Optimization of Xylose Recovery in Oil Palm Empty Fruit Bunches for Xylitol Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. OPEFB Preparation
2.2. Citrate Buffer Preparation
2.3. Box–Behnken Design
2.4. Hydrothermal Pretreatment
2.5. Enzymatic Hydrolysis
2.6. Sugar Analysis (Xylose)
2.7. Statistical Analysis and Optimization
3. Results
3.1. The Effects of SL, Temperature, and Time on Xylose Recovery
3.2. The Surface Plot of Xylose Recovery vs. Temperature and SL
3.3. The Surface Plot of Xylose Recovery vs. Pretreatment Time and SL
3.4. The Surface Plot of Xylose Recovery vs. Time and Temperature
4. Optimization
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Islam, M.S.; Indrajit, M. Effects of Xylitol on Blood Glucose, Glucose Tolerance, Serum Insulin and Lipid Profile in a Type 2 Diabetes Model of Rats. Ann. Nutr. Metab. 2012, 61, 57–64. [Google Scholar] [CrossRef]
- Grembecka, M. Sugar Alcohols. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Academic Press: Oxford, UK, 2019; pp. 265–275. ISBN 978-0-12-814045-1. [Google Scholar]
- Supranto, S.; Tawfiequrrahman, A.; Yunanto, D.E.; Kurniawan, I. Oil Palm Empty Fruit Bunch Fiber Conversion to High Refined Cellulose Using Nitric Acid and Sodium Hydroxide as the Delignificating Agents; UGM-Yogyakarta: Yogyakarta, Indonesia, 2014. [Google Scholar]
- Elbersen, W.; Meesters, K.; Bakker, R. Valorization of Palm Oil (Mill) Residues. Identifying and Solving the Challenges; Netherlands Programmes Sustainable Biomass by Wageningen UR, Food & Biobased Research: Utrecht, The Netherland, 2013. [Google Scholar]
- Rahman, S.H.A.; Choudhury, J.P.; Ahmad, A.L. Production of xylose from oil palm empty fruit bunch fiber using sulfuric acid. Biochem. Eng. J. 2006, 30, 97–103. [Google Scholar] [CrossRef]
- Shibata, M.; Varman, M.; Tono, Y.; Miyafuji, H.; Shiro, S. Characterization in Chemical Composition of the Oil Palm (Elaeis guineensis). J. Jpn. Inst. Energy 2008, 87, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Octavia, S.; Soerawidjaja, T.H.; Purwadi, R.; Putrawan, I.A.G.A. The advantages of soaking with aqueous ammonia pretreatment process of oil palm empty fruit bunches. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 865–870. [Google Scholar] [CrossRef]
- Kresnowati, M.; Mardawati, E.; Setiadi, T. Production of Xylitol from Oil Palm Empty Fruit Bunch: A Case Study on Bioefinery Concept. Mod. Appl. Sci. 2015, 9, 206. [Google Scholar] [CrossRef] [Green Version]
- Rosli, N.S.; Harun, S.; Jahim, J.M.D.; Othaman, R. Chemical and Physical Characterization of Oil Palm Empty Fruit Bunch. Malays. J. Anal. Sci. 2017, 21, 188–196. [Google Scholar]
- Brodeur, G. Developing a Novel Two-Stage Pretreatment of Lignocellulosic Biomass for Enhanced Bioprocessing. Ph.D. Thesis, The Florida State University, Ann Arbor, MI, USA, 2013. [Google Scholar]
- Duangwang, S.; Sangwichien, C. Optimization Studies on Acid Hydrolysis of Pretreated Oil Palm Empty Fruit Bunch for Production of Xylose by Application of Response Surface Methodology. Adv. Mater. Res. 2013, 699, 77–82. [Google Scholar] [CrossRef]
- Wang, F.-Q.; Xie, H.; Chen, W.; Wang, E.-T.; Du, F.-G.; Song, A.-D. Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis. Bioresour. Technol. 2013, 144, 572–578. [Google Scholar] [CrossRef]
- Converti, A.; Domínguez, J.M.; Perego, P. Wood Hydrolysis and Hydrolysate Detoxification for Subsequent Xylitol Production. Chem. Eng. Technol. 2000, 23, 1013–1020. [Google Scholar] [CrossRef]
- Akpinar, O.; Levent, O.; Sabanci, S.; Uysal, R.S.; Sapci, B. Optimization and Comparison of Dilute Acid Pretreatment of Selected Agricultural Residues for Recovery of Xylose. BioResources 2011, 6, 4103–4116. [Google Scholar]
- Zulkiple, N.; Maskat, M.Y.; Hassan, O. Pretreatment of Oil Palm Empty Fruit Fiber (OPEFB) with Aquaeous Ammonia for High Production of Sugar. Procedia Chem. 2016, 18, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.X.; Wang, Z.D.; Fang, K.; Fan, G.R.; Wang, P. Effects of Dilute Alkali Pretreatment on Chemical Components and Fermentable Sugars and Structure of Bamboo. Available online: https://www.scientific.net/AMR.1033-1034.114 (accessed on 3 September 2019).
- Coimbra, M.C.; Duque, A.; Saéz, F.; Manzanares, P.; Garcia-Cruz, C.H.; Ballesteros, M. Sugar production from wheat straw biomass by alkaline extrusion and enzymatic hydrolysis. Renew. Energy 2016, 86, 1060–1068. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Hong, E.; Kim, J.; Rhie, S.; Ha, S.-J.; Kim, J.; Ryu, Y. Optimization of dilute sulfuric acid pretreatment of corn stover for enhanced xylose recovery and xylitol production. Biotechnol. Bioprocess Eng. 2016, 21, 612–619. [Google Scholar] [CrossRef]
- Palamae, S.; Dechatiwongse, P.; Choorit, W.; Chisti, Y.; Prasertsan, P. Cellulose and hemicellulose recovery from oil palm empty fruit bunch (EFB) fibers and production of sugars from the fibers. Carbohydr. Polym. 2017, 155, 491–497. [Google Scholar] [CrossRef]
- Da Silva, A.R.G.; Errico, M.; Rong, B.-G. Evaluation of organosolv pretreatment for bioethanol production from lignocellulosic biomass: Solvent recycle and process integration. Biomass Convers. Biorefinery 2018, 8, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Harahap, B.M.; Kresnowati, M.T.A.P. Moderate pretreatment of oil palm empty fruit bunches for optimal production of xylitol via enzymatic hydrolysis and fermentation. Biomass Convers. Biorefinery 2018, 8, 255–263. [Google Scholar] [CrossRef]
- Lei, H.; Cybulska, I.; Julson, J. Hydrothermal Pretreatment of Lignocellulosic Biomass and Kinetics. J. Sustain. Bioenergy Syst. 2013, 3, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Nitsos, C.K.; Matis, K.A.; Triantafyllidis, K.S. Optimization of Hydrothermal Pretreatment of Lignocellulosic Biomass in the Bioethanol Production Process. ChemSusChem 2013, 6, 110–122. [Google Scholar] [CrossRef]
- Oliveira, J.; Komesu, A.; Filho, R.M. Hydrothermal pretreatment for enhancing enzymatic hydrolysis of seeds of acai (Euterpe oleracea) and sugar recovery. Chem. Eng. Trans. 2014, 787–792. [Google Scholar]
- Sarawan, C.; Suinyuy, T.N.; Sewsynker-Sukai, Y.; Gueguim Kana, E.B. Optimized activated charcoal detoxification of acid-pretreated lignocellulosic substrate and assessment for bioethanol production. Bioresour. Technol. 2019, 286, 121403. [Google Scholar] [CrossRef] [PubMed]
- Soudham, V.P.; Brandberg, T.; Mikkola, J.-P.; Larsson, C. Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation. Bioresour. Technol. 2014, 166, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Yan, Z.; Bao, J. Dry biodetoxification of acid pretreated wheat straw for cellulosic ethanol fermentation. Bioresour. Bioprocess. 2019, 6, 24. [Google Scholar] [CrossRef]
- Buffers for Biochemical Reactions. Available online: https://worldwide.promega.com/resources/guides/lab-equipment-and-supplies/buffers-for-biochemical-reactions/ (accessed on 28 November 2019).
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples; Laboratory Analytical Procedure (LAP), NREL: Golden, CO, USA, 2008. [Google Scholar]
- Brunner, G. Processing of Biomass with Hydrothermal and Supercritical Water. In Supercritical Fluid Science and Technology; Brunner, G., Ed.; Hydrothermal and Supercritical Water Processes; Elsevier: Oxford, UK, Great Britain, 2014. [Google Scholar]
- Pangsang, N.; Rattanapan, U.; Thanapimmetha, A.; Srinopphakhun, P.; Liu, C.-G.; Zhao, X.-Q.; Bai, F.-W.; Sakdaronnarong, C. Chemical-free fractionation of palm empty fruit bunch and palm fiber by hot-compressed water technique for ethanol production. Energy Rep. 2019, 5, 337–348. [Google Scholar] [CrossRef]
- Ma, X.J.; Cao, S.L.; Lin, L.; Luo, X.L.; Chen, L.H.; Huang, L.L. Surface characterizations of bamboo substrates treated by hot water extraction. Bioresour. Technol. 2013, 136, 757–760. [Google Scholar] [CrossRef]
- Ko, J.K.; Um, Y.; Park, Y.-C.; Seo, J.-H.; Kim, K.H. Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose. Appl. Microbiol. Biotechnol. 2015, 99, 4201–4212. [Google Scholar] [CrossRef]
- Medina, J.D.C.; Woiciechowski, A.; Filho, A.Z.; Nigam, P.S.; Ramos, L.P.; Soccol, C.R. Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: A biorefinery approach. Pretreat. Biomass 2016, 199, 173–180. [Google Scholar] [CrossRef]
- Nunes, A.P.; Pourquie, J. Steam explosion pretreatment and enzymatic hydrolysis of eucalyptus wood. Bioresour. Technol. 1996, 57, 107–110. [Google Scholar] [CrossRef]
- Biswas, R.; Teller, P.J.; Ahring, B.K. Pretreatment of forest residues of Douglas fir by wet explosion for enhanced enzymatic saccharification. Bioresour. Technol. 2015, 192, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.M.V.; Pinheiro, I.O.; Souto-Maior, A.M.; Martin, C.; Gonçalves, A.R.; Rocha, G.J.M. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresour. Technol. 2013, 130, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.Ø.; Larsen, J.; Thomsen, M.H. Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass Bioenergy 2009, 33, 834–840. [Google Scholar] [CrossRef]
- Gallina, G.; Alfageme, E.R.; Biasi, P.; García-Serna, J. Hydrothermal extraction of hemicellulose: From lab to pilot scale. Bioresour. Technol. 2018, 247, 980–991. [Google Scholar] [CrossRef] [PubMed]
- Chen, H. Chemical Composition and Structure of Natural Lignocellulose. In Biotechnology of Lignocellulose; Springer: Dordrecht, The Netherland, 2014; pp. 25–71. ISBN 978-94-007-6897-0. [Google Scholar]
- Ali, M.D.M.; Tamunaidu, P.; Aslan, A.K.H.N.; Morad, N.A.; Sugiura, N.; Goto, M.; Zhang, Z. Hydrothermal pre-treatment of oil palm empty fruit bunch into fermentable sugars. IOP Conf. Ser. Earth Environ. Sci. 2016, 36, 012042. [Google Scholar]
- Modenbach, A.A.; Nokes, S.E. Enzymatic hydrolysis of biomass at high-solids loadings—A review. Biomass Bioenergy 2013, 56, 526–544. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.H.; Park, H.M.; Kim, D.H.; Park, Y.-C.; Seo, J.-H.; Kim, K.H. Combination of high solids loading pretreatment and ethanol fermentation of whole slurry of pretreated rice straw to obtain high ethanol titers and yields. Bioresour. Technol. 2015, 198, 861–866. [Google Scholar] [CrossRef]
- Dãrãban, I.M.; Rosendahl, L.A.; Pedersen, T.H.; Iversen, S.B. Pretreatment methods to obtain pumpable high solid loading wood–water slurries for continuous hydrothermal liquefaction systems. Biomass Bioenergy 2015, 81, 437–443. [Google Scholar] [CrossRef]
- Maulana Hidayatullah, I.; Setiadi, T.; Tri Ari Penia Kresnowati, M.; Boopathy, R. Xylanase Inhibition by the Derivatives of Lignocellulosic Material. Bioresour. Technol. 2020, 300, 122740. [Google Scholar] [CrossRef]
- Rahikainen, J.L.; Martin-Sampedro, R.; Heikkinen, H.; Rovio, S.; Marjamaa, K.; Tamminen, T.; Rojas, O.J.; Kruus, K. Inhibitory effect of lignin during cellulose bioconversion: The effect of lignin chemistry on non-productive enzyme adsorption. Bioresour. Technol. 2013, 133, 270–278. [Google Scholar] [CrossRef]
- Yang, Q.; Pan, X. Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 2016, 113, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Huang, Y.; Sun, R.; Tu, M. The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis. Green Chem. 2016, 18, 4276–4286. [Google Scholar] [CrossRef]
- Sukhbaatar, B.; Hassan, E.B.; Kim, M.; Steele, P.; Ingram, L. Optimization of hot-compressed water pretreatment of bagasse and characterization of extracted hemicelluloses. Carbohydr. Polym. 2014, 101, 196–202. [Google Scholar] [CrossRef] [PubMed]
Variables | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Solid loading (SL), % | 5 | 10 | 15 |
Temperature, C | 130 | 165 | 200 |
Time, min | 5 | 37.5 | 60 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
Solid Pretreated OPEFB | Liquid Pretreated OPEFB | Solid Pretreated OPEFB | Liquid Pretreated OPEFB | Solid Pretreated OPEFB | Liquid Pretreated OPEFB | Solid Pretreated OPEFB | Liquid Pretreated OPEFB | ||
Model | 7 | 0.019339 | 0.000569 | 0.002763 | 0.000081 | 13.07 | 5.13 | 0.000 | 0.001 |
Linear | 3 | 0.000184 | 0.000076 | 0.000061 | 0.000025 | 0.29 | 1.59 | 0.832 | 0.220 |
SL (%) | 1 | 0.000016 | 0.000000 | 0.000016 | 0.000000 | 0.08 | 0.01 | 0.786 | 0.917 |
Temperature (Celsius) | 1 | 0.000028 | 0.000075 | 0.000028 | 0.000075 | 0.13 | 4.71 | 0.721 | 0.041 |
Time (min) | 1 | 0.000141 | 0.000001 | 0.000141 | 0.000001 | 0.67 | 0.06 | 0.423 | 0.817 |
Square | 3 | 0.018930 | 0.000481 | 0.006310 | 0.000160 | 29.85 | 10.10 | 0.000 | 0.000 |
SL (%) × SL (%) | 1 | 0.000286 | 0.000025 | 0.000286 | 0.000025 | 1.35 | 1.56 | 0.258 | 0.225 |
Temperature (Celsius) × Temperature (Celsius) | 1 | 0.018868 | 0.000401 | 0.018868 | 0.000401 | 89.25 | 25.27 | 0.000 | 0.000 |
Time (min) × Time (min) | 1 | 0.000246 | 0.000025 | 0.000246 | 0.000025 | 1.16 | 1.57 | 0.293 | 0.224 |
2-Way Interaction | 1 | 0.000224 | 0.000013 | 0.000224 | 0.000013 | 1.06 | 0.81 | 0.314 | 0.377 |
Temperature (Celsius) × Time (min) | 1 | 0.000224 | 0.000013 | 0.000224 | 0.000013 | 1.06 | 0.81 | 0.314 | 0.377 |
Error | 22 | 0.004651 | 0.000349 | 0.000211 | 0.000016 | ||||
Lack-of-Fit | 5 | 0.001310 | 0.000153 | 0.000262 | 0.000031 | 1.33 | 2.66 | 0.297 | 0.059 |
Pure Error | 17 | 0.003341 | 0.000196 | 0.000197 | 0.000012 | ||||
Total | 29 | 0.023990 | 0.000918 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meilany, D.; Kresnowati, M.T.A.P.; Setiadi, T.; Boopathy, R. Optimization of Xylose Recovery in Oil Palm Empty Fruit Bunches for Xylitol Production. Appl. Sci. 2020, 10, 1391. https://doi.org/10.3390/app10041391
Meilany D, Kresnowati MTAP, Setiadi T, Boopathy R. Optimization of Xylose Recovery in Oil Palm Empty Fruit Bunches for Xylitol Production. Applied Sciences. 2020; 10(4):1391. https://doi.org/10.3390/app10041391
Chicago/Turabian StyleMeilany, Diah, Made Tri Ari Penia Kresnowati, Tjandra Setiadi, and Raj Boopathy. 2020. "Optimization of Xylose Recovery in Oil Palm Empty Fruit Bunches for Xylitol Production" Applied Sciences 10, no. 4: 1391. https://doi.org/10.3390/app10041391
APA StyleMeilany, D., Kresnowati, M. T. A. P., Setiadi, T., & Boopathy, R. (2020). Optimization of Xylose Recovery in Oil Palm Empty Fruit Bunches for Xylitol Production. Applied Sciences, 10(4), 1391. https://doi.org/10.3390/app10041391