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Featured Application: This study could provide useful information to clinicians and the optimal
selection of a slab implant material could be obtained under given specifications for therapeutic
ultrasounds.

Abstract: Deep heating procedures are helpful in treating joint contractures that frequently occur with
fractures and joint diseases involving surgical implants and artificial joint prostheses. This study uses
a one-dimensional composite medium model consisting of parallel slabs as a simplified approach
to shed light on the influences of implants during ultrasound diathermy. Analytical solutions for
the one-dimensional transient heat generation and conduction problem were derived using the
orthogonal expansion technique and a Green’s function approach. The analytical solutions provided
deep insight into the temperature profile by therapeutic ultrasound heating in the composite system.
The effects of the implant material type, tissue thickness, and ultrasound operation frequency on
temperature distribution were studied for clinical application. In addition, sensitivity analyses were
carried out to investigate the influences of material properties on the temperature distribution during
ultrasound diathermy. Based on the derived analytical solutions, the numerical simulations indicate
that materials with high density, high specific heat, and low thermal conductivity may be optimal
implant materials. Among available implant materials, a tantalum implant, which can achieve a
lower temperature rise within the tissue (hydrogel) and bone layers during ultrasound diathermy, is
a better choice thanks to its thermodynamics.
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1. Introduction

Surgical implants and artificial joint prostheses are commonly used in the treatment of fractures
and joint diseases. However, patients receiving such therapies frequently develop joint contractures.
It is believed that deep heating procedures are helpful in such circumstances [1]. Unfortunately, the
use of short wave and microwave diathermy, in most cases, would result in overheating in the vicinity
of the implants [2]. As a result, ultrasound diathermy has become an alternative for deep heating.

Ultrasound produces heat through molecular vibrations at high frequency, which conduct or
propagate energy throughout a medium. Such energy transmission in ultrasound treatments is
minimally hindered by adipose tissue and has many benefits [3,4]. Therapeutic ultrasound can be
utilized as either a superficial or a deep heating modality depending on its operation frequency and
power. In general, 3 MHz ultrasound is often adopted in superficial heating within 3 cm while 1 MHz
ultrasound can be used to heat tissues at depths of 3–5 cm and is considered a deep heating agent [4].

In clinical applications, therapeutic ultrasound is used as a deep heating agent for the treatment of
various musculoskeletal disorders [5–7]. The biophysical effects of therapeutic ultrasound on tissues
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result from two mechanisms: (1) thermal effects due to continuous acoustic wave, and (2) non-thermal
effects due to pulse acoustic wave [8]. However, there are few studies [9–13] that take into account
the presence of implants during ultrasound diathermy and discuss the influence of implants on the
temperature field in the tissues near the implant.

Early research [9–11] considered the possibility that ultrasonic energy was reflected at the metal
implant. Such reflection could result in the focusing of ultrasonic intensity in such a fashion that “hot
spots” could develop, resulting in overheating of the tissues. In vitro experimental results demonstrated
that a large amount of ultrasonic energy is reflected at the tissue-metal implant surface [9]. The increase
of intensity in the focal area has been measured and found to be appreciable. However, the increase in
ultrasonic intensity does not lead to a selective temperature rise in the focal area or in the standing
waves, since the presence of the metal implant, which has a higher thermal conductivity than that of
the tissue, produces a markedly increased heat loss [10,11]. These results suggested that it was possible
to use ultrasound as a deep heating tool for tissues even with the presence of metallic surgical implants.

Alternatively, Sun et al. [12] conducted a series of in vitro experiments using a tissue-mimicking
hydrogel phantom to investigate the influences of an implant on the temperature field in the composite
system during ultrasound thermal therapy. The temperature history curves from these experiments
revealed that a polyethylene implant led to a higher temperature in the hydrogel phantom as compared
to the metal implant. However, the standing wave pattern in front of the implants was not observed
in the transparent hydrogel phantom. In addition, some in vitro experiments showed that the
intramuscular temperature was significantly higher (p < 0.05) in groups with a presence of a metal
plate [13]. From the literature review, some uncertainties remain about the effect of implants on
ultrasound thermal therapies.

With rapid progress in material science and manufacture technology, the surgical implant
materials have improved. Advancements and developments in both the qualities and quantities
for implant materials have promoted the salutary treatments very promising in recent years. In
addition to metals [14,15], a variety of polymers has been used as surgical implants or artificial joint
prostheses [16,17]. Recently, newer biocompatible materials such as zirconia, roxolid, surface-modified
titanium, and hydrogels have also shown potential as implants [18–20].

Appropriate selection of the implant material plays an important role for the long-term success of
surgical treatments. In order to optimize in vivo performance, implants should be selected to maximize
adequate functions and minimize negative biological responses. Since the influences of implants
on the temperature field in the surrounding tissue during ultrasound diathermy are unknown for
new implant materials, it is necessary to investigate whether ultrasound diathermy would result in
overheating in the presence of surgical implants or artificial joint prostheses made with new materials.

Since it is very challenging to investigate the influences of surgical implants or artificial joint
prostheses on the temperature distribution during ultrasound diathermy through human experiments,
numerical simulations, such as the finite-element method and the finite-difference method, have become
alternative solutions. However, it is time consuming to study the effects of different factors, such as the
ultrasound operation frequency, heating duration, material, and sectional properties of implants, on
ultrasound thermal therapies with different numerical models. As a result, an analytical solution of a
simplified realistic system provides a convenient way to discuss the effects of different factors.

In this study, the actual tissue-implant-bone system was idealized as a composite system consisting
of three parallel layers. The composite system was heated by an ultrasound probe that was attached
on the surface of the tissue. The analytical temperature field solution in the composite system
during ultrasound diathermy in the presence of an implant was derived. The closed-form solution
can provide a deep insight into the influences of implants on the temperature field in surrounding
tissues. In addition, parametric studies were conducted to discuss the effects of the ultrasound
operation frequency, tissue thickness, and implant material properties on the temperature field in the
composite system. Such parametric studies are useful to obtain better designs of slab implants in
clinical applications.



Appl. Sci. 2020, 10, 1306 3 of 16

2. Materials and Methods

To investigate the influences of the implant on the temperature field in the tissues during
ultrasound thermal therapy, the complex tissue-implant-bone system was simplified as a composite
system consisting of three parallel slabs. Without loss of generality, it is reasonable to further simplify
such bio-composite system by using a one-dimensional (1-D) model along a single spatial direction.
Analytical solutions were derived for the one-dimensional transient heat conduction problem with
heat generation.

2.1. Evaluation of Pressure Fields

As shown in Figure 1, with the model consists of a composite solid with three parallel layers,
labeled by regions 1, 2, and 3, respectively. Each layer has a thickness Lj, for which the subscript j
denotes the region number. The one-dimensional coordinate system origin is located at the surface of
the composite system. As a result, the interfacial layers are positioned at x = L1 and L1+L2. Each layer
material is assumed to be isotropic, homogeneous, and linearly elastic. Although the heterogeneities
of the complex tissue–implant–bone system are not taken into consideration, these assumptions for
biological tissues can provide acceptable results for ultrasonic thermal therapies [21]. For these three
layers, the mass density, the longitudinal wave velocity, and the acoustic characteristic impedance are
given, respectively, by ρj, vj, and Rj. The incident acoustic wave was considered to be harmonic with
an angular frequency ω so that the velocity potential Φj(x, t) describing the motion in each region is
given by

Φ j(x, t) = Re
[
φ j(x) exp(−iωt)

]
, j = 1, 2, 3, (1)

where Re[ ] signifies the real part of the complex number, φj(x) is the spatial potential function, and
i is the unit imaginary number [22]. Based on linear acoustics, the solutions of the spatial potential
function can be solved by the 1-D reduced wave equation, namely

∂2φ j

∂x2 + k2
jφ j = 0, j = 1, 2, 3, (2)

where kj = ω/vj is the wave number.
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Figure 1. Schematic layout of a three-layer composite medium subjected to ultrasound waves.

The acoustic waves, generated by the ultrasound probe, are considered as an infinite train of
plane waves horizontally incident from x = 0 [23,24]. For each layer, the pressure fields of the left- or
right-going waves can be expressed as follows [25]:

P1 = A1i exp(ik1x) + A1r exp(−ik1x), (3a)
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P2 = A2i exp[ik2(x− L1)] + A2r exp[−ik2(x− L1)], (3b)

P3 = A3i exp
{
ik3[x− (L1 + L2)]

}
, (3c)

where A1i, A1r, A2i, A2r, and A3i are the unknown amplitude coefficients. The subscripts i and r
represent the amplitudes of the incident wave and the reflection wave, respectively. It should be noted
that multiple reflections appearing in each medium are neglected for simplicity.

The pressure and velocity continuity conditions must be satisfied on each bilayer interface.
This gives rise to a linear system of four equations with four unknowns. Using Cramer’s rule and
normalizing yields the following explicit forms:

A1r
A1i

=
−iR2(R1 −R3) cos(k2L2) + (R2

2 −R1R3) sin(k2L2)

iR2(R1 + R3) cos(k2L2) + (R2
2 + R1R3) sin(k2L2)

exp(2ik1L1), (4a)

A2i
A1i

=
iR2(R2 + R3)

iR2(R1 + R3) cos(k2L2) + (R2
2 + R1R3) sin(k2L2)

exp[i(k1L1 − k2L2)], (4b)

A2r

A1i
=

R2(R2 −R3)

−R2(R1 + R3) cos(k2L2) + i(R2
2 + R1R3) sin(k2L2)

exp[i(k1L1 + k2L2)], (4c)

A3i
A1i

=
2iR2R3

iR2(R1 + R3) cos(k2L2) + (R2
2 + R1R3) sin(k2L2)

exp(ik1L1), (4d)

2.2. Evaluation of Temperature Fields

The focus of this section is solving the transient temperature distribution in a 1-D composite
medium with finite thickness; the overall thickness of the present model is L1 + L2 + L3 (see Figure 1).
Mathematically, the conduction of heat into a composite medium with internal heat generation within
each layer has to obey

∂T j(x, t)
∂t

= α j
∂2T j(x, t)

∂x2 +
α j

K j
q j(x, t), j = 1, 2, 3, (5)

where αj = Kj/(ρ cj) is the thermal diffusivity, cj is the specific heat capacity, Tj is the temperature, t
is the time measured in seconds, Kj is the thermal conductivity, and qj is the volumetric rate of heat
generation.

The molecular vibration in the tissue due to ultrasound will result in temperature change
and achieve the therapeutic effect. The volumetric heat generation rate, qj, which results from the
propagation of ultrasound can be calculated from the computed pressure by [26]:

q j = a j

P jP∗j
R j

, j = 1, 2, 3, (6)

where aj stands for the attenuation coefficient, and Pj is the pressure resulted from the ultrasound
diathermy (see Equation (3)). The superscript * represents the conjugate of complex numbers.

The composite system is initially set at a uniform temperature, hence, the initial conditions are

T j(x, t = 0) = Tini, j = 1, 2, 3, (7)

Without losing generality, the front surface (at x = 0) of the composite system is exposed to a
change in the temperature up until Tend after heating [27]. In addition, the rear surface is set as adiabatic,
resulting in the corresponding boundary conditions,

T1(x = 0, t = tend) = Tend, (8a)
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and
∂T3(x, t)

∂x
= 0, at x = L1 + L2 + L3, t > 0, (8b)

Moreover, the temperature matching condition across the interface between adjacent layers is
given by

T j(x j, t) = T j+1(x j, t), x j =

r+ j−1∑
r=1

Lr, j = 1, 2, t > 0, (9)

and the heat-flux matching condition that assures perfect thermal contact is

K j
∂T j(x j, t)

∂x
= K j+1

∂T j+1(x j, t)
∂x

, x j =

r+ j−1∑
r=1

Lr, j = 1, 2, t > 0, (10)

The analytical solution for the one-dimensional transient heat conduction problem with
non-homogeneous boundary conditions can be obtained with the aid of the orthogonal expression
technique and a Green’s function approach [28]. More details of the derivation are listed in the
Appendix A.

3. Results and Discussions

In the following numerical simulations, the initial temperature of the composite specimen was set
to be 26 ◦C and the final temperature on the front surface, Tend, was also set to 26 ◦C. The computed
temperature profile, according to the analytical solution, is assumed along the acoustic axis of the
ultrasound probe. In addition, it is worth noting that the volumetric rate of heat generation in Equation
(6) was calibrated by the factor A1i with values of 1.9 × 105 and 1.25 × 105 to fit the results of the
in vitro experiments under 1 MHz and 3 MHz ultrasound thermal therapy [12], respectively. It is
worth noting that the following investigation is based on a simplified theoretical model in which all
media are homogeneous and parallel slabs. The effects of the scattering and reflection of ultrasound
due to heterogeneities in media and uneven surfaces are neglected in this study.

3.1. Ultrasound Operation Frequency

The hydrogel-implant-bone composite specimen in the literature [12] was selected as the benchmark
example. The transparent hydrogel layer has a thickness of 15 mm. The metal implant, made of 316
stainless steel, has a thickness of 2 mm. The average thickness of the flat bovine bone is about 10
mm. The material properties of the hydrogel phantom, metal implant, and bone used in the analytical
solutions and numerical simulations are listed in Table 1.

Table 1. Material properties of the N-isopropyl acrylamide (NIPAM)-based hydrogel phantom, implants,
and bone [12].

Hydrogel Phantom 316 Stainless Steel Bone

Density (kg/m3) 1190 8000 1975
Specific heat (J/kg◦C) 3431 502 1313
Sound velocity (m/s) 1512 5600 3476

Thermal conductivity (W/m◦C) 0.6 16.27 0.32
Attenuation coefficient (dB/m) 54 110 690

In addition to the proposed analytical solution, two-dimensional finite element models were also
created to simulate the in vitro experiments using the commercial finite element package Abaqus [29].
A two-dimensional finite-element model was constructed using quadratic thermal elements (D2TH8 in
Abaqus) with an element size of 1 × 10−4 m. The dimensions of the hydrogel–implant–bone system are
shown in Figure 2. The front surface of the composite system was set to a constant initial temperature
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while the other three outer surfaces were set as adiabatic. The area beneath the ultrasound probe was
the heating region with the heat source given by Equation (6). The time increment was 0.5 s in the
thermal transient analyses.
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Figures 3 and 4 show the temperature distribution along the acoustic axis at 30 s during the
ultrasound diathermy corresponding to 1 MHz and 3 MHz, respectively. For an operational ultrasound
frequency of 1 MHz, the peak temperature occurs in the hydrogel phantom of the bio-composite
system. Alternatively, the peak temperature occurs in the bone of the bio-composite system for an
operational frequency of 3 MHz. In addition, the peak temperature in the hydrogel under 1 MHz is
slightly higher than that in the hydrogel under 3 MHz. The peak temperature in the bone under 3
MHz is higher than that in the bone under 1 MHz. As shown in Figures 3 and 4, the analytical results
coincide well with the numerical results from Abaqus. These two figures provide sufficient evidence
to demonstrate the accuracy of the proposed analytical solutions.
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Since material and geometric properties of these two composite systems are the same, the
differences in temperature distribution in Figures 3 and 4 mainly resulted from the changes in the
pressure field under different ultrasound operation frequencies. Figure 5 shows the pressure amplitude
distributions along the acoustic axis corresponding to 1 MHz and 3 MHz. One can observe that the
pressure amplitude in hydrogel for 1 MHz is higher than that for 3 MHz, which implies that more
energy is input into the hydrogel in the case of 1 MHz and the ultrasound of 1 MHz can propagate
deeper in tissues. As a result, the temperature in hydrogel in the case of 1 MHz is higher than that for 3
MHz. However, the temperature in the stainless implant for 1 MHz is higher than that for 3 MHz,
although the pressure amplitude in the implant for 1 MHz is lower than that for 3 MHz. This result is
likely because the temperature in the medium depends not only on the input energy from the heat
source but also on the heat conduction from the neighboring medium (hydrogel). Finally, since the
area enclosed by the pressure amplitude curve in the bone layer for 1 MHz is smaller than that for 3
MHz, the temperature in bone layer for 1 MHz is lower than that for 3 MHz.
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Figure 5. Pressure distribution along the acoustic axis from the proposed analytical solution for 1 MHz
and 3 MHz ultrasounds.

Figures 6 and 7 represent the temperature distribution, obtained from the analytical solution,
in the three-layer composite system in the first five seconds corresponding to the low (1 MHz) and
high (3 MHz) ultrasound frequencies, respectively. As observed in Figures 6 and 7, the standing
wave pattern occurred in the hydrogel layer. These results explain the light and dark parallel
patterns of standing waves in front of a reflective stainless steel plate in water bath experiments [2].
In addition, the amplitudes of the temperature oscillations decreased with increasing ultrasound
frequency. The temperature variation amplitudes gradually reduced along both the spatial and
temporal directions. The amplitude reduction in the temporal direction occurred faster as compared to
the spatial direction. Moreover, the amplitudes of the temperature oscillations were smaller than the
temperature variation in the hydrogel during ultrasound diathermy. As a result, the small temperature
oscillations cannot be easily observed in the in vitro or ex vivo experiments.

Appl. Sci. 2020, 10, 1306 8 of 17 

temperature variation in the hydrogel during ultrasound diathermy. As a result, the small 
temperature oscillations cannot be easily observed in the in vitro or ex vivo experiments. 

 
Figure 6. Temperature profiles in the composite bio-system from the proposed analytical solution in 
the first five seconds using 1 MHz ultrasound. 

 
Figure 7. Temperature profiles in the composite bio-system from the proposed analytical solution in 
the first five seconds using 3 MHz ultrasound. 

3.2. Tissue Thickness 

The thicknesses of tissues, which may affect the ultrasound thermal therapy, are different from 
person to person. As a result, the effects of the hydrogel phantom thickness on the temperature 
variation were investigated. The three-layer composite systems were simulated for ultrasound 
diathermy with 30 s at a power of 15 W and 12 W using 1 MHz and 3 MHz, respectively. Figures 8 
and 9 show the simulated results of the temperature profiles in the composite specimens with a 
stainless steel implant and different thicknesses hydrogel phantom under 1 MHz and 3 MHz 
ultrasound operation frequencies. 

 
Figure 8. Temperature distribution within the three-layer composite bio-system for different 
hydrogel thickness at 30 s using 1 MHz ultrasound. 

Figure 6. Temperature profiles in the composite bio-system from the proposed analytical solution in
the first five seconds using 1 MHz ultrasound.



Appl. Sci. 2020, 10, 1306 8 of 16

Appl. Sci. 2020, 10, 1306 8 of 17 

temperature variation in the hydrogel during ultrasound diathermy. As a result, the small 
temperature oscillations cannot be easily observed in the in vitro or ex vivo experiments. 

 
Figure 6. Temperature profiles in the composite bio-system from the proposed analytical solution in 
the first five seconds using 1 MHz ultrasound. 

 
Figure 7. Temperature profiles in the composite bio-system from the proposed analytical solution in 
the first five seconds using 3 MHz ultrasound. 

3.2. Tissue Thickness 

The thicknesses of tissues, which may affect the ultrasound thermal therapy, are different from 
person to person. As a result, the effects of the hydrogel phantom thickness on the temperature 
variation were investigated. The three-layer composite systems were simulated for ultrasound 
diathermy with 30 s at a power of 15 W and 12 W using 1 MHz and 3 MHz, respectively. Figures 8 
and 9 show the simulated results of the temperature profiles in the composite specimens with a 
stainless steel implant and different thicknesses hydrogel phantom under 1 MHz and 3 MHz 
ultrasound operation frequencies. 

 
Figure 8. Temperature distribution within the three-layer composite bio-system for different 
hydrogel thickness at 30 s using 1 MHz ultrasound. 

Figure 7. Temperature profiles in the composite bio-system from the proposed analytical solution in
the first five seconds using 3 MHz ultrasound.

3.2. Tissue Thickness

The thicknesses of tissues, which may affect the ultrasound thermal therapy, are different from
person to person. As a result, the effects of the hydrogel phantom thickness on the temperature variation
were investigated. The three-layer composite systems were simulated for ultrasound diathermy with
30 s at a power of 15 W and 12 W using 1 MHz and 3 MHz, respectively. Figures 8 and 9 show the
simulated results of the temperature profiles in the composite specimens with a stainless steel implant
and different thicknesses hydrogel phantom under 1 MHz and 3 MHz ultrasound operation frequencies.
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For the cases of 1 MHz, the peak temperature location predicted by the analytical solution occurs
at the middle region of the hydrogel phantom in the composite system. It is worth noting that the peak
temperature does not change depending on different hydrogel thickness. However, the region with the
peak temperature in the hydrogel has greater expansion with increasing thickness of the hydrogel in
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the composite system. Approaching the interface between the hydrogel and the stainless implant, the
temperature decreases and continues to decrease in the bone of the composite system as shown in
Figure 8.

Alternatively, the peak temperature location predicted by the analytical solution is always in the
bone for the case of 3 MHz as shown in Figure 9. Similarly, the peak temperature in each layer does not
change with different hydrogel thicknesses. However, the region of the peak local temperature in the
hydrogel expands more with increasing thickness of the hydrogel. Close to the interface between the
hydrogel and the stainless implant, the temperature decreases, but the temperature keeps increasing in
the bone of the composite system.

These results can be explained by the pressure distribution curves, as shown in Figure 5, where
the pressure oscillation does not change in the composite system media. In addition, the amplitude of
the heat source in each medium, according to Equations (A1) and (A2), is related to the thickness of the
implant, and not to the thickness of the hydrogel. As a result, the highest temperature in the media
remains the same with different hydrogel thicknesses.

3.3. Implant Materials

Since the influences of implants on the temperature distribution during ultrasound diathermy can
be studied from analytical solutions, another important issue for implants in clinical applications is
the selection of implant materials. In recent years, the list of potential materials for surgical implants
has been notably expanded. However, the effects of these new implant materials on ultrasound
diathermy are still unknown. To enhance the safety in clinical applications, it is important to get more
understanding of the responses of ultrasound thermal therapies using new implant materials.

Five metals (Stainless steel, Tantalum, Titanium alloys, Co-Cr-Mn Alloy, Niobium), one plastic
(Polyethylene), and one ceramic implant (Zirconia Oxide), for which material properties are listed in
Tables 2 and 3, were selected. These seven implant materials are denoted as ‘STE’, ‘TAN’, ‘TIT’, ‘CCM’,
‘NIO’, ‘POL’, and ‘ZO’ for short. Typical simulation results for the temperature distribution within the
composite specimen, obtained from the analytical solution, are presented in Figures 10 and 11, which
correspond to 1 MHz and 3 MHz ultrasound operation frequency, respectively. The duration of the
heating process was 30 s. The location of the implant is indicated by dashed gray lines in Figures 10
and 11.

Table 2. Material properties of the different implant materials (polymer and metal).

Polyethylene (POL) [12] Tantalum (TAN) [30] Titanium Alloys (TIT) [31]

Density (kg/m3) 960 16,650 4470
Specific heat (J/kg◦C) 2300 141.8 561
Sound velocity (m/s) 2460 5374 6132

Thermal conductivity (W/m◦C) 0.442 57 7.2
Attenuation coefficient (dB/m) 66 144 150

Table 3. Material properties of the different implant materials (metal and ceramic).

Co-Cr-Mo Alloy (CCM) [32] Niobium (NIO) [33] Zirconia Oxide (ZO) [34,35]

Density (kg/m3) 8768 8570 6050
Specific heat (J/kg◦C) 452 265 418
Sound velocity (m/s) 4750 3480 7040

Thermal conductivity (W/m◦C) 14.8 53.70 2.7
Attenuation coefficient (dB/m) 230 347 120
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As observed in Figures 10 and 11, the obtained results show a rising trend when the value of x
ranged between 0 and 8 mm. As opposed to the polymer implant, the temperature responses of the
metal and ceramic implants were very close when x < 10 mm. In the case of Polyethylene (POL), the
temperature rose considerably in the implant and bone region. The peak temperature of the POL case
was above 65 ◦C and 125 ◦C for 1 MHz and 3 MHz, respectively, at 30 s. Therefore, ultrasound should
avoid near polymer implants. Alternatively, the average temperature of the Tantalum (TAN) was
under 25 ◦C in the bone region, while in the tissue region it was also the minimum. As a result, the use
of Tantalum in implants is preferred with regard to ultrasound diathermy. It is worth emphasizing that
only thermal responses were considered in this study. One may consider mechanical properties, surface
properties, and biocompatibility in clinical performances to determine the optimal implant material.

Furthermore, to determine which material property has the most influence on the temperature
distribution, sensitivity analyses were performed to investigate the effects of five material properties
of the stainless steel—density, specific heat, sound velocity, thermal conductivity, and attenuation
coefficient—on the temperature distribution during the ultrasound diathermy. Figures 12 and 13
show the temperature distribution along the acoustic axis at 30 s during the ultrasound diathermy,
corresponding to 1 MHz and 3 MHz, respectively. Each temperature curve represents an increase
of a specific material property to two times that of the stainless steel while keeping other material
properties the same as those of the stainless steel. Figures 12 and 13 show that an increase in the
attenuation coefficient increases the temperature in the composite system during the ultrasound
diathermy. However, the increases in the density and specific heat cause the temperature in the
composite system to decrease during the ultrasound diathermy. Finally, the increase of the thermal
conductivity seems not to affect the temperature in the composite system during the ultrasound
diathermy. The increase of the sound velocity may increase or decrease the temperature in the
composite system depending on the ultrasound operation frequency.
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4. Conclusions

In this study, a tissue-implant-bone specimen was modeled as a composite system with three
parallel layers. This simplified system can be used to investigate the influences of an implant on the
temperature field in tissues during ultrasound thermal therapy and provides a better selection of
implant materials from thermodynamics. An analytical solution was derived for the one-dimensional
transient heat conduction problem using the orthogonal expansion technique and a Green’s function
approach. The accuracy of the derived analytical solution was verified by in vitro experimental
results [12] and finite element numerical simulations.

The analytical solution explained well the pattern of standing waves in the beginning of the
ultrasound diathermy and the disappearance of these standing waves during longer duration (above
1 min) thermal application. In addition, while the thickness of the hydrogel layer does not change
the highest temperature in each layer during ultrasound diathermy, it only changes the temperature
distribution profile. Furthermore, a parametric study conducted through analytical solutions indicates
that materials with high density, high specific heat, and low thermal conductivity may be suitable
implant materials. Since most materials lack all these features, the tantalum implant is a good choice
among the available implant materials as a lower temperature rise can be achieved within the hydrogel
and bone layers during ultrasound diathermy.
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Appendix A

Substituting Equation (3) into Equation (6), one can obtain an explicit form for heat generation
from ultrasound:

q1= 4A2
1ia1

sin2(k2L2)
{
R4

2 cos2[k1(x− L1)] + R2
1R2

3 sin2[k1(x− L1)]
}

QR1

−2A2
1ia1

R2(R2
2 −R2

3) sin[2k1(x− L1)] sin(2k2L2)

Q

+4A2
1ia1

R2
2cos2(k2L2)

{
R2

3 cos2[k1(x− L1)] + R2
1 sin2[k1(x− L1)]

}
QR1

(A1a)

q2 = 4A2
1ia2

R2
{
R2

3 cos2[k2(L1 + L2 − x)] + R2
2 sin2[k2(L1 + L2 − x)]

}
Q

, (A1b)

q3 = 4A2
1ia3

R2
2R3

Q
, (A1c)

with
Q = R2

2(R1 + R3)
2 cos2(k2L2) + (R2

2 + R1R3)
2

sin2(k2L2), (A2)

Equation (5) and Equations (7)–(10) present a 1-D transient heat conduction problem with
nonhomogeneous boundary conditions. The nonhomogeneous boundary condition in Equation
(8a) can be overcome by shifting the temperature scale. By setting Θ(x, t) = T(x, t) − Tend, a new
formulation with homogeneous boundary conditions can be found as follows.

∂Θ j(x, t)
∂t

= α j
∂2Θ j(x, t)

∂x2 +
α j

K j
q j(x, t), j = 1, 2, 3, (A3a)

Θ1(x = 0, t = tend) = 0, (A3b)

∂Θ j(x, t)
∂x

= 0, at x = L1 + L2 + L3, t > 0, (A3c)

Θ j(x j, t) = Θ j+1(x j, t), x j =

r+ j−1∑
r=1

Lr, j = 1, 2, t > 0, (A3d)

k j
∂T j(x j, t)

∂x
= k j+1

∂T j+1(x j, t)
∂x

, x j =

r+ j−1∑
r=1

Lr, j = 1, 2, t > 0, (A3e)

with initial conditions:
Θ j(x, t = 0) = Tini − Tend, j = 1, 2, 3, (A3f)

The solution of Equation (A3) can be obtained by solving the homogeneous transient heat
conduction problem by first neglecting the heat generation in Equation (A3a). From the separation of
variables method, the shifted temperature fields without heat generation can be separated as

Θnh, j(x, t) = ψ j(x)Γ(t), j = 1, 2, 3, (A4)
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Substituting Equation (A4) into Equation (A3a), one can obtain

α j
1
ψ j

d2ψ j

dx2 =
1
Γ

dΓ
dt

= −β2, j = 1, 2, 3, (A5)

The separation given by Equation (A5) results in two ordinary differential equations for the
determination of the time-dependent function Γ(t) and the space-dependent function ψj(x) in each
layer. For parallel layers, the general solution of the space-dependent function ψj(x) in each layer can
be obtained by solving the corresponding eigenvalue problem,

ψ1(x) = An sin
(
βn
√
α1

x
)
, 0 ≤ x < x1, (A6a)

ψ2(x) = Bn sin
[
βn
√
α2

(L1 − x)
]
+ Cn cos

[
βn
√
α2

(L1 − x)
]
, x1 ≤ x < x2, (A6b)

ψ3(x) = Dn cos
{
βn
√
α3

[(L1 + L2 + L3) − x]
}

, x2 ≤ x < x3, (A6c)

where An, Bn, Cn, and Dn are unknown coefficients which can be determined from the boundary
conditions in Equations (A3b)–(A3e). For An = 1,

Bn = −
K1

K2

√
α2

α1
cos

[
βnL1
√
α1

]
, (A7a)

Cn =
K1

K2

√
α2

α1
cos

(
βnL1
√
α1

)
ζ−c
ζ+s

, (A7b)

Dn =
K1

ζ+s

√
α2α3

α1
cos

(
βnL1
√
α1

)
, (A7c)

with

ζ−c = K2
√
α3 cos

(
βnL2
√
α2

)
cos

(
βnL3
√
α3

)
−K3

√
α2 cos

(
βnL2
√
α2

)
sin

(
βnL3
√
α3

)
, (A7d)

ζ+s = K2
√
α3 sin

(
βnL2
√
α2

)
cos

(
βnL3
√
α3

)
+ K3

√
α2 cos

(
βnL2
√
α2

)
sin

(
βnL3
√
α3

)
, (A7e)

In addition, βn are the eigenvalues satisfying the following transcendental equation:

K2
√
α1 sin

(
L1βn
√
α1

)
ζ+s + cos

(
L1βn
√
α1

)
ζ = 0, (A8a)

with

ζ = −K1K2
√
α2α3 cos

(
βnL2
√
α2

)
cos

(
βnL3
√
α3

)
+ K1K3α2 sin

(
βnL2
√
α2

)
sin

(
βnL3
√
α3

)
, (A8b)

The solution of the time-dependent function Γ(t) in Equation (A5) is

Γ(t) = Γn exp
(
−tβ2

n

)
, (A9)

where Γn is an undetermined coefficient. Substituting Equation (A9) back into Equation (A4) and
substituting the initial conditions, one can obtain the temperature distribution Θnh, j(x, t) without
internal heat generation in each layer, that is

Θnh, j(x, t) =
∞∑

n=1

Γnψ j(x) exp
(
−tβ2

n

)
, j = 1, 2, 3, (A10)
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where Γn is given by

Γn =
Λn

Nn
, (A11a)

Nn = NA
n + NB

n + NC
n + ND

n , (A11b)

Λn = ΛA
n + ΛB

n + ΛC
n + ΛD

n , (A11c)

with

NA
n = A2

n
K1

α1

[
L1

2
−

√
α1

4βn
sin

(
2βnL1
√
α1

)]
, (A12a)

NB
n = B2

n
K2

α2

[
L2

2
−

√
α2

4βn
sin

(
2βnL2
√
α2

)]
, (A12b)

NC
n = C2

n
K2

α2

[
L2

2
−

√
α2

4βn
sin

(
2βnL2
√
α2

)]
, (A12c)

ND
n = D2

n
K3

α3

[
L3

2
+

√
α3

4βn
sin

(
2βnL3
√
α3

)]
, (A12d)

ΛA
n = −An

K1(Tini − Tend)

βn
√
α1

[
cos

(
βnL1
√
α1

)
− 1

]
, (A12e)

ΛB
n = −Bn

K2(Tini − Tend)

βn
√
α2

[
cos

(
βnL2
√
α2

)
− 1

]
, (A12f)

ΛC
n = Cn

K2(Tini − Tend)

βn
√
α2

sin
(
βnL2
√
α2

)
, (A12g)

ΛD
n = Dn

K3(Tini − Tend)

βn
√
α3

sin
(
βnL3
√
α3

)
, (A12h)

Finally, the effects of heat generation within each layer can be considered by utilizing a Green’s
function approach [25]. Referring to Equation (A10), one may get the start-up Green’s function of
each layer. When multiplying Equations (A6a)–(A6c) respectively, by Equations (A1a)–(A1c) and
then integrating with respect to x, one can obtain the temperature distribution Θh,j(x, t) induced by
ultrasound heat generation within each layer, that is

Θh, j(x, t) =
3∑

n=1

G j,n(x, t), j = 1, 2, 3, (A13)

where

G j,n(x, t) =
∞∑

m=1

Ω(n)
m

β2
mNm

ψ j
[
1− exp

(
−tβ2

m

)]
, n = 1, 2, 3, j = 1, 2, 3, (A14)

with

Ω(1)
n =

A2
1iAna1

√
α1

[(4R2
1R2

2R3+µR1)(β
3
n−4k2

1α1βn)]



−16k2
1α1µ sin2

(
βnL1
2
√
α1

)
−8k1βn

√
α1R1R2(R2

2 −R2
3) sin(2k2L2) sin

(
βnL1
√
α1

)
−2β2

n(R2
1 −R2

2)(R
2
2 + R2

3) cos(2k1L1)

+2β2
n(R2

2 + R2
3)[R

2
1 + R2

2 − 2R2
2 cos

(
βnL1
√
α1

)
]

−2β2
n(R2

2 −R2
3)(R

2
2 −R2

1) cos(2k2L2)

−2β2
n(R2

2 −R2
3)(R

2
2 + R2

1) cos(2k1L1) cos(2k2L2)

+4β2
n(R2

2 −R2
3)R

2
2 cos

(
βnL1
√
α1

)
cos(2k2L2)

−4β2
nR1R2(R2

3 −R2
2) sin(2k1L1) sin(2k2L2)



, (A15a)
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Ω(2)
n =

−2A2
1ia2R2

√
α2[

η(β3
n − 4k2

2α2βn)
]


4Bnk2
2(R

2
2 + R2

3)α2 cos( βnL2
√
α2
)

+ϑBn − 4Bnk2
2(R

2
2 + R2

3)α2

+4Cnk2
2(R

2
2 + R2

3)α2 sin( βnL2
√
α2
)

−2Cnβ2
nR2

3 sin( βnL2
√
α2
) − ξCn


, (A15b)

Ω(3)
n = 4A2

1iDn
a3R2

2R3
√
α3

βnη
sin(

βnL3
√
α3

), (A15c)

and
µ = (R2

1 + R2
2)(R

2
2 + R2

3) + (R2
1 −R2

2)(R
2
2 −R2

3) cos(2k2L2), (A16a)

ϑ = β2
n

[
(R2

3 −R2
2) cos(2k2L2) + (R2

3 + R2
2) − 2R2

3 cos(
βnL2
√
α2

)

]
, (A16b)

ξ = 2βnk2(R2
2 −R2

3)
√
α2 sin(2k2L2), (A16c)

η = R2
2(R1 + R3)

2 cos2(k2L2) + (R2
2 + R1R3)

2
sin2(k2L2), (A16d)

Summing up the above derivations, the temperature field in each layer of the one-dimensional
composite system is given by

T j(x, t) = Θnh, j(x, t) + Θh, j(x, t) + Tend, j = 1, 2, 3, (A17)
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