
and T waves, the presence of U-waves between P- and T-waves, and negative polarization. It can also
be deduced that the proposed algorithm is not affected by noise and that it is thus a robust algorithm.
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Figure 5. Demonstrating the performance of the proposed P-wave detection algorithm on the MIT-BIH
atrial fibrillation database. The P-wave is detected in electrocardiogram (ECG) signals that contain:
(a) high-frequency noise; (b) normal sinus rhythm without U-waves; (c) normal sinus rhythm with
U-waves; (d) normal sinus rhythm with negative polarization; (e) merged P- and T-waves. Here,
the red circle asterisk represents detection of merged P- and T-waves. (f) No P-wave detected in case of
premature atrial fibrillation.
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Table 2 illustrates the evaluation results obtained over the test data in 23 records of the MIT-BIH
AF database. These results were obtained by training the model using 460 images of ECG recordings,
each consisting of 10 s for 23 patients (00735 and 03665 are unavailable signals), and tested by using 230
images of the same specifications for the same patients. The proposed algorithm achieved a training
accuracy of 99.8%, a testing accuracy of 98.56% after 20 epochs, a sensitivity of 98.78%, and a positive
predictivity of 97.41%.

Table 2. P-wave detection performance over the annotated MIT-BIH Atrial Fibrillation database.

Record TP FP FN SE (%) +P (%)

04015 137 7 2 98.6 95.1
04043 175 5 2 98.9 97.2
04048 120 0 0 100 100
04126 254 10 4 98.4 96.2
04746 108 1 1 99.1 99.1
04908 165 3 1 99.4 98.2
04936 110 0 0 100 100
05091 100 0 0 100 100
05121 123 4 0 100 96.8
05261 127 0 0 100 100
06426 118 0 0 100 100
06453 134 0 6 100 95.7
06995 100 0 0 100 100
07162 108 6 2 98.1 94.7
07859 144 11 0 100 92.9
07879 107 1 1 99.1 99.1
07910 91 3 4 95.7 96.8
08215 128 1 2 98.4 99.2
08219 116 2 1 99.14 98.3
08378 129 1 0 100 99.23
08405 129 1 0 100 99.23
08434 89 12 11 89 88.11
08455 108 6 2 98.18 94.73

2920 74 39 98.78 97.41

4. Performance Validation and Discussion

As the MIT-BIH AF database is self-annotated, it is essential to validate the performance of the
proposed algorithm over a standard annotated database. Thus, the well-known QT database [26] was
used for this purpose. The algorithm was applied on the automatically annotated records of the QT
database, and the performance was compared to [45]. The authors in [45] combined four different
deep recurrent neural networks (RNNs), for example, long-short term memory (LSTM), and each
was trained to extract useful features from ECG signals and determine the absence or presence of
P-waves. The outputs of these networks were then combined for the final detection of P-waves
using a five-fold cross-validation method. This output was then evaluated using the automatically
annotated QT database. In addition, the proposed algorithm was applied to the manually annotated
beats in the QT database and the results were compared to [35,37,39,40,44]. The authors in [35,37]
detected P-waves depending on wavelet transform. In [39,40], the authors proposed automated P-wave
detection algorithms based on second-order derivatives and low-pass differentiation. These techniques
are mathematically simple. However, they only detect monophasic P-waves and are not suitable for
biphasic waves. In [44], three different deep neural network architectures were implemented and
their results were compared to each other’s, showing that the best P-wave detection architecture is
the ConvNet.
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4.1. Automatically Annotated QT Database Results

The detection performance of the automatically annotated QT database obtained by the proposed
P-wave detector is shown in Table 3. 9450 images were divided into 6300 images for training and 3150
images for testing. When comparing the output to the automatic annotation, the detection performance
over the automatically annotated QT database obtained an average SE of 98.97%, a +P of 99.45%,
a training accuracy of 99.7% and a test accuracy of 98.74%.

Table 3. P-wave detection performance over the automatically annotated QT database.

Record TP FP FN SE (%) +P (%)

Sel100 374 0 3 99.2 100
Sel102 45 0 0 100 100
Sel103 108 0 0 100 100
Sel104 109 1 2 98.2 99.1
Sel114 73 0 0 100 100
Sel116 394 1 4 99.0 99.7
Sel117 255 0 1 99.6 100
Sel123 232 0 0 100 100
Sel213 392 1 6 98.5 99.7
Sel221 333 1 20 94.3 99.7
Sel223 363 0 1 99.7 100
Sel230 356 15 36 90.8 96
Sel231 242 0 1 99.6 100
Sel232 267 0 0 100 100
Sel233 390 3 24 94.2 99.2
Sel301 434 0 0 100 100
Sel302 481 1 1 99.8 99.8
Sel306 277 1 6 97.9 99.6
Sel307 283 1 0 100 99.6
Sel308 334 3 4 98.8 99.1
Sel310 588 0 0 100 100
Sel803 320 1 33 90.65 99.7
Sel808 297 10 13 95.8 96.7
Sel811 233 0 0 100 100
Sel820 361 1 1 99.7 99.7
Sel821 323 1 1 99.7 99.7
Sel840 338 1 2 99.4 99.7
Sel847 263 0 0 100 100
Sel853 316 2 3 99 99.4
Sel871 302 0 1 99.7 100
Sel872 323 0 0 100 100
Sel873 286 0 0 100 100
Sel883 292 13 16 94.8 95.8
Sel891 352 0 0 100 100

Sel16265 317 3 3 99.1 99.1
Sel16272 282 0 0 100 100
Sel16273 367 0 0 100 100
Sel16420 353 0 1 99.7 100
Sel16483 362 0 0 100 100
Sel16539 306 0 0 100 100
Sel16773 334 17 25 93 95.1
Sel16786 307 0 0 100 100
Sel16795 253 0 1 99.6 100
Sel17453 346 0 0 100 100
Sele0104 267 0 0 100 100
Sele0106 298 0 0 100 100
Sele0107 267 8 8 97.1 97.1
Sele0110 289 0 1 99.6 100
Sele0111 301 0 0 100 100
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Table 3. Cont.

Record TP FP FN SE (%) +P (%)

Sele0112 178 33 34 84 84.4
Sele0114 209 3 3 98.6 98.6
Sele0116 233 0 0 100 100
Sele0121 476 0 0 100 100
Sele0122 471 0 0 100 100
Sele0124 370 1 2 99.5 99.7
Sele0126 313 6 28 91.8 98.1
Sele0129 202 0 0 100 100
Sele0133 128 1 1 99.2 99.2
Sele0136 242 1 1 99.6 99.6
Sele0166 271 0 0 100 100
Sele0170 299 0 0 100 100
Sele0203 120 0 0 100 100
Sele0210 354 0 0 100 100
Sele0211 506 1 1 99.8 99.8
Sele0303 347 0 1 99.7 100
Sele0405 399 0 10 97.5 100
Sele0406 216 0 0 100 100
Sele0409 408 1 1 99.7 99.7
Sele0411 383 0 1 99.7 100
Sele0509 71 0 0 100 100
Sele0603 278 1 1 99.6 99.6
Sele0604 343 1 0 99.7 99.7
Sele0606 458 0 1 99.8 100
Sele0607 394 0 0 100 100
Sele0609 373 1 1 99.7 99.7
Sele0612 250 0 1 99.6 100
Sele0704 353 1 12 96.7 99.7

Sel30 336 0 0 100 100
Sel31 348 2 1 99.7 99.4
Sel32 360 0 0 100 100
Sel33 174 0 0 100 100
Sel34 256 1 0 100 99.6
Sel35 70 0 0 100 100
Sel36 141 6 8 94.6 95.9
Sel37 190 1 1 99.5 99.5
Sel38 164 0 0 100 100
Sel39 377 0 0 100 100
Sel40 300 0 1 99.7 100
Sel41 301 0 0 100 100
Sel42 412 0 0 100 100
Sel43 448 1 2 99.5 99.7
Sel44 352 0 0 100 100
Sel45 309 1 1 99.6 99.6
Sel46 84 1 0 100 98.8
Sel47 294 0 0 100 100
Sel48 453 1 1 99.8 99.8
Sel49 216 0 0 100 100
Sel50 103 0 0 100 100
Sel51 249 1 1 99.6 99.6
Sel52 468 1 0 100 99.8

Sel17152 469 0 0 100 100
Sel14046 410 0 0 100 100
Sel14157 43 0 0 100 100
Sel14172 217 1 1 99.5 99.5
Sel15814 337 0 0 100 100

31,511 153 334 98.97 99.45
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Table 4 summarizes the performance comparison of the proposed P-wave detection algorithm
over the automatically annotated QT database along with [45]. The performance comparison is in
terms of the number of beats, methodology, SE, and accuracy. Using five-fold validation, the proposed
algorithm achieved an average sensitivity of 98.4% and an accuracy of 98.74%. The proposed algorithm
scored slightly higher performances on SE and accuracy overall when compared to [45]. It is clear
that the proposed algorithm can handle ECG recordings with high performance over the 111,201
automatically annotated heartbeats.

Table 4. P-wave detection performance comparison on the automatic annotated QT database [N/R:
not reported].

Publication Method # Beats Annotation
(File Name) SE [%] Accuracy [%] +P [%]

Proposed Algorithm U-Net 111,201 Automatic.(pu) 98.4 98.74 98.74
Peimankar,

Puthusserypady [45] LSTM 111,201 Automatic.(pu) 97.22 98.48 N/R

4.2. Manually Annotated QT Database

The detection performance on the manually annotated QT database obtained by the proposed
P-wave detector is shown in Table 5. As the manually annotated beats are random, the whole database
was introduced to the automatic detector. 9,450 images were divided into 6300 images for training
and 3150 images for testing. When comparing the output to the manual annotation, the detection
performance over the manually annotated QT database obtained an average SE of 97.24%, a +P of
97.22%, a training accuracy of 99.92%, and a test accuracy of 98.9%.

Table 5. P-wave detection performance over the manual annotated QT database.

Record TP FP FN SE (%) +P (%)

Sel100 10 0 0 100 100
Sel103 10 0 0 100 100
Sel104 5 1 0 100 83
Sel114 16 0 1 94.1 100
Sel116 17 2 0 100 89.5
Sel117 10 0 1 91 100
Sel123 10 0 0 100 100
Sel213 23 1 2 92 95.8
Sel223 10 0 0 100 100
Sel230 16 0 0 100 100
Sel231 17 0 0 100 100
Sel233 10 1 1 91 91
Sel301 10 0 0 100 100
Sel302 10 0 0 100 100
Sel306 12 0 0 100 100
Sel307 9 1 0 100 90
Sel308 16 2 1 94.1 88.9
Sel803 10 0 0 100 100
Sel808 10 0 0 100 100
Sel811 10 0 0 100 100
Sel820 9 1 1 90 90
Sel821 9 0 1 90 100
Sel840 15 1 2 88.2 93.7
Sel847 11 0 0 100 100
Sel853 10 0 0 100 100
Sel871 22 1 1 95.6 95.6
Sel872 10 0 0 100 100
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Table 5. Cont.

Record TP FP FN SE (%) +P (%)

Sel873 11 0 0 100 100
Sel883 10 0 0 100 100
Sel891 18 0 1 94.7 100

Sel16265 10 0 0 100 100
Sel16272 10 1 1 91 91
Sel16273 10 0 0 100 100
Sel16420 10 0 1 91 100
Sel16483 10 0 0 100 100
Sel16539 10 0 0 100 100
Sel16773 8 2 1 89 80
Sel16786 10 0 0 100 100
Sel16795 10 0 0 100 100
Sel17453 10 0 0 100 100
Sele0104 10 0 0 100 100
Sele0106 10 0 0 100 100
Sele0107 9 2 3 75 82
Sele0110 10 0 1 91 100
Sele0111 10 0 0 100 100
Sele0112 14 3 2 87.5 82.3
Sele0114 10 0 0 100 100
Sele0116 10 0 0 100 100
Sele0121 10 0 0 100 100
Sele0122 10 0 0 100 100
Sele0124 17 1 0 100 94.4
Sele0126 7 2 1 87.5 77.7
Sele0129 10 0 0 100 100
Sele0133 10 0 0 100 100
Sele0136 7 1 1 87.5 87.5
Sele0166 12 0 0 100 100
Sele0170 10 0 0 100 100
Sele0203 10 0 0 100 100
Sele0210 10 0 0 100 100
Sele0211 9 1 1 90 90
Sele0303 10 0 1 91 100
Sele0405 10 0 1 91 100
Sele0406 9 1 0 100 90
Sele0409 10 0 0 100 100
Sele0411 10 0 0 100 100
Sele0509 10 0 0 100 100
Sele0603 9 1 1 91 91
Sele0604 10 0 0 100 100
Sele0606 6 3 1 85.7 66.6
Sele0607 10 0 0 100 100
Sele0609 8 1 1 88.8 88.8
Sele0612 10 0 0 100 100
Sele0704 10 0 0 100 100

Sel30 10 0 0 100 100
Sel31 10 0 0 100 100
Sel32 10 0 0 100 100
Sel33 10 0 0 100 100
Sel34 9 0 0 100 100
Sel36 1 0 0 100 100
Sel38 10 0 0 100 100
Sel39 10 0 0 100 100
Sel40 9 0 1 91 100
Sel41 10 0 0 100 100
Sel42 10 0 0 100 100
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Table 5. Cont.

Record TP FP FN SE (%) +P (%)

Sel43 8 1 0 100 88.8
Sel44 8 0 0 100 100
Sel45 8 0 0 100 100
Sel46 8 0 0 100 100
Sel47 10 0 0 100 100
Sel48 10 0 0 100 100
Sel49 10 0 0 100 100
Sel51 9 0 1 90 100
Sel52 10 0 0 100 100

Sel17152 10 0 0 100 100
Sel14046 10 0 1 91 100
Sel14157 10 0 0 100 100
Sel14172 16 0 0 100 100
Sel15814 10 0 0 100 100

1027 31 32 97.24 97.22

Table 6 summarizes the performance comparison of the proposed P-wave detection algorithm over
the manually annotated QT database along with [35,37,39,40,44]. The comparison is in terms of the
number of beats, the methodology, SE, and accuracy. The proposed algorithm scored a lower sensitivity
and a higher +P than that achieved using wavelet transform in [35,37,39]. Fortunately, our proposed
algorithm achieved a higher accuracy than that achieved by the ConvNet proposed in [44]. Moreover,
the proposed algorithm’s performance is comparable to other algorithm performances found in the
literature [53].

Table 6. P-wave detection performance comparison on the manual annotated QT database. [N/R:
not reported].

Publication Method # Beats Annotation
(File Name) SE [%] Accuracy

[%] +P [%]

Proposed Algorithm U-Net 3194 Manual.(q1c) 97.24 98.9 97.22
Martinez et al. [35] Wavelets 3194 Manual.(q1c) 98.87 N/R 91.03

Laguna et al. [39] Low-pass
differentiation 3194 Manual.(q1c) 97.70 N/R 91.17

Lenis, G. [37] Wavelets 3194 Manual.(q1c) 100 N/R 88.15

Panigrahy [40] Differential
Evolution 3194 Manual.(q1c) 98.9 98.5 N/R

Abrishami, H. [44] ConvNet 3194 Manual.(q1c) N/R 96.2 N/R

Thus, the results are promising, as the algorithm can detect P-waves over different databases,
sampling frequencies, different types of arrhythmias, and noise

5. Conclusions

Automatic analysis of an ECG signal delivers important information for diagnosis to medical
experts. The MIT-BIH AF database is considered a challenging ECG database, as it contains various
types of ECG signals. To our knowledge, this paper is the first to manually annotate P-waves in the
MIT-BIH AF database. In addition, it is the first to develop an efficient automated algorithm to detect
the absence or presence of the different shapes of P-waves using a fully convolutional neural network
model (U-Net). This automated algorithm works on 2D images of printed ECGs without the need for
its digitization.

The proposed automatic P-wave detection method achieved an accuracy and sensitivity of 98.56
and 98.78%, respectively, over the first 5 min of Lead II of the MIT-BIH AF database (a total of 8280
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beats). Moreover, the proposed method was validated using the well-known automatically and
manually annotated QT database. This resulted in accuracies of 98.98 and 98.9% and sensitivities
of 98.97 and 97.24% for the automatically and manually annotated QT database, respectively. Thus,
this indicates that the results are promising, as this image-based approach can be applied in analyzing
old ECG records when only printed versions are available. It also stands as a benchmark for testing
and validation purposes. This study also provides a positive proof of concept for detecting P-waves in
abnormal ECG beats with atrial disorders using a small amount of training data. However, further
generalization is required to detect QRS complexes and T-waves.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/3/976/s1.
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