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Abstract: Earthquake response mitigation of a base-isolated (BI) building equipped with (i) a single
tuned mass damper at the top of the building, (ii) multiple tuned mass dampers (MTMDs) at the top
of the building, and (iii) MTMDs distributed on different floors of the building (d-MTMDs) is studied.
The shear-type buildings are modeled by considering only one lateral degree of freedom (DOF) at
the floor level. Numerical approach of Newmark’s integration is adopted for solving the coupled,
governing differential equations of motion of 5- and 10-story BI buildings with and without TMD
schemes. A set of 40 earthquake ground motions, scaled 80 times to get 3200 ground motions, is used
to develop simplified fragility curves in terms of the isolator maximum displacement. Incremental
dynamic analysis (IDA) is used to develop simplified fragility curves for the maximum target isolator
displacement. It is found that TMDs are efficient in reducing the bearing displacement, top floor
acceleration, and base shear of the BI buildings. In addition, it was noticed that TMDs are efficient
in reducing the probability of failure of BI building. Further, it is found that the MTMDs placed at
the top floor and d-MTMDs on different floors of BI buildings are more efficient in decreasing the
probability of failure of the BI building when compared with STMD.

Keywords: Base-Isolated Buildings; bearing displacement; STMD; MTMDs; d-MTMDs; incremental
dynamic analysis; earthquake

1. Introduction

Over the last couple of decades, structural vibration control techniques have been popularized
for mitigation of dynamic response caused by various environmental actions. Tuned mass dampers
(TMDs) are one of the common control methods used for response mitigation of structures under
dynamic loadings. Their applications in various situations and loads have been addressed by several
researchers [1–7]. As single tuned mass dampers (STMDs) became popular, a more practical solution,
for example, by distributing TMD mass over the structure is being investigated in recent times [8–16].
A detailed literature survey on passive TMDs is presented in Elias and Matsagar [17].

Base-isolation (BI) has been one of the most popular and well-established method of seismic
response control. This method makes use of special devices such as friction pendulum, lead rubber
bearings, etc, to isolate the main structure from the shaking of the ground. Base-isolation system works
by making the isolated structure more flexible at the base, thereby reducing acceleration response
of the superstructure and therefore base shear force on the structure. As a consequence of added
flexibility, displacement demand on the structure gets amplified, and additional damping is provided
to keep displacement demand within acceptable limits. Zelleke et al. [18] studied the effectiveness of
viscous and visco-elastic dampers on seismic response control of BI buildings. They found that there is
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a tradeoff between the extent to which acceleration and displacement demand can be controlled by BI
system combined with additional damping devices.

Tsai [19] investigated the use of TMD alongside BI and observed that TMD is efficient in response
mitigation of BI systems if the dominant period of excitation is longer than the natural period of the
structure. Yang et al. [20] studied the efficiency of passive TMDs in response control of BI buildings.
Xiang and Nishitani [21] described the effectiveness of optimally designed non-traditional TMD for
mitigation of seismic response of BI buildings. Use of TMD with inerter (TMDi) was proposed by De
Domenico et al. [22] and De Domenico and Ricciardi [23–25] for diminishing response of BI buildings
under earthquakes. Rabiee and Chae [26] reported the effectiveness of MR dampers for response
mitigation of BI building under short and long period ground motions. Effectiveness of single TMD
(STMD), multiple TMDs (MTMDs), and distributed MTMDs (d-MTMD) on seismic response control
of BI buildings was investigated by Stanikzai et al. [27,28]. They noticed that d-MTMDs were more
efficient and practical than other schemes.

Past studies on efficiency of TMDs in response mitigation of BI buildings have relied on a limited
number of earthquake ground motions. As there is a large uncertainty in the frequency content,
amplitude, and duration of ground shaking a structure can experience, a control scheme that is found
effective for a certain type of ground motion may not be effective for other ground motions. It is
therefore necessary to consider these uncertainties to have a robust understanding of the usefulness
of TMDs in response mitigation of BI structures. Therefore, a probabilistic approach, for example,
an examination of fragility curves of structures with and without the TMDs, can shed more light on
the overall benefits of using TMDs in BI structures. Such analysis of BI buildings equipped with TMDs
is lacking in the literature.

Among many other methods, the incremental dynamic analysis (IDA) is one of the popular
methods of estimating analytical fragility curves of structures. The idea of incremental dynamic
analysis (IDA) was introduced by Bertero [29]. Kennedy et al. [30] proposed the concept of fragility
analysis in the field of earthquake engineering. Later, the idea was extended by many researchers
including Bazzurro and Cornell [31,32] and Luco and Cornell [33,34]. This method of fragility analysis
was further expanded by Vamvatsikos and Cornell [35]. Nowadays, it is broadly employed in seismic
risk evaluation of structures. The IDA has been taken by the U.S. Federal Emergency Management
Agency (FEMA, [36,37]) standards as a state-of-the-art technique to verify the global collapse capacity
of structures. The IDA relies on nonlinear structural analysis using ground motions with increasing
intensity, estimating some damage measure (DM) for each ground motion, which is characterized
by an intensity measure (IM). Different IMs, for example, peak ground velocity (PGV), peak ground
acceleration (PGA), spectral acceleration, etc., can be used to characterize ground motions. Damage
measures are related to response parameters such as peak base shear, joint rotation, peak story drift,
and bearing displacement. Probabilities of exceeding a specified damage measure for a given excitation
intensity level can be estimated if IDA is conducted with an adequate number of ground motions.

This study applies IDA method to estimate seismic fragility of buildings with BI systems and
investigates the extent to which such fragility can be reduced using different TMD schemes.

2. Structural Model

Schematic representation of different structures considered here is presented in Figure 1.
An idealized N-story BI building is demonstrated in Figure 1a. The masses are lumped at the
floor levels, and the floors are deemed to act as a rigid diaphragm. One horizontal translational degree
of freedom (DOF) is assigned to each floor. BI structures with different control schemes are shown
in Figure 1a–d. In Figure 1b, a TMD is placed at the nth floor, and this scheme is called as BI + STMD.
In Figure 1c, MTMDs are placed at the nth floor, and the scheme is called as BI + MTMDs. When the
multiple TMDs are placed on various floors, as displayed schematically in Figure 1d, the scheme is
called BI + d-MTMDs. For the sake of simplicity, the superstructure is presumed to remain linearly
elastic and soil structure interaction (SSI) is not considered.
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Figure 1. Schematic models of a N-story building with (a) base-isolation (BI), (b) BI + single tuned 
mass dampers (STMD) at top floor, (c) BI + multiple tuned mass dampers (MTMDs) at top floor, and 
(d) BI + distributed multiple tuned mass dampers (d-MTMDs). 

The governing equation of motion of the system under ground shaking can be written as [ܯ]ሼݔሷ ሺݐሻሽ + ሶݔሼ[ܥ] ሺݐሻሽ + ሻሽݐሺݔሼ[ܭ] =  ሷ௚ሽ (1)ݔሽሼݎሼ[ܯ]−

where [ܯ] is the mass matrix; [ܥ] is the damping matrix and [ܭ] is the stiffness matrix of the 
structure; ሼݔሽ = ሼ ଵܺ, ܺଶ,⋯ܺே, ܺ௕,⋯்ݔଵ, ⋯,ଶ்ݔ ௡ሽ்்ݔ ሶݔ , 	 , and ݔሷ  are the unknown relative (floor, 
isolator, and TMD) displacement, velocity, and acceleration vectors, respectively; ൛ݔሷ௚ൟ is earthquake 
ground acceleration; and ሼݎሽ is the vector of influence coefficients. Following Stanikzai et al. [28], the [ܯ], [ܥ], and [ܭ] matrices of the BI buildings installed with TMDs can be written as 

[ܯ] = ቎[݉௕]ଵ×ଵ ଵ×ே[ேܯ] [݉௡]ଵ×௡[ܯே]ே×ଵ ே×ே[ேܯ] [0]ே×௡[݉௡]௡×ଵ [0]௡×ே [݉௡]௡×௡቏ (2) 

ẍg 

kN-1 

mN-1     XN-1     

kN 

XN      
mN      

Isolation 

System 

mb Xb 

k1 

m1        
X1  

k2 

X2       m2       

mTn 
xTn 

kTn cTn 
mT1 

xT1 

kT1 cT1 

ẍg 

kN-1 

mN-1    
XN-1     

kN 

XN        mN       

Isolation 

System 

mb Xb 

k1 

m1     X1  

k2 

X2       m2      

mTn 
xTn 

kTn cTn 

mTn-1 
xTn-1 

kTn-1 cTn-1 

mT2 
xT2 

kT2 cT2 

mT1 
xT1 

kT1 cT1 

Figure 1. Schematic models of a N-story building with (a) base-isolation (BI), (b) BI + single tuned
mass dampers (STMD) at top floor, (c) BI + multiple tuned mass dampers (MTMDs) at top floor, and
(d) BI + distributed multiple tuned mass dampers (d-MTMDs).

The governing equation of motion of the system under ground shaking can be written as

[M]
{ ..
x(t)

}
+ [C]

{ .
x(t)

}
+ [K]

{
x(t)

}
= −[M]{r}

{ ..
xg

}
(1)

where [M] is the mass matrix; [C] is the damping matrix and [K] is the stiffness matrix of the
structure; {x} = {X1, X2, · · ·XN, Xb, · · · xT1, xT2, · · · xTn}

T,
.
x , and

..
x are the unknown relative (floor,

isolator, and TMD) displacement, velocity, and acceleration vectors, respectively;
{ ..
xg

}
is earthquake

ground acceleration; and {r} is the vector of influence coefficients. Following Stanikzai et al. [28],
the [M], [C], and [K] matrices of the BI buildings installed with TMDs can be written as

[M] =


[mb]1×1 [MN]1×N [mn]1×n
[MN]N×1 [MN]N×N [0]N×n
[mn]n×1 [0]n×N [mn]n×n

 (2)
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[C] =


[cb]1×1 [0]1×N [0]1×n
[0]N×1 [CN]N×N + [cn]N×N −[cn]N×n
[0]n×1 −[cn]n×N [cn]n×n

 (3)

[K] =


[kb]1×1 [0]1×N [0]1×n
[0]N×1 [KN]N×N + [kn]N×N −[kn]N×n
[0]n×1 −[kn]n×N [kn]n×n

 (4)

where [mb] is isolator mass matrix, [MN] is superstructure mass matrix, and [mn] is the TMDs schemes
mass matrix. [cb], [CN], and [cn] are the corresponding damping matrices. Similarly, [kb] is isolator
stiffness matrix, [KN] is superstructure stiffness matrix, and [kn] is the TMDs schemes stiffness matrix.
The N story building is isolated by one DOF isolator and equipped by n number of TMDs, that results
in the matrices of the order (N + n + 1) × (N + n + 1).

3. Mathematical Model of Isolator

In this study, a lead rubber bearing (N-Z) isolator is considered. Wen’s model (Wen, [38]) is used
for characterization of hysteretic behavior of the bearing. Figure 2a shows schematic representation of
lead rubber bearings. The restoring force developed in the isolation is given by

Fb = cb
.
xb + αkbxb + (1−α) FyZ (5)

where the yield strength of the bearing is denoted by Fy, initial stiffness of the bearing is denoted by
kb, and viscous damping of the bearing is denoted by cb; α signifies the ratio of post- to pre-yielding
stiffness. A non-dimensional hysteretic displacement component is denoted by Z, which satisfies the
following non-linear first order differential equation

q
.
Z = A

.
xb + β

∣∣∣ .
xb

∣∣∣|Z|Z|nk−1 + τ
.
xb|Z|

nk (6)

where the yield displacement is denoted by q; A, β, τ, and nk are dimensionless model parameters,
often calibrated from experimental tests. The integer parameter nk controls the smoothness of transition
from elastic to plastic deformation. The isolation period (Tb), damping ratio (ξb), and normalized yield
strength characterizes the N-Z isolation system. Using the post-yielding stiffness (kp) of the bearing,
the isolation period (Tb) and damping ratio (ξb) are computed by Equations (7) and (8), respectively.

Tb = 2π

√
M
kp

(7)

ξb =
cb

2Mωb
(8)

where ωb is the isolator frequency and W = Mg is the total weight of the building plus isolator
and TMDs, and g is the acceleration due to gravity. Other parameters are maintained constant with
q = 2.5 cm, β = τ = 0.5, A = 1, and n = 2.
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Figure 2. Schematic diagrams for (a) N-Z and (b) tuned mass dampers (TMD).

4. Mathematical Model of the TMD

Figure 2b shows schematic illustration of a TMD, which is made up of a mass attached to the floor
by a spring and a dashpot. The ith TMD is illustrated by its stiffness (ki), damping constant (ci), and the
mass (mi). The TMD’s mass ratio µ, designed frequency ωi, tuning frequency ratio f , and damping
ratio ξi, are given by

ωi =

√
ki
mi

(9)

ξi =
ci

2 ωimi
(10)

fi =
ωi
ωb

(11)

µi =
mi
ms

(12)

where ms represents total mass of the BI building. The proposed formulas by Sadek et al. [39]

for optimum tuning frequency ratio fSTMD = 1
1+µSTMD

[
1− ξb

√
µSTMD

1+µSTMD

]
and damping ratio

ξSTMD =
ξb

1+µSTMD
+

√
µSTMD

1+µSTMD
are considered for STMD.

Figure 1c–d show the main system equipped with n number of TMDs (MTMDs) with various
dynamic characteristics. The BI system and each TMD is modeled with a single DOF. In this study,
MTMDs and d-MTMDs are designed by considering unequal masses. The designed frequency of ith
TMD is stated as

ωi = ωT

[
1 +

(
i−

n + 1
2

) β

n− 1

]
(13)

where ωT is the average frequency of all the MTMDs (i.e., ωT =
∑ n

j=1ω j/n). Based on the
recommendation of De Domenico and Ricciardi [25], the average frequency is taken as 0.78 times the
fundamental frequency of the BI building. Non-dimensional frequency spacing parameter β of the
MTMDs is defined as

β =
ωn −ω1

ωT
(14)

For a set of TMD units with equal stiffness (i.e., k1 = k2 = k3 = · · · = kn) and equal damping ratio
(i.e., ξ1 = ξ2 = ξ3 = · · · = ξn), the stiffness (k j) is calculated as

k j =
mn(

1/ω2
1 + 1/ω2

2 + · · ·+ 1/ω2
n

) (15)
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where mn is the total mass of all the TMD(s), and the mass of the ith TMD (mi) is given by

mi =
ki

ω2
i

(16)

and the damping coefficient of the TMDs is then given by

ci = 2ξimiωi (17)

In this study, n = 3 is assumed for the cases of MTMDs and d-MTMDs; for MTMDs cases, all the
TMDs are placed at the top floor, whereas for d-MTMDs, the TMDs are placed at the top three floors.

5. Numerical Study

Numerical study is conducted on response mitigation of 5- and 10-story BI buildings equipped
with TMDs at top and at different floor levels under earthquake ground motions. The shear-type
buildings are modeled by considering only a lateral DOF at each floor level. The coupled governing
differential equation of motion for the system is formulated and solved using Newmark’s integration
method with linear acceleration assumption between consecutive time steps. For the sake of simplicity,
the floor mass and stiffness are kept the same herein. The structural damping matrix is constructed
by assuming 2% damping ratio in all the normal modes of vibration. The isolation period and the
TMDs mass ratio are assumed to be 2.5 s and 5%, respectively. The total TMD mass is then divided
into three TMDs for the cases of MTMDs and d-MTMDs. In addition, the isolation damping ratio,
yield displacement, and normalized yield strength (yield strength per unit weight of the structure) are
assumed to be 0.05, 5 cm, and 0.05, respectively [40]. The 5- and 10-story buildings have 0.5 s and 1 s
fundamental period, respectively, when they are fixed at the base.

Incremental dynamic analysis (IDA) of the above-mentioned buildings is conducted. A set of 40
earthquake ground motions are considered (see Tables 1 and 2). Somerville et al. [41] provide more
details of the set of 40 ground motions for a theoretical site in Los Angeles, USA. The set is divided
into two categories: (1) design-basis earthquakes (DBE) and (2) maximum considered earthquakes
(MCE). The DBE are listed as LA01 to LA20 and the MCE are listed as LA21 to LA40 in Tables 1 and 2,
respectively. In order to better understand the nature of the selected DBE and MCE earthquake ground
motions, their displacement and acceleration response spectra considering 2% critical damping are
shown in Figure 3. It can be seen that that selected list encompasses a wide range of amplitude and
frequency content of ground shaking. Each ground motion in the set of 40 are scaled to PGA of 0.025
to 2 g with an increment of 0.025 g (80 times). As a result, a set of 3200 ground motions are obtained,
which are used for IDA. Numerical simulation is carried out with MATLAB. The earthquake ground
excitations are scaled based on the procedure given in Bhandari et al. [42].
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Table 1. List of the design-based earthquakes (DBE)-level earthquake ground motions used in the
study and the event details.

SAC
Name Record Year Earthquake

Magnitude
Distance

(km)
Scale
Factor

Number of
points ∆t (s) Duration

(s)
PGA
(g)

LA01 Imperial Valley 1940 6.9 10 2.01 2674 0.02 53.46 0.46
LA02 Imperial Valley 1940 6.9 10 2.01 2674 0.02 53.46 0.68
LA03 Imperial Valley 1979 6.5 4.1 1.01 3939 0.01 39.38 0.39
LA04 Imperial Valley 1979 6.5 4.1 1.01 3939 0.01 39.38 0.49
LA05 Imperial Valley 1979 6.5 1.2 0.84 3909 0.01 39.08 0.3
LA06 Imperial Valley 1979 6.5 1.2 0.84 3909 0.01 39.08 0.23
LA07 Landers 1992 7.3 36 3.2 4000 0.02 79.98 0.42
LA08 Landers 1992 7.3 36 3.2 4000 0.02 79.98 0.43
LA09 Landers 1992 7.3 25 2.17 4000 0.02 79.98 0.52
LA10 Landers 1992 7.3 25 2.17 4000 0.02 79.98 0.36
LA11 Loma Prieta 1989 7 12 1.79 2000 0.02 39.98 0.67
LA12 Loma Prieta 1989 7 12 1.79 2000 0.02 39.98 0.97
LA13 Northridge 1994 6.7 6.7 1.03 3000 0.02 59.98 0.68
LA14 Northridge 1994 6.7 6.7 1.03 3000 0.02 59.98 0.66
LA15 Northridge 1994 6.7 7.5 0.79 2990 0.005 14.945 0.53
LA16 Northridge 1994 6.7 7.5 0.79 2990 0.005 14.945 0.58
LA17 Northridge 1994 6.7 6.4 0.99 3000 0.02 59.98 0.57
LA18 Northridge 1994 6.7 6.4 0.99 3000 0.02 59.98 0.82
LA19 North Palm Springs 1986 6 6.7 2.97 3000 0.02 59.98 1.02
LA20 North Palm Springs 1986 6 6.7 2.97 3000 0.02 59.98 0.99

Table 2. List of the maximum considered earthquakes (MCE)-level earthquake ground motions used in
the study and the event details.

ZSAC
Name Record Year Earthquake

Magnitude
Distance

(km)
Scale
Factor

Number of
Points ∆t (s) Duration

(s)
PGA
(g)

LA21 Kobe 1995 6.9 3.4 1.15 3000 0.02 59.98 1.28
LA22 Kobe 1995 6.9 3.4 1.15 3000 0.02 59.98 0.92
LA23 Loma Prieta 1989 7 3.5 0.82 2500 0.01 24.99 0.42
LA24 Loma Prieta 1989 7 3.5 0.82 2500 0.01 24.99 0.47
LA25 Northridge 1994 6.7 7.5 1.29 2990 0.005 14.945 0.87
LA26 Northridge 1994 6.7 7.5 1.29 2990 0.005 14.945 0.94
LA27 Northridge 1994 6.7 6.4 1.61 3000 0.02 59.98 0.93
LA28 Northridge 1994 6.7 6.4 1.61 3000 0.02 59.98 1.33
LA29 Tabas, 1974 7.4 1.2 1.08 2500 0.02 49.98 0.81
LA30 Tabas, 1974 7.4 1.2 1.08 2500 0.02 49.98 0.99
LA31 Elysian Park (simulated) 7.1 17.5 1.43 3000 0.01 29.99 1.3
LA32 Elysian Park (simulated) 7.1 17.5 1.43 3000 0.01 29.99 1.19
LA33 Elysian Park (simulated) 7.1 10.7 0.97 3000 0.01 29.99 0.78
LA34 Elysian Park (simulated) 7.1 10.7 0.97 3000 0.01 29.99 0.68
LA35 Elysian Park (simulated) 7.1 11.2 1.1 3000 0.01 29.99 0.99
LA36 Elysian Park (simulated) 7.1 11.2 1.1 3000 0.01 29.99 1.1
LA37 Palos verdes (simulated) 7.1 1.5 0.9 3000 0.02 59.98 0.71
LA38 Palos verdes (simulated) 7.1 1.5 0.9 3000 0.02 59.98 0.78
LA39 Palos verdes (simulated) 7.1 1.5 0.88 3000 0.02 59.98 0.5
LA40 Palos verdes (simulated) 7.1 1.5 0.88 3000 0.02 59.98 0.63
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Figure 3. Response spectra of the sets of DBE and MCE earthquake ground motions.

5.1. Performance of TMDs in Response Mitigation

Figure 4 illustrates the time history and Fourier Amplitude Spectra (FAS) of top floor acceleration
and bearing displacement of BI and BI equipped by different TMD schemes under LA04 earthquake
ground motion. It is observed that the BI building has relatively low acceleration at the top of building,
but very large bearing displacement. The TMDs effectively reduce this large displacement demand.
The peak bearing displacement of BI, BI + STMD, BI + MTMDs, and d-MTMDs are, respectively, 1.86 m,
1.5 m, 1.18, and 1.12 m. It is observed that the STMD could reduce the displacement by about 20%,
whereas, MTMDs and d-MTMDs could reduce displacement by up to 40%. It is also evident that this
reduction in bearing displacement is not at the cost of amplified acceleration.

Thereafter, efficacy of the STMD, MTMDs, and d-MTMDs in vibration mitigation of 5- and 10-story
BI buildings under DBE and MCE earthquakes are presented in Figures 5 and 6. To identify the reason
for effectiveness or vice versa, response of each scheme is arranged based on ratio of Tb/Tf, where Tb

is the isolation period and Tf is the dominant period of ground motion [43,44]. The TMD schemes
are found to be more effective in controlling displacement response when the isolation period is less
than about 3 times the dominant period of ground motion. The d-MTMDs showed marginally more
effectiveness for 5-story BI building (see Figure 5). Even if the d-MTMDs show performance similar to
STMD and MTMDs, it would be more practical as the TMDs are distributed on different floors, which is
better than placing a large mass at the top of the structure. It is to be noted that for acceleration control,
all TMD schemes are similar except in few cases. In most cases, MTMDs and d-MTMDs provide higher
reduction in displacement. However, STMD showed a superior performance for acceleration response
control (see Figures 5 and 6). Overall, the TMD schemes are more effective in controlling response of
the 5-story BI building. Hence, it is determined that TMD schemes are effective in reducing response
of BI buildings under DBE earthquake excitations, especially when Tb/Tf ≤ 3.
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Figure 4. Time history and Fourier Amplitude Spectra (FAS) of top floor acceleration and bearing
displacement of 5 story BI and BI equipped by TMD schemes under LA04 earthquake ground motions.
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Figure 5. Reduction in average peak bearing displacement of BI and BI equipped by TMD schemes
under DBE earthquake ground motions.
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Figure 6. Reduction in average of peak top floor acceleration of BI and BI equipped by TMD schemes
under DBE earthquake ground motions.

5.2. Seismic Effectiveness of Hybrid System

Probability distribution functions of the BI buildings with and without TMD schemes are presented
in this section. Assuming a lognormal model, the probability distribution of bearing displacement, top
floor acceleration, and normalized base shear are estimated form the calculated response. Cumulative
distribution function (CDF) of response quantities of BI buildings with and without TMD schemes are
presented in Figures 7 and 8. Figure 7 shows that the use of TMDs in BI buildings is more effective in
mitigation of displacement response than acceleration response and base shear demand. In addition,
MTMDs and d-MTMDs are only marginally better than STMDs. Overall, TMDs are found to be
effective in decreasing the seismic response (bearing displacement and top floor acceleration) of 5-story
BI building. It is noticed that the trend of reduction in displacement and acceleration of the 10-storey
building is almost the same (see Figure 8) as that of the 5-story building, but the TMD devices are
less effective.
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5.3. Seismic Fragility Analysis

Seismic fragility is defined as the probability of exceeding a defined damage state due to a given
seismic intensity measure (IM). It happens when the seismic applied load (demand) is greater than the
structural capacity. Seismic fragility can be expresses as,

Fragility ≈ P[Demand > Capacity] (18)

For the fragility analysis of the buildings, following two steps are considered: (1) A failure
criteria is defined and (2) a set of seismic intensity measures are selected. Here, the failure criterion
is considered as maximum isolator displacement, which ensures the safety of isolation system. In
this study, the collapse state of damage is based on limit states proposed by Bhandari et al. (2018).
They proposed a limit state for isolator displacement for elastic, elastic–plastic, and plastic states.
The maximum target displacement assuming the plastic state is considered 330 mm in this study.
Once the target displacement is specified, the analysis of BI buildings equipped with different TMD
schemes using the set of 40 earthquakes, each scaled 80 times is carried out. The peak absolute
isolator displacement is recorded. The recorded peak response of the BI building with and without
TMD schemes for the generated number of ground motions (Ngen) are then compared with the
corresponding seismic demands. Thereafter, the probability of failure P f at any certain PGA level is
defined as following

Pf =
Nfail

Ngen
(19)

where Nfail denotes the number of the cases which satisfies Equation (18). Then the process is reiterated
for the range of the above-mentioned PGA levels, and the respective fragility curves are achieved
assuming a lognormal distribution. The procedure of obtaining the fragility curves for the BI building
equipped with the TMD schemes is schematically described in Figure 9. The bearing displacement
fragility curves for 5-story BI building equipped with TMDs is depicted in Figure 10.
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Figure 9. Procedure for seismic fragility analysis of base-isolated building equipped with TMD schemes.
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with TMDs.

The TMD schemes reduce the probability of the considered damage state by about 10% across
a range of PGA. The MTMDs and d-MTMDs are found to perform slightly better than the STMDs.
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In addition, similar trend of response reduction was observed for the case of 10-story BI building
equipped with TMDs and the results are shown in Figure 11. Since these fragility curves represent
uncertainty in ground motion intensity and frequency content, while the structure is assumed to be
deterministic, the resulting fragility curves are called as simplified fragility curves in the sense that
they might be different from real fragilities of a structure with uncertain parameters. There is future
scope for experimental verification of the concept like reference [45].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 16 

 

Figure 10. Bearing displacement simplified fragility curves for 5-story base-isolated building 

equipped with TMDs. 

The TMD schemes reduce the probability of the considered damage state by about 10% 

across a range of PGA. The MTMDs and d-MTMDs are found to perform slightly better 

than the STMDs. In addition, similar trend of response reduction was observed for the case 

of 10-story BI building equipped with TMDs and the results are shown in Figure 11. Since 

these fragility curves represent uncertainty in ground motion intensity and frequency 

content, while the structure is assumed to be deterministic, the resulting fragility curves are 

called as simplified fragility curves in the sense that they might be different from real 

fragilities of a structure with uncertain parameters. There is future scope for experimental 

verification of the concept like reference [45]. 

 

Figure 11. Bearing displacement simplified fragility curves for 10-story base-isolated building 

equipped with TMDs. 

Figure 11. Bearing displacement simplified fragility curves for 10-story base-isolated building equipped
with TMDs.

6. Conclusions

Seismic response mitigation of base-isolated (BI) building installed with a single tuned mass
damper (STMD), multiple TMDs (MTMDs), and distributed MTMDs (d-MTMDs) are investigated.
Numerical analysis of two BI buildings equipped with TMDs is performed using analytical models
of 5- and 10-storey buildings. Results were analyzed to investigate effectiveness of different TMD
schemes in reducing displacement and acceleration demand of the BI structure. Such effectiveness was
investigated in terms of percentage reduction in response as a function of ground motion frequency
content, probability distribution functions of response parameters, and fragility curves corresponding
to failure of the isolation device due to excessive displacement. The following conclusions can be made
from the results of the analyses.

1. TMD schemes are can be used to control bearing displacement of BI buildings subjected to
earthquake ground excitations without compromising the control in acceleration response
achieved by BI.

2. MTMDs and d-MTMDs are marginally better than STMD in controlling the bearing displacement
of the BI building. The effectiveness of MTMDs and d-MTMDs are same as STMD for mitigating
top floor acceleration.

3. The TMD schemes reduce the fragility of the structure by about 5% in a wide range of PGA of
0.5g to 1g. For weaker and stronger shaking, the reduction in fragility is not significant. It is to be
noted that the TMDs used in this study are not optimized for specific type of ground motions and
might experience detuning effects for some ground motions. Designing such TMDs based on
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effective period of vibration of a structure for a well-established target displacement obtained
from appropriate hazard analysis might provide additional benefits.
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